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Abstract ABox abduction was advocated in (Elsenbroich, Kutz,

ABox abduction is an important reasoning mechanism
for description logic ontologies. It computes all mini-
mal explanations (sets of ABox assertions) whose ap-
pending to a consistent ontology enforces the entail-
ment of an observation while keeps the ontology con-
sistent. We focus on practical computation for a general
problem of ABox abduction, called the query abduction
problem, where an observation is a Boolean conjunc-
tive query and the explanations may contain fresh indi-
viduals neither in the ontology nor in the observation.
However, in this problem there can be infinitely many
minimal explanations. Hence we first identify a class of
TBoxes called first-order rewritable TBoxes. It guaran-
tees the existence of finitely many minimal explanations
and is sufficient for many ontology applications. To re-
duce the number of explanations that need to be com-
puted, we introduce a special kind of minimal expla-
nations called representative explanations from which
all minimal explanations can be retrieved. We develop
a tractable method (in data complexity) for computing
all representative explanations in a consistent ontology.
Experimental results demonstrate that the method is ef-
ficient and scalable for ontologies with large ABoxes.

Introduction

In artificial intelligence, abductive reasoning (Eiter and Got-
tlob 1995) is an important logic-based mechanism for com-
puting explanations for an observation that is not entailed
by a background theory, where an explanation is a set of
facts that should be added to the theory to enforce the entail-
ment. Many ontology applications require to explain why an
observation cannot be entailed by an ontology. As a result,
abductive reasoning has regained much attention in descrip-
tion logics (DLs), which underpin the standard Web Ontol-
ogy Language (OWL). A DL ontology consists of a TBox
storing intensional information and an ABox storing exten-
sional information. ABox abduction (Klarman, Endriss, and
Schlobach 2011; Du et al. 2011a) is an adaptation of abduc-
tive reasoning to DLs. It computes all minimal explanations
(sets of ABox assertions) whose appending to a given con-
sistent DL ontology enforces the entailment of an observa-
tion while keeps the ontology consistent.
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and Sattler 2006) where some use scenarios such as medi-
cal diagnosis were presented. It was emphasized in (Bada,
Mungall, and Hunter 2008) as a feature of support tools for
ontology quality control. It was also adapted to semantic
matchmaking by treating requests as observations and offers
as an ABox (Du et al. 2011b). Recently, ABox abduction
was applied to explain why a tuple is not an answer to a con-
junctive query (Calvanese et al. 2013). As was pointed out
in (Borgida, Calvanese, and Rodriguez-Muro 2008), this fa-
cility is as important as explaining why a tuple is a query
answer in ontology-based data access (OBDA) systems.
Although ABox abduction is important and useful, the
problem of computing minimal explanations for ABox ab-
duction is rarely investigated. An initial attempt to com-
pute all minimal explanations was proposed in (Klarman,
Endriss, and Schlobach 2011), where a given ontology is
expressed in the DL ALC and a given observation is a
set of ABox assertions. Since the explanations can be over
arbitrary ALE concepts, the number of minimal explana-
tions can be infinite and the computational method pro-
posed in (Klarman, Endriss, and Schlobach 2011) can-
not guarantee termination. For example, consider an on-
tology consisting of a single axiom JhasParent.Person C
Person, which says that something having a person as
its parent is a person (Du et al. 2011a). Then the ob-
servation that Tom is a person (written {Person(Tom)})
can have infinitely many minimal explanations of the
form {JhasParent. - - - .3hasParent.Person(Tom)}. To ad-
dress the termination problem, Du et al. (2011a) considered
ABox abduction from a more practical perspective. They
require the explanations to be over a finite set of concept
names and role names (called abducible predicates) and to
contain individuals in the given ontology only so that all
minimal explanations can be computed in finite time. They
also propose a method for computing all such minimal ex-
planations in DLs that can be more expressive than ALC.

