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Abstract
In the Real-Time Agent-Centered Search (RTACS) problem,
an agent has to arrive at a goal location while acting and rea-
soning in the physical world. Traditionally, RTACS problems
are solved by propagating and updating heuristic values of
states visited by the agent. In existing RTACS algorithms the
agent may revisit each state many times causing the entire
procedure to be quadratic in the state space. We study the
Iterative Deepening (ID) approach for solving RTACS and
introduce Exponential Deepening A* (EDA*), an RTACS al-
gorithm where the threshold between successive Depth-First
calls is increased exponentially. EDA* is proven to hold a
worst case bound that is linear in the state space. Experimen-
tal results supporting this bound are presented and demon-
strate up to 10x reduction over existing RTACS solvers wrt
distance traveled, states expanded and CPU runtime.

Introduction
The focus of this paper is real-time agent-centered search
(RTACS). In this scenario an agent has limited computa-
tional power and only local perception of the environment.
The task of the agent is to reach a given goal state while act-
ing and reasoning in the physical environment. Algorithms
for solving RTACS work in repeated plan-act cycles. Each
planning phase is restricted to the agent’s local sensing ra-
dius and is time/memory bounded.

Most existing RTACS solvers belong to the LRTA* fam-
ily (Korf 1990; Koenig and Sun 2009; Hernández and Baier
2012). The core principle in algorithms of this family is that
when a state is visited by the agent, its heuristic value is
updated through its neighbors. In areas where large heuris-
tic errors exist, agents must revisit states many times, po-
tentially linear in the state space per state (Koenig 1992).
Consequently, the total number of states visited in the entire
procedure is quadratic in the state space.

We define an RTACS algorithm to be efficient if the num-
ber of revisits is of the same order as the number of first vis-
its. Iterative Deepening (ID) can be used to solve RTACS.
In common RTACS domains (e.g., grids) IDA* (Korf 1985),
similar to LRTA*, may revisit states many times and may
have complexity quadratic in the state space. IDA* is thus
inefficient according to our definitions.

To tackle the problem of extensive state revisiting we in-
troduce Exponential Deepening A* (EDA*), a variant of
IDA*. Unlike IDA*, where the threshold for the next it-
eration grows linearly, in EDA* the threshold for the next

iteration is multiplied by a constant factor and thus grows
exponentially. We prove that in common RTACS domains
EDA* is efficient according to our definition, and thus the
complexity of EDA* is linear in the size of the state space.

Finally we provide experimental results that validate
this theoretical claim. EDA* outperforms existing RTACS
solvers, especially in worst-case scenarios, where its linear
bound is most important.

RTACS: Background and Definitions
Given a graph G, start and goal states, and an admissible
heuristic to the goal we differentiate between two types of
problems and related algorithms: classic search problems
and RTACS problems. In a classic search problem the task
is to search and return a full start-to-goal path (in a single
planning phase). Later, this path may be followed by a real-
world agent (acting phase), but this is beyond the scope of
the classic search problem. Traditional search algorithms in
their common use (e.g., A*, IDA*) belong to this class.

By contrast, in RTACS, a moving agent is located in start
and its task is to physically arrive at the goal. RTACS algo-
rithms perform cycles that include a planning phase where
search occurs and an acting phase where the agent physi-
cally moves. Several plan-act cycles are performed due to
the following restrictive assumptions:
Assumption 1: As a real-time problem, the agent can only
perform a constant-bounded number of computations before
it must act by following an edge from its current state. Then,
a new plan-act cycle begins from its new position.
Assumption 2: The internal memory of the agent is limited.
But, agents are allowed to write a small (constant) amount
of information into each state (e.g., g- and h- values). In this
way RTACS solvers are an example of ‘ant’ algorithms, with
limited computation and memory (Shiloni et al. 2009).
Assumption 3: As an agent-centered problem, the agent is
constrained to only manipulate (i.e., read and write infor-
mation) states which are in close proximity to it; these are
usually assumed to be contiguous around the agent.

