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Abstract

We present a novel extension of normal form games that we
call biased games. In these games, a player’s utility is influ-
enced by the distance between his mixed strategy and a given
base strategy. We argue that biased games capture important
aspects of the interaction between software agents. Our main
result is that biased games satisfying certain mild conditions
always admit an equilibrium. We also tackle the computation
of equilibria in biased games.

1 Introduction
Since the seminal work of Nash (1950), the notion of Nash
equilibrium has been the cornerstone of game theory (and
its interaction with AI, and computer science more broadly).
Nash equilibrium is most commonly employed as a solution
concept for normal form games, which are defined by a set
of n players, their sets of pure strategies, and their payoff
functions that map profiles of pure strategies (reflecting the
choice of each player) to the player’s payoff. In Nash equi-
librium, each player’s choice of strategy is a best response to
other players’ strategies, in the sense that the player cannot
secure a higher payoff by deviating to a different strategy.
Nash’s key mathematical contribution was to show that if
players have the option of playing mixed strategies — prob-
ability distributions over pure strategies — then a Nash equi-
librium always exists.

More specifically, the payoffs under a mixed strategy pro-
file are simply the expected payoffs. To compute this expec-
tation, note that the probability of each possible pure strat-
egy profile (s1, . . . ,sn) is the product of probabilities of each
player i playing strategy si, and the payoffs for this pure
strategy profile are given by the players’ payoff functions.
Importantly, even when players play mixed strategies, their
utilities are completely determined by the payoff functions,
which only take pure strategies as input.

In this paper, we are interested in a fundamentally dif-
ferent way in which a player’s mixed strategy can directly
affect his utility. Specifically, the player may be biased to-
wards (or away from) a specific base strategy, so his utility
may also depend on the distance between his mixed strategy
and the base strategy.
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We believe that these issues have been largely overlooked,
as normal form games are typically seen as one-shot inter-
actions: the mixed strategy is only important insofar as it
selects a pure strategy. However, the mixed strategy itself
can play a more significant role in some settings, justifying
the preceding notions of bias:

• In computational environments (e.g., networks), the
mixed strategies of software agents can be encoded as
programs that are submitted to a server, and therefore
the mixed strategies themselves are visible to certain
parties. Such game-theoretic settings were nicely moti-
vated in the work of Rozenfeld and Tennenholtz (2007),
and their justification is also implicit in the earlier work
of Tennenholtz (2004). Once mixed strategies are visi-
ble, bias towards certain mixed strategies can arise due
to social norms — agents are expected to play certain
strategies, mediation (Monderer and Tennenholtz 2009;
Rozenfeld and Tennenholtz 2007) — agents are told to
play certain strategies, and privacy — certain mixed
strategies reveal more about the agent’s preferences than
others.

• In other settings, mixed strategies may be instantiated
multiple times before the agents actually interact. For ex-
ample, security games (Tambe 2012) are 2-player games
played by a defender and an attacker. The defender’s strat-
egy specifies a random allocation of security resources to
potential targets, and the attacker’s strategy pinpoints a
target that will be attacked. It is typically assumed that
the defender would play a mixed strategy for a period of
time before the attacker makes his move. The crux of this
example is that redeploying security resources (such as
boats, in the case of the US Coast Guard) is costly, and
different instantiations of a mixed strategy lead to dif-
ferent deployments. This can bias the defender, say, to-
wards pure strategies, or away from high-entropy strate-
gies. While security games are often viewed as Stackel-
berg games (where the defender moves first), they have
also been studied as normal form games that are solved
using Nash equilibrium (Korzhyk et al. 2011).