Recently, Calvanese et al. (2013) considered the com-
plexity aspect of a general problem of ABox abduction,
called the query abduction problem. This problem takes
Boolean conjunctive queries (BCQs) as observations and
allows fresh individuals neither in the ontology nor in the
observation to appear in explanations. For expressing ob-
servations, BCQs are more general than sets of ABox as-



sertions since a set of ABox assertions can be treated
as a BCQ. Allowing fresh individuals can bring more
intuitive explanations. Take the aforementioned ontology
for example. Suppose both hasParent and Tom are ab-
ducible predicates. According to the definition of ABox
abduction proposed in (Du et al. 2011a), the observation
{Person(Tom)} has only one minimal explanation £ =
{hasParent(Tom, Tom), Person(Tom)}. By the definition
of the query abduction problem, the same observation has
some other minimal explanations that are more intuitive,
such as &' = {hasParent(Tom, u), Person(u)} where u de-
notes a fresh individual. £ is more intuitive than £ since
Tom does not necessarily have a parent who is Tom itself.
On the other side, allowing fresh individuals may lead to in-
finitely many minimal explanations. For the above example,
the observation Person(Tom) actually has infinitely many
minimal explanations of the form {hasParent(Tom,u),
hasParent(u1, uz), ..., hasParent(u,—1,u,), Person(uy,)},
where uq, ..., u, are fresh individuals. This makes the is-
sue of computing all minimal explanations for the query ab-
duction problem much tougher than that for the problem of
ABox abduction addressed in (Du et al. 2011a).

Towards practical computation for the query abduction
problem, we first identify a class of TBoxes called first-order
rewritable TBoxes. We show that it guarantees the existence
of finitely many minimal explanations and is sufficient for
many ontology applications, such as the OBDA systems.
Moreover, when the TBox is first-order rewritable, the set of
minimal explanations for a BCQ can be computed in poly-
nomial time in terms of data complexity, i.e. the complexity
measured in the size of the ABox only.

However, the set of minimal explanations for the query
abduction problem with a first-order rewritable TBox can
still be too large to be computed. Consider an ontology hav-
ing n axioms Jr1. T C Aq, ..., Ir,. T £ A, in the TBox
and m assertions Aj(a1), ..., A1(an) in the ABox. Sup-
pose all role names in the ontology are abducible predicates,
then the BCQ {A;1(a),. .., A,(a)} will have (m+ 1)™ min-
imal explanations of the form {ri(a,u1),...,7n(a,un)},
where u; is an individual in {aq,...,a,} or a fresh indi-
vidual. To reduce the number of explanations that need to
be computed, we propose representative explanations that
are minimal explanations not strictly subsumed by other
minimal explanations. A minimal explanation £ is said to
be strictly subsumed by another one & if £’ can become
a subset of £ by replacing fresh individuals with existing
or fresh individuals, but cannot vise versa. The number of
representative explanations can be much smaller than that
of minimal explanations. For the above example, the BCQ
{A1(a),...,A,(a)} has only one representative explana-
tion {ri(a,uy),...,r(a,u,)}, where uy,...,u, are dif-
ferent fresh individuals. Moreover, we show that the set of
minimal explanations can be retrieved from the set of repre-
sentative explanations.

We propose a tractable method (in data complexity) for
computing all representative explanations in a consistent on-
tology whose TBox is first-order rewritable. It does not need
to compute all minimal explanations beforehand. We com-
pare this method with the state-of-the-art method for com-
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puting all minimal explanations (Du et al. 2011a). Exper-
imental results show that, when both methods compute the
same set of explanations, the proposed method is much more
efficient and more scalable; moreover, when role names are
used as abducible predicates, the computation of all minimal
explanations is often impractical, but the set of representa-
tive explanations can still be efficiently computed.

Due to the space limitation, proofs in this paper are only
provided in our technical report (Du, Wang, and Shen 2014).

Preliminaries

We assume that the reader is familiar with DLs (Baader et al.
2003). We only recall that a DL ontology consists of a TBox
and an ABox, where the TBox contains axioms declaring
the relations between concepts and roles, such as concept
inclusion axioms C' C D and role inclusion axioms r C s,
and the ABox contains assertions declaring the membership
relations between individuals and concepts or roles as well
as (in)equivalence relations among individuals.

We assume that the Unique Name Assumption (Baader et
al. 2003) is adopted and only consider ABoxes consisting
of basic assertions, namely concept assertions of the form
A(a) and role assertions of the form r(a,b), where A is a
concept name, r is a role name, and a and b are individu-
als. Other concept assertions and role assertions can be nor-
malized to basic ones in a standard way. Let ¥ be a set of
concept names and role names. An ABox that contains only
concept names and role names from X is called a X-ABox.