An RTACS agent has two types of state visits:
First visit - the current state was never visited previously by
the agent. We denote the number of first visits by F .
Revisit - the current state was visited previously by the
agent. We denote the number of revisits by R.
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Evaluation Metrics
Common metrics for evaluating RTACS algorithms are:
(1) Travel distance: the total distance (sum of edge costs)
that the agent moved during the acting phase. This is rele-
vant when the time of physical movement of the agent (be-
tween states) dominates the computational CPU time.
(2) Computational time: the sum of CPU runtime over all
planning phases; relevant when the CPU time dominates the
time of a physical movement. CPU time can be measured
precisely or approximated by counting the number of states
expanded in the planning phase.1

In this paper we also introduce a new metric:
(3) First Visits Ratio (FVR): The ratio between the number
of first visits and total visits, defined as FV R = F

F+R .

Optimality
We distinguish between two types of optimality:
Optimal-0: Returning the optimal solution. Defined only
for classic search algorithms. If the search algorithm is guar-
anteed to return the shortest path (after its single planning
phase) we say that it is Optimal-0. For example, A*, IDA*
and DFBnB are all Optimal-0. However, Optimal-0 is not
defined for RTACS algorithms because they do not return
paths; their task is to arrive at the goal.
Optimal-1: Converging to the optimal solution. De-
fined for RTACS. In some cases it is assumed that the agent
must repeatedly solve the same problem, sharing knowledge
across all trials. In these cases, the heuristics can be updated
by successive trials until they converge to the true value.
Once complete, this will allow the agent to follow the opti-
mal path in all future trials. Algorithms of the LRTA* family
are Optimal-1 (Korf 1990).

Learning Real-Time A* (LRTA*)
A basic building-block for RTACS solvers is propagation
(learning) of h-values and/or g-values between neighbor-
ing states. Since the agent is assumed to have no or lim-
ited memory, any needed data regarding a state must be
stored in the actual state (according to assumption 3 above).
The propagation procedure (known as the Bellman equa-
tion (Bellman 1957)) is defined as: x(v) = minu(x(u) +
cost(v, u)), where x(v) is the g- or h-value of vertex v, u is a
vertex within the lookahead radius of vertex v and cost(v, u)
is the cost along the path from v to u.

Many RTACS algorithms belong to the LRTA* fam-
ily (Korf 1990). Basic LRTA* with lookahead of radius 1
is presented in Algorithm 1. In its planning phase the agent
performs a lookahead search and propagates the heuristic
of the current state from its neighbors (lines 4-7). Then,
the agent moves (act phase) to the most promising neighbor
vnext (line 8). LRTA* was proved to be Optimal-1.

A closely related algorithm is Real-time A* (RTA*) (Korf
1990). In RTA*, h(v) is propagated not from v’s best neigh-
bor, like in LRTA*, but from its second-best neighbor. This

1Koenig (2004), discussed these and other metric variants. Re-
cently, Burns et al. (2013) suggested combining the two metrics to
one utility function that takes both into account. Working with this
metric is left for future work.

Algorithm 1: LRTA* with lookahead radius 1
Input: Vertex start, Vertex goal

1 vcurrent = start
2 while vcurrent 6= goal do
3 vcurrent.h =∞
4 foreach (Vertex vn in Neighbors(vcurrent)) do
5 if (vcurrent.h > vn.h+ cost(vcurrent, vn))

then
6 vnext = vn
7 vcurrent.h = vn.h+ cost(vcurrent, vn)

8 vcurrent = vnext //physical move

Algorithm 2: IDA*/RIBS/EDA*
Input: Vertex start, Vertex goal, Int C

1 T = start.h
2 while BDFS(start, goal, T ) = FALSE do
3 Case IDA* : T = T + C
4 Case EDA* : T = T × C

allows escaping from local heuristic depressions faster than
LRTA*. But, over multiple trials RTA* may end up with
inadmissible heuristic values, so RTA* is not Optimal-1.

Variants of LRTA*/RTA* follow the same plan-act frame-
work but vary the size or shape of the lookahead, the move-
ment rule, or other parameters (Bulitko and Lee 2006).
LSS-LRTA* (Koenig and Sun 2009) performs an A*-
shaped lookahead in the local search space (LSS) near
the agent. Larger LSSs yield shorter distance traveled,
but require a longer planning phase for each step. daL-
RTA*/daRTA* (Hernández and Baier 2012), prefers mov-
ing to states where the least learning has occurred. By
doing so, it may avoid revisiting states belonging to the
same local heuristic depression many times. SLA* and f -
LRTA* (Sturtevant and Bulitko 2011) are designed to con-
verge to optimal (Optimal-1) in as few trials as possible
rather than solving the problem only once (one trial).