• Rather than representing an agent’s actual utility, a bias
towards a specific strategy may be hard-coded in or-
der to lead the agent closer to certain behaviors that
are known to be beneficial. For example, state-of-the-
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art computer poker agents rely on computing an approx-
imation of one equilibrium strategy (Sandholm 2010;
Billings et al. 2003). One can bias agents towards strate-
gies that, e.g., maximize opponent exploitation or mini-
mize exploitability, and directly find an equilibrium of the
biased game (as we will show). This approach is some-
what reminiscent of the work of Johanson et al. (2007),
but is fundamentally different from most existing ap-
proaches for opponent exploitation, which create a model
for the opponent’s strategy that is biased towards a pre-
computed equilibrium strategy (of the original game),
such that it is consistent with the agent’s observations of
its play thus far (Ganzfried and Sandholm 2011); or per-
form the bias on the agent’s own strategy, requiring its
exploitative strategy to be close to an equilibrium strategy
of the original game (Ganzfried and Sandholm 2012).

1.1 Overview of Our Model and Results
Our definition of a biased game starts from a normal form
game, but lets the utility of player i for a strategy profile
p = (p1, . . . , pn) be his (expected) payoff in the normal form
game, minus a bias term of the form fi (‖pi− p̄i‖) . Here,
fi(·) is some real-valued function (possibly 0 everywhere),
‖·‖ is a norm, and p̄i is the base strategy of i. Given a biased
game that includes of all these components, we can define
an equilibrium in the same way that the Nash equilibrium is
defined (each strategy is a best response to other strategies).

We remark that a biased game and its equilibria cannot be
captured as a normal form game and its Nash equilibria due
to the potential nonlinearity of the utilities. From a mathe-
matical viewpoint, we believe that biased games are a very
natural (strict) generalization of normal form games. And
from a conceptual viewpoint, as we have argued above, they
provide a new perspective on important, AI-related prob-
lems.

In §3 we prove our main result: the existence of equilib-
ria in biased games. Specifically, we show that an equilib-
rium always exists if each fi is a non-decreasing continuous
convex function, and the norms are all Lp norms. We also
construct a biased game that satisfies these conditions, ex-
cept for having decreasing fi functions, in which equilibria
do not exist.

In §4 we make some progress on the computation of equi-
libria in biased games, by (significantly) generalizing a basic
algorithm for Nash equilibrium computation.

1.2 Related Work
A line of work that is somewhat related to ours includes the
classic paper on psychological games (Geanakoplos, Pearce,
and Stacchetti 1989), and influential papers that extended
these ideas (see, e.g., (Battigalli and Dufwenberg 2009)).
Psychological games are extensions of normal form games,
where each player’s utility depends on: (i) the mixed strate-
gies played by all players (as usual), and (ii) his beliefs. A
psychological game also includes, for each player, a coher-
ent response mapping, which maps the beliefs held by others
and strategies played by others to the player’s belief. A psy-
chological equilibrium consists of a vector of beliefs, and a

vector of strategies, such that the beliefs are coherent, and
given these beliefs, the strategies form a Nash equilibrium.

Of course, in order to obtain technical results (such as
equilibrium existence), one must restrict the structure of
these various components of the game. One may wonder,
though, whether our bias term can be encoded in a player’s
beliefs. This is not the case, because in biased games the
utility functions are defined in a way that, when the beliefs
are fixed, we obtain a normal form game. That is, the beliefs
only play a role to the extent that they determine the payoffs
in the induced normal form game. Therefore, the psycho-
logical games framework cannot model our novel notion of
bias.

2 Our Model
Before we begin, it will be helpful to establish some notation
which we will use throughout the paper.

• ∀m : [m] = {1,2, ...,m}.
• Pn = {x ∈ Rn|∑n

i=1 xi = 1,∀i : xi ≥ 0} is the space of al-
lowed probability vectors in n dimensions.

• Given a vector x ∈ Rn, we define (y,x−i) as
(x1,x2, ...,xi−1,y,xi+1,xi+2, ...,xn).

We begin with the definition of the centerpiece of study in
game theory.

Definition 1. A normal form game with n players is given
by:

• An n-tuple of finite strategy spaces (S1,S2, ...,Sn).
• An n-tuple of multilinear payoff functions (T1,T2, ...,Tn)

where
Ti : P|S1|×P|S2|×·· ·×P|Sn|→ R

is linear in each of its n parameters for all i.