We use the traditional semantics for DLs given e.g. in
(Baader et al. 2003). A DL ontology O is said to be con-
sistent, denoted by O [~ L, if it has at least one model,
otherwise, it is inconsistent, denoted by O = L.

A Boolean conjunctive query (BCQ) is of the form
37 ®(&Z, ¢), where ®(Z,¢) is a conjunction of atoms over
concept names and role names, where & are variables and ¢
are individuals. A BCQ is written as and can also be treated
as a set of atoms. For example, the BCQ 3z A(a) A r(a, x)
is written as { A(a), r(a, x)}. A substitution for a BCQ Q is
a mapping from variables in @) to individuals or variables; it
is called ground if it maps variables in @ to individuals only.
A BCQ @ is said to be entailed by a DL ontology O if Q) is
satisfied by all models of O, written O = Q.

Some DLs can be translated to DatalogjE (Cali, Gott-
lob, and Lukasiewicz 2012). A Datalog* ontology con-
sists of finitely many fuple generating dependencies (TGDs)
VEVY ®(Z,y) — 7 (&, Z), negative constraints (simply
constraints) VT ®' () — L, as well as equality generating
dependencies (EGDs) VI ®' () — x1 = x4, where O(Z, ),
»(Z, Z) and ®'(¥) are conjunctions of atoms, 1 and x2 oc-
cur in &, and L denotes the truth constant false. The por-
tions of a TBox 7T that are translated to TGDs, constraints
and EGDs are denoted by 7p, 7¢ and T, respectively. We
introduce the notion of first-order rewritable TBox below.

Definition 1. A TBox 7 is said to be first-order rewritable
if it can be translated to a Datalog® ontology and satisfies
the following three conditions for an arbitrary BCQ ) and
an arbitrary 3-ABox A, where ¥ is the set of concept names
and role names in 7:



(1) TUAEQifandonlyif TpUAE QorTUA | L;

(2) Tc U Tg can be rewritten (according to 7p) to a finite
set of BCQs, denoted by v(T¢ UTg, Tp), such that 7 U
A [= Lif and only if A = Q' for some Q' € v(Tc U
Te, Tp);

(3) @ can be rewritten (according to Tp) to a finite set of
BCQs, denoted by 7(Q, Tp), such that Tp U A |= Q if
and only if A = Q' for some Q' € 7(Q, Tp).

A TBox will be first-order rewritable if it can be trans-
lated to a Datalog® ontology that consists of linear (multi-
linear, sticky, or sticky-join) TGDs, constraints and special
EGDs that are separable from TGDs (Cali, Gottlob, and
Lukasiewicz 2012; Cali, Gottlob, and Pieris 2012). For many
DLs in the DL-Lite family (Calvanese et al. 2007), such
translations exist and have been given in (Cali, Gottlob, and
Lukasiewicz 2012; Cali, Gottlob, and Pieris 2012). Since the
DL-Lite family has become popular in many ontology ap-
plications, such as the OBDA systems, first-order rewritable
TBoxes are sufficient for these applications. Therefore, we
focus on first-order rewritable TBoxes.

The Query Abduction Problem

We consider a general problem of ABox abduction, called
the query abduction problem, which is derived from (Cal-
vanese et al. 2013) and is defined below.

Definition 2. Let O = 7 U A be a consistent DL ontology,
@ be a BCQ and X be a set of concept names and role names
(called abducible predicates). We call P = (T, A,Q,X) an
instance of the query abduction problem. An explanation for
PisaX-ABox € suchthat TUAUE = Q and TUAUE |-
L. The set of explanations for P is denoted by expl(P).

A traditional task for ABox abduction (Klarman, Endriss,
and Schlobach 2011; Du et al. 2011a) requires to compute all
explanations with certain minimality. Since an explanation
defined above may contain fresh individuals not in P (i.e.
neither in O nor in (Q), we cannot use standard set-inclusion
minimality as in (Du et al. 2011a). To compare with expla-
nations containing different fresh individuals, we treat fresh
individuals as variables. Analogously, we define a substitu-
tion for an explanation £ as a mapping from fresh individu-
als in &£ to existing or fresh individuals, and a renaming for
£ as a substitution for £ that maps different fresh individuals
to different fresh individuals. Below we introduce a variant
set-inclusion relation and the notion of minimal explanation.