In areas where large heuristic errors exist, all LRTA* al-
gorithms may revisit states many times, potentially linear in
the state space per state (Koenig 1992). Thus, denoting the
size of the state-space by N , while F = O(N), R is O(N2)
in the worst case. Consequently, the total number of states
visits (F +R) is O(N2) - quadratic in N .

Iterative-Deepening Algorithms
We now discuss the Iterative-Deepening (ID) framework and
its attributes which are relevant for RTACS. Then, we dis-
cuss RIBS - the IDA* variant for RTCAS. Finally, we intro-
duce our new algorithm, Exponential-Deepening A*.

ID acts according to the high-level procedure presented in
Algorithm 2. T denotes the threshold for a given Bounded
DFS (BDFS) iteration where all states with f ≤ T will be
visited. In IDA*, T is initialized to h(start) (line 1). For the
next iteration, T is incremented to the lowest f -value seen
in the current iteration that is larger than T . For simplicity,
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we assume that T is incremented by a constant C (line 3). A
lower bound for C is the minimal edge cost.

In many domains, multiple paths to the same node exist;
these are called transpositions or duplicates. Transpositions
may blow up the search tree to be exponentially larger than
the state space. In a 2D, 8-connected grid of radius r there
areO(r2) unique states. But, due to transpositions, the num-
ber of states examined is O(7r). In such cases a mechanism
called duplicate detection and pruning (DD) may be option-
ally employed. Since in RTACS the agent is allowed to leave
small pieces of information in each state, marking and de-
tecting previously visited states is allowed.

RIBS (Sturtevant et al. 2010) is a variant of IDA* for
RTACS problems. At the high level RIBS is identical to
IDA* and executes Algorithm 2. However, the BDFS it-
erations are physically performed by a moving agent. As
an RTACS algorithm, RIBS stores the index of the current
BDFS iteration in each state it visits. Consequently, RIBS
can detect and prune duplicates (DD) within any given iter-
ation. In addition, since the threshold T corresponds to the
f -value(= g + h) of states, RIBS stores both g-values and
h-values in each state. RIBS is Optimal-1.

Sturtevant et al. (2010) described pruning techniques that
can be employed on top of RIBS. These techniques find and
mark dead states that can be removed from the state space
while still maintaining the optimal solution.

Theoretical analysis of ID
For simplicity of discussion, hereafter we make the follow-
ing assumptions: (1) All ID-based RTACS algorithms use
DD within a given iteration. (2) The heuristic h is admissi-
ble and consistent. (3) Unit edge costs. (4) Fixed branching
factor b and fixed dimensionality k for polynomial domains.
(5) For worst-case analysis we assume h = 0 for all states.

For an ID iteration, i, we denote the number of states vis-
ited for the first time by Fi and the number of states that are
revisited (were visited in previous iterations) by Ri. Note
that

∑
Fi = F and

∑
Ri = R where F and R are the total

first visits and revisits across the entire run as define above.
Theoretical studies of ID usually focus on other quanti-

ties: Nprev, the total number of states visited in all iterations
prior to the last one, and Nlast, the number of states visited
in the last iteration. We now show that Nlast = F and that
Nprev = R. We denote the last iteration index by n.
Lemma 1 F = Nlast

Proof: States revisited in iteration i are exactly the states
visited during iteration i− 1, i.e., Ri = Fi−1 +Ri−1. Note
that there are no revisits at the first iteration, i.e., R1 = 0.
Now, Nlast = Fn +Rn = Fn + F(n−1) +R(n−1) = Fn +

F(n−1) + F(n−2) +R(n−2) = ... =
n∑

i=1

Fi = F �

Lemma 2 R = Nprev

Proof: We again use the fact that Ri = Fi−1 +Ri−1. Thus,

Nprev =
n−1∑
i=1

(Fi +Ri) =
n∑

i=1

Ri = R �

Definition: We say that any RTACS algorithm and ID in par-
ticular is efficient if F = θ(R) (or equivalently, if Nlast =

θ(Nprev) in ID). We break this into two conditions:
Condition 1 - R = O(F ), meaning that the order of F is
greater than or equal to R.
Condition 2 - F = O(R), meaning that the order of R is
greater than or equal to F .

If R >> F (condition 1 is violated) the agent spends
most of the time revisiting previously seen (non-goal) states.
Many existing RTACS algorithms (e.g., the LRTA* fam-
ily) do not satisfy condition 1. In the worst-case, they are
quadratic in the state space due to extensive revisits.

IfF >> R (condition 2 is violated) the agent might spend
too much time in exploring new but irrelevant states.

Lemma 3 An algorithm has a worst case complexity linear
in the size of the state space N iff it satisfies condition 1.

Proof: Since in the worst case the entire state space will be
visited, and each state can be visited for the first time only
once, F = O(N). If condition 1 is satisfied thenR = O(F ).
Now, since F = O(N) then R = O(N) too. Thus the
complexity of the algorithm (F + R) is also O(N). On the
other hand, if F+R = O(N) and since F = O(N),Rmust
also be O(N), so R = O(F ) and condition 1 is satisfied. �

Efficiency of IDA*/RIBS
We now discuss the circumstances under which IDA* (or
RIBS which performs DD when possible) satisfies both con-
ditions 1 and 2 (and is considered efficient). We differentiate
between two types of domains:
1. Exponential domains: In exponential domains, usu-
ally given implicitly, the number of states at depth d is
bd (exponential in d) where b is the branching factor. At
each level there are a factor of b more states. Therefore, in
IDA* the total number of states visited in the last iteration
is Nlast = F = O(bd). The sum of states visited over
all prior iterations, Nprev = R, is also O(bd) (See (Rus-
sell and Norvig 2010), pp 90 for more details). Therefore,
F = θ(R), both conditions 1 and 2 are met, and according
to our definition, IDA* is efficient in exponential domains.
2. Polynomial domains: In polynomial domains the num-
ber of states at radius r from the start state is rk where
k is the dimension of the domain. The last iteration vis-
its Nlast = F = O(rk) states. However, the total num-
ber of states visited prior to the last iteration is (we denote
q = r − 1): Nprev = R =

∑q
i=1 i

k >
∑q

i=q/2 i
k >∑q

i=q/2( q
2 )k = q

2 · (
q
2 )k = qk+1

2k+1

Since 2k+1 is a constant and q = r − 1, R = Ω(rk+1).
Condition 2 is satisfied (F = O(R)). But, since R =
Ω(rk+1) and F = O(rk) then R >> F and condition
1 is violated. For example, in a straight line of length d,
IDA*/RIBS will visit O(d) first states, but it will revisit
O(d2) states.2

2to Satisfy Conditions 1 and 2 for varying branching factor
or for non-uniform edge costs, the threshold of IDA* should be
dynamically changed. Some prediction methods that may de-
termine the next effective threshold exist (Korf et al. 2001;
Lelis et al. 2013; Burns and Ruml 2013; Sarkar et al. 1991;
Wah and Shang 1994) but they all make specific assumptions, need
significant computation and are not directly applicable to RTACS.
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Since condition 1 is violated in polynomial domains, the
complexity of IDA*/RIBS is larger than the size of the state
space (according to Lemma 3). EDA* remedies this and
satisfies both conditions 1 and 2 for RTACS problems on
polynomial domains such as grids.

Exponentially Deepening A* (EDA*)
EDA* is similar to IDA* in that it performs multiple cost-
bounded depth-first searches until the solution is found.
EDA* only requires one change to the IDA* pseudo code
presented in Algorithm 2 (line 4). That is, instead of adding
a small constant to the threshold, we multiply the previous
threshold by a constant. For example, assuming unit edge
costs and h ≡ 0, IDA* will perform iterations with thresh-
olds 1, 2, 3..., i. By contrast, if C = 2, the EDA* thresholds
will be 2, 4, 8, 16 . . . , 2i. Similar to RIBS, EDA* in RTACS
environments performs full DD within a given iteration.