Definition 3. For two explanations £ and &’ for P =
(T, A Q,%), by & C, € we denote that there exists a re-
naming p for £ such that &'p C €. A minimal explanation
& for P is an explanation for P such that there is no explana-
tion &’ for P fulfilling £’ C,. £. The set of different minimal
explanations for P up to renaming of fresh individuals (sim-
ply up to renaming) is denoted by mexpl(P).

As discussed in the first section, mexpl(P) can have in-
finitely many explanations for 2. However, when 7T is re-
stricted to be first-order rewritable, mexpl(P) will become
a finite set. This conclusion is drawn from Lemma 1, where
a bipartition of a BCQ @ is a tuple of two BCQs (Q1,Q2)
such that Q1 N Q2 = fand Q1 U Q2 = Q.
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Lemma 1. For every minimal explanation & for P = (T,
A, Q, ), there exists a BCQ Q' € 7(Q,Tp), a bipartition
(Q1,Q2) of Q', a ground substitution 0 for Q2 and a ground
substitution o for Q10 such that £ = Q100, Q20 C A,
TUAUQ00 = L.

Let 27 4,5(Q) denote the set {Q16 | Q' € 7(Q,Tp).
(Q1, @2) is a bipartition of ', 0 is a ground substitution for
Q- such that @)1 contains only predicates in 3, Q260 C A,
TUAUQ10 = L}. Lemma 1 shows that mexpl(P) is a sub-
setof {Eo | E € 27 4%(Q), o is a ground substitution for
E} up to renaming. Since the number of BCQs in 7(Q, Tp),
the number of bipartitions of a BCQ in 7(Q, 7p) and the
number of different explanations of the form E¢ for an ele-
ment E € E1 4 »(Q) are finite while 7(Q, Tp) is indepen-
dent from A, the cardinality of mexpl(7P) is finite and is only
polynomial in the cardinality of .4 under an assumption that
the size of 7 and the size of () are constants. Moreover, by
Condition (2) in Definition 1, T U.AU Q10 = L if and only
if thereisno Q' € ¥(TcUTg, Tp) such that AUQ16 £~ Q'.
Hence the consistency checking for 7UAUQ1 6 can be done
in polynomial time in data complexity, and so can mexpl(P)
be computed. However, mexpl(P) can still be too large to be
computed, as shown in the first section. To reduce the num-
ber of explanations that need to be computed, below we in-
troduce a subsumption relation among explanations and the
notion of representative explanation.

Definition 4. A explanation £ for P is said to be subsumed
by another explanation £’ for P, denoted by &' C, &, if
there is a substitution 6 for £’ such that £'60 C &; it is said
to be strictly subsumed by £', denoted by &' C, £,if &' C,
Eand €& &, &'. A representative explanation £ for P is
a minimal explanation for P such that there is no minimal
explanation &’ for P fulfilling &’ C, £. The set of different
representative explanations for P up to renaming is denoted
by rexpl(P).

An example for minimal explanations and representative
explanations is given below.

Example 1. Let O = 7 U A be a DL ontology. The TBox
T consists of the following three axioms:

a1 : Student C Person g : Student C —Employee

as : IworksFor. T C Employee

The ABox A consists of the following two assertions:

ay : Person(Tom) a5 : Student(Amy)

Suppose the set ¥ of abducible predicates is {Student,
Employee, worksFor}. For the BCQ Q; = {Person(Tom),
worksFor(Tom, )}, there are three minimal explana-
tions for (7, .A4,Q1,%), namely {worksFor(Tom, Tom)},
{worksFor(Tom, Amy)} and {worksFor(Tom, )} where u
denotes a fresh individual, among which the last one is the
unique representative explanation for (7, .4, @1, X). For the
BCQ Q2 = {Person(Amy), worksFor(Amy, z)}, there is
no minimal explanation for (7,4, Q2, ¥), because a min-
imal explanation should contain an assertion of the form
worksFor(Amy, a) which is inconsistent with {«s, a3, a5 }.

We propose to compute rexpl(P) instead of mexpl(P) be-
cause the cardinality of rexpl(P) can be much smaller than
that of mexpl(P), and as shown in Theorem 1, mexpl(P)



can be retrieved from rexpl(P) by substituting fresh individ-
uals, performing consistency checks and C,-checks, and by
deleting duplicate explanations up to renaming.