Optimality of EDA*
Lemma 4 EDA*, as a classic single planning phase search,
without the RTACS restrictions, is Optimal-0.

Proof: Let d be the cost of the optimal solution. Let i be
the value for which Ci−1 < d ≤ Ci. The goal will not be
found in iteration i − 1 as d > Ci−1. On the other hand,
EDA* must find the optimal solution in the ith iteration if
it completes that iteration (i.e., the iteration does not halt
when the goal is first reached). In iteration i, all states with
f ≤ Ci are visited. In particular, we will see the goal via its
optimal solution as d ≤ Ci.3�

Lemma 5 EDA* when used as a RTACS algorithm is
Optimal-1: Let d be the cost of the optimal solution. EDA*
will converge to the optimal solution after d trials if it com-
pletes the final iteration in each trial.4

Proof: By induction on d: For d = 1, the optimal path
of length 1 will be discovered in the first trial via the start
state. Assume the induction holds for all paths of length z−
1. Now, consider the optimal path of length z composed of
states s1, s2...sz . The optimal path to state sz−1 was found
after z − 1 trials, according to the assumption. State sz−1

must be expanded during the last iteration. When sz−1 is
expanded the optimal path to state sz will be found, that is,
the known shortest path to sz−1 plus the connecting edge
E(sz−1, sz). Tracing back from the goal state will reveal
the optimal path. �

Efficiency of EDA*
To deal with the efficiency conditions for EDA*, we again
distinguish the two types of domains.
1. Exponential domains: Assume that the depth of the
goal is d = Ci + 1. In this case, the goal will not be
found in iteration i, and will instead be found in iteration

3Strictly speaking EDA* is Optimal-0 only if DD is not applied
(e.g., in implicitly given exponential domains), or, when DD is ap-
plied (e.g., in explicitly given polynomial domains) if we allow the
re-expansion of nodes if they are seen again with smaller g-values.

4Note that a trial is the entire procedure of solving a given prob-
lem while an iteration is a single BDFS call within a trial.

Solver Exponential (N = bd) Polynomial (N = dk)
Nodes C1 C2 ef. Nodes C1 C2 ef.

IDA* bd + + X dk+1 - + ×
EDA* bC(d−1) + - × Ĉdk + + X

Table 1: IDA* vs EDA*. Ci = condition i. ef = efficent

i + 1. All states with f ≤ Ci+1 will be visited during the
last iteration. There are Nlast = F = O(b(C

(i+1))) such
states in total. In all previous iterations Nprev = R =∑i

j=0 b
(Cj) = O(b(C

i)) states will be visited. In exponen-
tial domains EDA* satisfies Condition 1, R = O(F ).

EDA*, however, violates Condition 2. Let d be the opti-
mal solution. We say that states with f > d are surplus (Fel-
ner et al. 2012). Since the EDA* threshold may be increased
beyond d = Ci +1 up to Ci+1, the number of surplus nodes
that EDA* will visit isO(bC

i+1

). This is exponentially more
than the b(C

i)+1 necessary nodes to verify the optimal solu-
tions, i.e., those with f ≤ d (which are expanded by A*).
Since R = O(b(C

i)+1), R << F and condition 2 is vio-
lated. Thus, EDA* is not efficient for exponential domains.
2. Polynomial domains:

We assume that in a polynomial domain of dimension
k the number of unique states visited by EDA* within a
threshold T is θ(T k).5 If the goal is found in iteration i,
EDA* will visit F = (Ci)k = (Ck)i = (Ĉ)i states, where
Ĉ = Ck is a constant. In all previous iterations the agent
will visit R =

∑i−1
j=0(Cj)k =

∑i−1
j=0(Ĉj) = θ(Ĉi). Conse-

quently, F = θ(R). EDA* satisfies both conditions 1 and 2.
Since EDA* satisfies condition 1, its worst case complexity
is linear in the state space, as proven in Lemma 3. Since
it satisfies condition 2, the number of surplus nodes visited
will not hurt the complexity. As a result, EDA* is considered
fully efficient on polynomial domains.