Theorem 1. For a set S of explanations for P, let
reduce,.(S) denote the set of explanations obtained from
{€ € S | there is no &' € S such that &' C, E} by
deleting all duplicate explanations up to renaming. We have
mexpl(P) = reduce,({€6 | £ € rexpl(P), 0 is a substitu-
tion for € such that T U AU EO W~ L}) up to renaming.

Computing all Representative Explanations

Given P (T, A,Q,X), the explanations for P can
be computed from the aforementioned set Z7 4 »(Q)
{@10 | Q" € 7(Q,Tp), (RQ1,Q2) is a bipartition of @', 6
is a ground substitution for ()5 such that (); contains only
predicates in 3, Q20 C A, T UAUQ10 |~ L} by applying
ground substitutions, as shown in the following lemma.

Lemma 2. Let E be an element in =1 4 (Q) and o a
ground substitution for E, then Eo is explanation for P if
and only if TUAU Ec £ L.

However, to efficiently compute all representative expla-
nations for P, it is unwise to enumerate all ground substitu-
tions for elements in =1 4 5(Q). Actually, we can only con-
sider a small portion of ground substitutions for elements in
E7.4,5(Q). We call a ground substitution ¢ fora BCQ Q a
fresh substitution for ) in P if it only maps variables in Q)
to fresh individuals not in P.

By I't 4,»(Q) we denote the set obtained from {Eo |
E € E7.45(Q), o is a fresh substitution for E in P such
that 7 U AU Eo [~ L} by deleting all duplicate elements
up to renaming. By Lemma 2, all elements in I'7 4 »(Q) are
explanations for P. The following lemma shows that all rep-
resentative explanations for P can be found in I'r_4 »(Q).

Lemma 3. For an arbitrary £ € rexpl(P), there exists a
renaming p for € such that Ep € T'r 4 5(Q).

The set I'r 4 »(Q) may contain explanations for P that
are not representative. The following two lemmas show
that the set of representative explanations for P can be ob-
tained from I'r 4 »(Q) by dropping non-minimal explana-
tions and non-representative explanations in turn, where the
Cr-checks and the C,-checks are only applied to explana-
tions in I'r 4 »(Q).

Lemma 4. Forany £ € I'r 4 %(Q), & is a minimal expla-
nation for P if and only if there is no €' € I't 4 »(Q) such
that &' C, €.

Lemma 5. For any £ € reduce,(I't 4 x(Q)) where
reduce,(S) is defined in Theorem 1, £ is a representa-
tive explanation for P if and only if there is no &' €
reduce, (I'r 4, x(Q)) such that &' C E.

By Lemma 3, Lemma 4 and Lemma 5, we obtain a
direct method for computing rexpl(P) without computing
mexpl(P) beforehand. The method together with its sound-
ness and completeness are formally shown in the following
theorem.

Theorem 2. For a set S of explanations for P, let
reduce,(S) denote the set of explanations obtained from
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{€ € S | there is no & € S such that &' C4 E} by
deleting all duplicate explanations up to renaming. We have
rexpl(P) = reduce,(reduce, (I'r, 4,2(Q))) up to renaming.

It should be mentioned that the intermediate step, namely
dropping non-minimal explanations from I'z 4 5(Q), is
crucial in guaranteeing the soundness of the above method.
We show this by the following example.

Example 2. Let O = 7 U A be a DL ontology, where the
TBox T consists of the following two axioms «; and ao,
and the ABox 4 has only the following assertion .

«q : Student M JhasJob. T C Parttime

ao : JhasJob. T T Worker s : Student(Tom)

Suppose the set ¥ of abducible predicates is {hasJob}. Con-
sider the problem of computing all representative explana-
tions for P = (T, A, Q, %), where Q = {Parttime(Tom),
Worker(Tom)}. Tt is clear that Tp T and T¢
Te = 0. We assume that 7(Q,Tp) = {Q’} where @’
{Student(Tom), hasJob(Tom, z), hasJob(Tom,y)}. This
assumption is reasonable since for an arbitrary ABox A’, we
have TpUA’ |= Q if and only if A’ = Q’. Then =1 4 »(Q)
has a single element {hasJob(Tom, z), hasJob(Tom,y)}.
By applying fresh substitutions for this element, we ob-
tain two explanations £ = {hasJob(Tom,u)} and &’
{hasJob(Tom, u; ), hasJob(Tom, uz2)} in 't 4 »(Q). It can
be seen that £ C, £, & C, £ and € C,- £'. Hence, if we
do not drop non-minimal explanations from I'r 4 5 (Q), we
cannot prune £’ which is not a minimal explanation for P.

Consider the time complexity for the above method. As
analyzed in the previous section, Z7 4 (@) has polyno-
mially many elements and can be computed in polynomial
time in terms of data complexity. By Condition (2) in Def-
inition 1, the consistency checks performed in the course
of computing I'r 4 »(Q) from E7 4 »(Q) can be done in
polynomial time too. Hence I'r 4 »(Q) can be computed
in polynomial time in terms of data complexity, and so can
reduce;(reduce, (I'r 4,5(Q))) be computed.

The above method can be efficiently implemented by a
level-wise strategy, where the level number £ is from 0 to the
maximum cardinality of BCQs in 7(Q, 7p), and in the k*"
level only elements in =1 4 5:(Q)) whose cardinality equals
to k are considered. This strategy can often be highly effec-
tive in pruning explanations that are not minimal or not rep-
resentative. An example is given below for illustrating the
above method with the level-wise strategy.

Example 3. Consider again O and P = (7, A4,Q1,Y)
that are given in Example 1. It is not hard to see that
T is a first-order rewritable TBox such that Tp = {ag,
az}, To = {ast, Te = 0, v(Tc U Te, Tp) = {Q'}
and 7(Q1,7p) = {Q}, R4}, where Q' = {Student(z),
Employee(z)}, Q7 = {Person(Tom), worksFor(Tom, z)}
and Q4 = {Student(Tom), worksFor(Tom, z)}. We have
Erax(Q) {{worksFor(Tom, z)}, {Student(Tom),
worksFor(Tom, z)}}. Let S be a set storing representative
explanations for P. Initially, S is set as empty. We cope
with every element in Z7 4 x(Q) in a level-wise man-
ner, where the level number is from O to 2. In Level 0,
there is no element to be handled. In Level 1, we handle



Table 1: The characteristics of test ontologies

Ontology #C #R #TA #AA #1
Semintec 60 16 203 65,240 17,941

Vicodi 194 12 223 116,181 33,238
100,543~ 17,174~

LUBMI~100 43 32 88  13sbadsr  2.179.766

Note: #C/#R/#TA/#AA/#] is the number of concept names/
role names/TBox axioms/ABox assertions/individuals.

{worksFor(Tom, z)}. By applying fresh substitutions for it,
we get & = {worksFor(Tom, u)}, where u denotes a fresh
individual. Since A U &; = @', we have T U AU & -
1 and thus & can be in reduces(reduce, (I'r 4 5(Q))).
We add &; to S. In Level 2, we handle {Student(Tom),
worksFor(Tom, x)}. By applying fresh substitutions for it,
we get &, = {Student(Tom), worksFor(Tom, u)}. Since
&1 Cp &2, & cannot be in reduces(reduce, (I'r 4 5(Q))).
That is, & is pruned according to £ without checking the
consistency of 7 U A U &;. Finally, we obtain rexpl(P) =

Experimental Evaluation

The proposed method was implemented in Java, using the
Requiem (Pérez-Urbina, Motik, and Horrocks 2010) API for
query rewriting and the MySQL engine to store and access
ABoxes. Seven benchmark ontologies with large ABoxes
were used. The first two are Semintec (about financial ser-
vices) and Vicodi (about European history). The remain-
ing ontologies are LUBMn (n = 1,5, 10, 50, 100) from the
Lehigh University Benchmark (Guo, Pan, and Heflin 2005),
where 7 is the number of universities. These ontologies have
TBoxes that are almost first-order rewritable and have been
used to compare different DL reasoners (Motik and Sattler
2006) and to verify methods for ABox abduction (Du et al.
2011a). We removed some TBox axioms that Requiem can-
not handle from the above ontologies, making the remaining
portions of TBoxes first-order rewritable. The characteristics
of all test ontologies are reported in Table 1. All experiments
were conducted on a laptop with Intel Dual-Core 2.20GHz
CPU and 4GB RAM, running Windows 7, where the maxi-
mum Java heap size was set to 1GB.