Table 1 summarizes the total complexities of IDA*/RIBS
and EDA* on polynomial and exponential domains and also
points which of the conditions they satisfy. Note that for
both exponential and polynomial domains EDA* satisfies
condition 1 and has a linear worst case complexity.

BDFS in EDA*
The low-level BDFS procedure (when EDA* is used as an
RTACS algorithm) is presented in Algorithm 3 and is de-
scribed next. EDA* writes the following pieces of informa-
tion in each visited state s:
1: Iteration index (labeled s.i): The iteration index of the
last BDFS iteration in which this state was visited. If for
iteration I and state s, s.i = I then state s is treated as a du-
plicate state. If, however, s.i 6= I it means that s was never
visited during iteration I and EDA* sets s.i = I (Line 6).
2: Best g-value (labeled s.g): The shortest known distance
from the start state, the g-value, of state s. When a state sn is
examined (among the other neighbors, Line 7) via s, sn.g is

5This is true in state spaces with no transpositions. When trans-
positions exist there are pathological cases (with irregular move-
ments of the agent) that require a different treatment and a different
proof (omitted here), so this is a simplifying assumption.
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Algorithm 3: BDFS for EDA* with DD
Input: State start, State goal, Threshold T , Iteration I

1 start.g = 0
2 s = start
3 while s 6= goal do
4 if (s = NULL) then
5 return FALSE //Backtracked from root
6 s.i = I
7 snext = best unvisited neighbor, null if non exist.
8 if (s.g + h(s, goal) > T ) OR snext = null then
9 s = s.prev //Physical move - Backtrack

10 continue //Next while loop
11 snext.prev = s
12 s = snext //Physical move
13 return TRUE

updated according to sn.g = min(sn.g, s.g + cost(s, sn)).
The best g-value is stored across visits and across iterations.
3: Parent pointer (labeled s.prev): As all depth-first
searches, EDA* must backtrack once it reaches a leaf. Thus,
a backpointer is stored. When the agent moves away from
state s to a neighboring state snext which was previously
unvisited during the current iteration, the parent pointer
snext.prev is set to s (Line 11).

When EDA* moves to a new state s 6= goal in iteration I
(Line 12), a new while loop begins (Line 3) and the iteration
index s.i is updated to I (Line 6). All neighbors of state s
are examined; during this process their g-value is updated
if needed. The neighbor with the lowest f = g + h, that
was not yet visited during the current iteration, is chosen as
snext. If no unvisited neighbor exist, snext is set to null.
Next, two cases exist:
(1) (Lines 8-10) f(s) = g(s) + h(s) > T or snext = null.
In this case, the agent backtracks to state s.prev.
(2) (Line 11-12) f(s) = g(s)+h(s) ≤ T and snext 6= null.
In this case, snext.prev is updated to be s. Then, the agent
physically moves to snext.

Experimental Results
In all experiments we add results for A* which is a classic
search algorithm and not a RTACS algorithm. Nevertheless,
A* never revisits states (FV R = 1). Thus, it can be used as
a lower bound. Moreover, when the different RTACS algo-
rithms use a Local Search Space (LSS) they perform an A*
search over the LSS. In the limit where the LSS includes the
entire state space these algorithms will act identically to A*.

Supporting the Theoretical Analysis
Our first experiment is intended to support the claim that
EDA* is efficient in polynomial domains. For this we used
a large grid (2000×2000) with no obstacles so as to clearly
show the trends of the algorithms. As we aim to prove the
worst case performance bounds for the different algorithms,
the heuristic values of all states were set to zero (h ≡ 0).

The distance d between start and goal varied from 1
to 500. Figure 1(left) presents the number of expanded

Figure 1: Open map experiments: A*, IDA*, RIBS, EDA*.

Alg. Expanded Distance Time FVR
Classic search algorithms

A* 11,345 380 78 1.00
IDA* 6,142,549 14,617,700 9,975 0.19

Real-Time Agent-Centered algorithms
RIBS 330,397 742,138 1,971 0.29
f -LRTA* 82,111 92,149 340 0.49
LRTA* 237,233 243,075 284 0.42
daLRTA* 33,486 35,645 105 0.66
RTA* 60,744 70,481 78 0.60
daRTA* 26,664 30,978 82 0.74
EDA*(1.1) 48,797 109,146 135 0.40
EDA*(1.5) 18,984 38,518 51 0.59
EDA*(2) 15,243 29,764 40 0.65
EDA*(4) 12,970 24,248 34 0.70
EDA*(8) 12,714 23,553 33 0.71
EDA*(16) 12,785 23,689 33 0.71

Table 2: Average measurements over all DAO problems.

states (y-axis) as a function of the distance from start to
the goal (d) (x-axis) for IDA*, RIBS (+dead-state pruning),
and EDA* with C = 2. Clearly, EDA* outperforms RIBS
which in turn outperforms IDA*. The quadratic growth of
IDA*/RIBS vs. the linear growth of EDA* is clearly shown.

Figure 1(right) presents the FVR (y-axis). Here, A*,
RIBS and EDA* are reported. A* never checks the same
state more than once, therefore, its FVR is always 1. Re-
call that for efficient algorithms (where F = θ(R)) we ex-
pect that FVR is neither decreasing nor increasing. The FVR
for RIBS decreases quickly, converging to 0. This supports
the claim that for polynomial domains IDA* performs a fac-
tor of d more revisits compared to first visits (F = dk and
R = d(k+1)). By contrast, EDA* has an FVR which is al-
ways very close to 0.5 and is not significantly decreasing
nor increasing. This supports the claim that EDA* is effi-
cient (F = θ(R)). The “steps” in EDA* correspond to the
jumps of T and correspond to the powers of C = 2. For any
i, once the goal is further than Ci, the i+1 iteration must be
performed and all states at radius Ci+1 will be visited. Note
that A* has a larger FVR than EDA*. However, since EDA*
has a lower constant time per expansion it is faster than A*.
The average runtime of EDA* was 223ms vs 328ms for A*
(39,998ms for RIBS). Note that other RTACS solvers can-
not be compared when h ≡ 0, as they will move randomly
around the state space.

RTACS Experiments on Video Game Maps
We experimented with the entire set of Dragon-Age: Origins
(DAO) problems (all buckets, all instances) from (Sturte-
vant 2012). h was set to octile distance. The follow-
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Alg. Expanded Distance Time FVR
A* 123,392 2,893 1,146 1.00
IDA* 160,128,683 366,936,525 260,343 0.00

Real-Time Agent-Centered algorithms
RIBS 6,165,745 14,010,238 32,093 0.01
f -LRTA* 37,817,668 44,415,331 134,964 0.00
LRTA* 7,274,692 7,449,572 8,411 0.01
daLRTA* 1,371,132 1,456,906 4,534 0.03
RTA* 3,070,169 3,619,821 4,337 0.02
daRTA* 2,283,872 2,748,504 6,587 0.02
EDA*(16) 141,455 312,137 581 0.31

Table 3: Worst case measurements over all DAO problems.

ing algorithms were used for this experiment: A*, LRTA*,
RTA*, daLRTA* and daRTA* (Hernández and Baier 2011),
f -LRTA* (Sturtevant and Bulitko 2011), RIBS and EDA*6.
For all algorithms, lookahead (sensing radius) was set to 1.
For EDA*, the number in parenthesis denotes the size of the
constant factorC. C was chosen from {1.1, 1.5, 2, 4, 8, 16}.

Table 2 reports the averages over all instances of four
measures aspects: (1) The number of node expansions (ex-
panded). (2) The total distance traveled during the solving
process (for RTACS algorithms) (Distance). (3) CPU run-
time in ms. The CPU time spent in the planning phases
(Time). (4) First Visit Ratio (FVR).

The best algorithm in each category is in bold. The to-
tal distance traveled highly correlates to the number of ex-
panded states. Distance is slightly higher than the nodes ex-
panded due to the agent’s ability to move diagonally; diag-
onal moves cost

√
2 while only expanding one state. In the

DFS algorithms (IDA*, RIBS, EDA*), the distance traveled
correlates to twice the number of expanded states because
the agent travels in each edge twice (generating successors
and then backtracking).