The experiments are divided into two parts.

In the first part, we compared our proposed method with
the Prolog-based method' proposed in (Du et al. 2011a) on
atomic BCQs that consist of single assertions. The Prolog-
based method is the state-of-the-art method for computing
all minimal explanations. Basically, it transforms a DL on-
tology to a Prolog program and applies a Prolog engine to
compute explanations. For this part, we randomly gener-
ated thirty concept assertions as observations for each test
ontology. In particular, for all LUBMn ontologies we used
the same set of observations so as to verify the scalability
against the increasing number n of universities. Each gener-
ated observation is not entailed by the test ontology, nor is
the negation of it. Both methods work in two phases, namely

'http:/dataminingcenter.net/abduction/
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the preprocessing phase and the query phase. In the prepro-
cessing phase, the proposed method loads the TBox 7 and
computes y(7¢ U Tg, Tp), while the Prolog-based method
transforms the ontology to a Prolog program and loads it to
the Prolog engine. In the query phase, both methods handle
all observations one by one.

The proposed method always finishes the preprocessing
phase in one second for all test ontologies. In contrast,
the Prolog-based method spends twenty seconds to several
hours in the preprocessing phase; it even runs out of mem-
ory when loading the transformed Prolog programs to the
Prolog engine for LUBM10~100.

We focused more on the query phase and set a one-hour
time limit to both methods for handling one observation. We
first set all concept names but no role names as abducible
predicates. The comparison results on the query phase are
reported in Table 2. For all cases where the Prolog-based
method does not run out of memory, the set of representa-
tive explanations computed by the proposed method is the
same as the set of minimal explanations computed by the
Prolog-based method. Moreover, the proposed method is
much more efficient and more scalable against the increas-
ing number n of universities for LUBMn ontologies. The
Prolog-based method is relatively inefficient, because it can-
not guarantee to compute a minimal explanation in polyno-
mial time in data complexity. We then set all concept names
and all role names as abducible predicates. The superiority
of the proposed method is more evident. The Prolog-based
method only handles 27 observations for Vicodi, none of ob-
servations for Semintec and three observations for LUBM1
and LUBMS, without exceeding one hour for each observa-
tion. It works so badly because there are often many minimal
explanations for an observation when role names are used as
abducible predicates. In contrast, the proposed method han-
dles every observation in 1.5 seconds (most in milliseconds)
except for one observation which is over the concept name
Student for each LUBMn ontology. It spends much time
on the Student case because the number of representative
explanations is large in this case: the proposed method com-
putes 55,491 representative explanations in 15 minutes on
LUBMI and exceeds one hour on LUBM5~100.

In the second part of experiments, we verified how well
the proposed method works for general BCQs that may
contain existentially quantified variables. We cannot com-
pare it with the Prolog-based method since the Prolog-based
method does not fully support general BCQs. We randomly
generated twenty BCQs as observations for each of the 14
benchmark conjunctive queries (CQs) company with LUBM
(Guo, Pan, and Heflin 2005). Each BCQ is not entailed by
any LUBMn ontology and was generated from a bench-
mark CQ by replacing the first variable with an individual
and keeping other variables as existentially quantified vari-
ables. We tested these BCQs on LUBMn ontologies with
all concept names and all role names set as abducible predi-
cates. Let Gn denote the group of BCQs generated from the
n*" benchmark CQ. Figure 1 shows the average execution
time for handling a BCQ in each group against the increas-
ing number n of universities. In the figure, part (a) shows
the results about relatively easy groups in which BCQs can



Table 2: The comparison results when only concept names
are used as abducible predicates

The Proposed Method Prolog-based Method

Ontology avg.t max.t avg#re avgt max.t avg#me
Semintec 21 72 4.0 1,808 2,650 4.0
Vicodi 9 34 63 5211 21,580 6.3
LUBMI1 44 403 24 901 5,570 24
LUBMS 43 375 24 8412 52,438 24

LUBMI0 44 371 2.4  running out of memory

LUBMS0 44 388 2.4 running out of memory

LUBMI100 45 382 2.4  running out of memory
Note: avg.t/max.t is the average/maximum execution

time (in milliseconds) for handling an observation;
avg.#me/avg #re is the average number of minimal expla-
nations/representative explanations for an observation.
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(a) relatively easy groups
(The curve for G14 is
the same as that for G11)