Different C values for EDA* influence the performance.
The value of C = 8 was best for all 4 measures. EDA*
outperformed all other algorithms in all measures. If we
disregard RTA* and daRTA* which are not Optimal-1 then
the advantage of EDA* is even more dramatic.

Worst case experiment EDA* has the best worst-case
complexity (linear in the state space) among all other
RTACS solvers (most are quadratic in the state space). Con-
sequently, the advantage of EDA* is much clearer when we
look at the worst instance for each algorithm. Table 3 has the
same format as Table 2 but on a single instance. For each
algorithm it is the instance where the algorithm performed
worst, thus, the instances may vary among the algorithms.
Our aim here is to show that EDA*, unlike other algorithms,
is very robust among the instances and that it performs well
even in its worst-case behavior. The results show that when
comparing the worst cases, EDA* significantly outperforms
all other RTACS solvers.

Varying the Lookahead Some of the algorithms, namely,
LRTA*, RTA*, daLRTA* and f -LRTA* use a Local Search

6The dead states pruning of RIBS are also applicable to EDA*.
Unlike RIBS, the complexity of EDA* is not dominated by state
revisits. Consequently EDA* does not benefit greatly from dead
state pruning; we found the overhead to be not worthwhile.

Alg. LSS Exp. Dist. Time #Cycles MS/P
daLRTA* 5 51,472 14,664 745 10,295 0.072
daRTAA* 5 40,616 14,697 212 8,124 0.026
EDA*(8) 5 12,714 23,090 30 4,063 0.007
daLRTA* 10 69,266 11,657 882 6,927 0.127
daRTAA* 10 46,492 9,719 226 4,650 0.049
EDA*(8) 10 12,714 22,891 28 2,032 0.014
daLRTA* 100 62,575 3,809 647 626 1.033
daRTAA* 100 76,373 4,657 406 764 0.531
EDA*(8) 100 13,114 22,529 31 210 0.148

Table 4: Average results for varying lookaheads.

Space (LSS) for lookahead. If allowed, these algorithms
search a local space around the agent in order to perform
more learning and find a better path. The quality of the
plan returned by the planning phase is better and so the
total distance traveled by the agent is reduced at the cost
of a longer planning phase and more CPU time. We im-
plemented lookahead in EDA* by simulating the algorithm
without actually moving the agent. Once the planning phase
is done, the agent then moves to the final simulated location.

Table 4 compares the strongest existing RTACS solvers,
daRTAA* and daLRTA* to EDA* with C = 8, with vary-
ing limits on the size of the LSS. Here we also present the
number of planning/acting cycles (#Cycles) and the time (in
millisecond) per planning phase (MS/P). Again, all values
are averaged over all problem instances.

Increasing the LSS reduces the distances for daR-
TAA*/daLRTA*. The reduction for EDA* is less dramatic
and only occurs if the agent backtracks during the lookahead
phase. EDA*, however, outperformed daRTAA*/daLRTA*
in all other metrics. If large LSS is allowed, CPU time is
abundant and the agent moves slowly, daRTAA* with a large
LSS will yield the best travel distance. But, if the LSS is lim-
ited to radius 1, or CPU time is restricted, or the agent moves
extremely fast, EDA* should be chosen.

Conclusions and Future Work
We introduced new terminology with regards to efficiency
of RTACS solvers. We then presented EDA*. EDA* is in-
tuitive and very simple to implement. To the best of our
knowledge EDA* is the only RTACS algorithm that is, in
the worst case, linear in the state space. Experimental re-
sults on grids support our theoretical claims; EDA* outper-
forms other algorithms in all the measurements if standard
lookahead of radius 1 is assumed. If deeper lookahead is al-
lowed, EDA* is best in all measurements except Distance.
In addition, EDA* is shown to be very robust across differ-
ent instances.

Many of the claims and proofs along the paper made spe-
cific assumptions but the trends were generally supported
by our experiments. Future papers will (1) remove these
assumptions and provide a more thorough theoretical treat-
ment of other cases, such as variable edge costs, variable di-
mensionality etc. (2) cover the relations between DD and re-
expansion of nodes when better g-values are found (3) treat
various (and irregular) movement ordering of the agent, and
(4) devise advanced methods for performing LSS for EDA*.
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