(b) relatively hard groups
(Some points and the curve
for G8 are not shown due to

exceeding one-hour time limit)

Figure 1: The results for handling general BCQs in LUBMn

be handled in four seconds for any LUBMn ontology, while
part (b) shows the results about other groups where the ex-
ecution time exceeding one hour is not shown. Nine out of
the 14 groups are relatively easy. Especially, one BCQ in
G3, G11 and G14 can be handled in a few milliseconds on
average. All BCQs in G7 and all relatively hard groups ex-
cept G2 contain atoms over Student. These atoms have been
shown to cause many representative explanations in the first
part of experiments. The BCQs in G2 have also a number
of representative explanations. In more detail, the average
number of representative explanations for a BCQ in G2 is
from 1,007 (on LUBM1) to 67,440 (on LUBMS50). These
results show that the proposed method can also efficiently
compute representative explanations for general BCQs.

Related Work

Abductive reasoning is a new promising research area in the
context of DLs (Elsenbroich, Kutz, and Sattler 2006), where
three kinds of abductive problems have been studied. Be-
sides ABox abduction, the other two kinds are concept ab-
duction and TBox abduction. Concept abduction computes
all concepts that are added as conjunctive components to a
given satisfiable concept to make the concept subsumed by
an observation (which is also a concept) and remain satis-
fiable. Some tableau-based methods for concept abduction
have been proposed in (Noia, Sciascio, and Donini 2007;
2009), while the complexity for concept abduction has been
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studied in (Bienvenu 2008). TBox abduction computes all
sets of abducible axioms that are appended to a TBox to en-
force the entailment of an observation which is a concept in-
clusion axiom. An automata-based method for TBox abduc-
tion has been proposed in (Hubauer, Lamparter, and Pirker
2010). The methods for concept abduction or TBox abduc-
tion are not specifically designed for ABox abduction. There
is no empirical evidence that these methods can be practi-
cally adapted to ABox abduction and are able to handle a
large number of ABox assertions.

As mentioned in the first section, two methods for ABox
abduction have been proposed in (Klarman, Endriss, and
Schlobach 2011) and in (Du et al. 2011a), respectively. The
latter has also been extended to handle the cases where ar-
bitrary concepts are used as abducible predicates (Du et al.
2012). The query abduction problem is a general problem of
ABox abduction and is formally defined in (Calvanese et al.
2013), where the complexity for DL-Lite 4 (a widely used
DL in the DL-Lite family) is systematically studied but no
method for computing all (minimal) explanations is given.
As shown in (Du et al. 2011b), the method proposed in (Du
et al. 2011a) can be adapted to the query abduction problem
for computing some minimal explanations for a BCQ. How-
ever, it does not work in polynomial time in data complexity
even for first-order rewritable TBoxes. Moreover, it is sig-
nificantly less efficient and less scalable than the proposed
method here as shown by our experimental results.

Conclusion and Future Work

ABox abduction is an important reasoning mechanism for
DL ontologies, but there is still a lack of efficient computa-
tional methods, especially for the query abduction problem
which is a general problem of ABox abduction. In this paper
we have addressed the computational aspect of this problem
and made the following contributions. First, considering that
the number of minimal explanations for a BCQ can be infi-
nite, we identified first-order rewritable TBoxes that guar-
antee the existence of finitely many minimal explanations.
Second, in order to reduce the number of explanations that
need to be computed, we introduced representative expla-
nations from which minimal explanations can be retrieved.
Third, we proposed a tractable method (in data complexity)
for computing all representative explanations in a consis-
tent DL ontology whose TBox is first-order rewritable. Last
but not least, we empirically showed that computing the set
of representative explanations is much more practical than
computing the set of minimal explanations; moreover, the
proposed method is efficient and scalable for DL ontologies
with large ABoxes.

There are at least three directions that can be explored
in the future work. Firstly, the set of representative expla-
nations can still be large in some cases. It calls for specific
treatments for these hard cases. Secondly, it is useful to de-
velop methods for checking whether an arbitrary TBox is
first-order rewritable. Lastly, besides the class of first order
rewritable TBoxes, it is important to identify other classes
of TBoxes or some classes of BCQs that have finitely many
minimal explanations for the query abduction problem.
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