In such a game, player i plays a mixed strategy, which is
a probability distribution pi ∈ P|Si| over his finite strategy
space Si, and receives an (expected) utility of Ti(p) where
p = (p1, p2, ..., pn).

Alternatively, one can think of the payoff functions as
assigning a payoff to every profile of pure strategies in
S1× ·· · × Sn. These functions induce payoffs for a mixed
strategy profile by calculating expected payoffs. We will
find it more convenient, though, to think of the domain of
the functions Ti as mixed strategy profiles.

Importantly, when using a normal form game to analyze
or predict actions of agents it is sensible to assume they act
rationally: they will maximize their utility to the best of their
ability. As a result, the equilibrium notion where each agent
i best responds to other’s strategies by choosing a distribu-
tion pi such that Ti(p)≥maxp′i

Ti(p′i, p−i) (i.e., such that no
other mixed strategy gives a higher payoff) is a natural focal
point of study. This is known as a Nash Equilibrium of a
normal form game, and is so named due to Nash’s proof of
its existence in any such game (Nash 1950).

The main focus of our paper is on an extension of nor-
mal form games that we call biased games. Informally, a
biased game is a normal form game but where the utilities
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of the players are determined by a multilinear payoff func-
tion (similarly to the standard setting) summed to a function
of the distance of the player’s strategy to some base strategy.
Definition 2. A biased game with n players includes an n-
tuple of finite strategy spaces (S1,S2, ...,Sn). For all i, player
i’s utility for a mixed strategy profile is given by

ui(p) := Ti(p)− fi (‖pi− p̄i‖) ,
where:
• p = (p1, p2, ..., pn).
• The Ti are multilinear payoff functions similar to the clas-

sic setting.
• The fi are real-valued functions.
• The norms ‖·‖ are any valid norms (possibly different for

different players).1

• The p̄i describe base strategies in R|Si| — it is not neces-
sary, but intuitive, that they be in P|Si|.

For ease of exposition we define the bias term as
fi (‖pi− p̄i‖).

Notice that despite the name biased game, we allow that
all fi = 0 — which reduces immediately to the definition of
a standard game.
Definition 3. An equilibrium of a biased game is a strategy
profile p such that ui(p) ≥ ui(qi, p−i) for all i ∈ [n] and all
qi ∈ P|Si|.

Below we illustrate these definitions using a simple ex-
ample.
Example 1. Let us consider a security game with two play-
ers, the defender and the attacker, and two targets. The de-
fender has one resource that can cover a single target. He
receives a utility of 1 if he catches the attacker and 0 oth-
erwise. Similarly, the attacker receives a utility of 1 if he
attacks an undefended target and 0 otherwise. Now suppose
the defender has a base strategy of [3/4,1/4] (for pedagogi-
cal purposes). The utilities may then be described by:

u1(p1, p2) = pᵀ1

[
1 0
0 1

]
p2−2

∥∥∥∥p1−
[

3/4
1/4

]∥∥∥∥2

2

u2(p1, p2) = pᵀ1

[
0 1
1 0

]
p2

If we let

p1 =

[
x

1− x

]
, p2 =

[
y

1− y

]
,

then simple analysis shows that simultaneously maximizing
u1 w.r.t. x and u2 w.r.t. y, is equivalent to:

x =
2y+5

8

y =


1 if x < 1/2
0 if x > 1/2
anything otherwise

We can then see that the only equilibrium is for x = 5/8 and
y = 0.

1We do not attach an index to the norm to avoid confusion, as
we later use subscripts for Lp norms and superscripts for exponents.

3 Existence of Equilibria
In this section we examine the question of existence of equi-
libria in biased games, and prove our main result:

Theorem 1. Every biased game in which fi is a non-
decreasing continuous convex function for all i ∈ [n], and
the norms are all Lp norms, has an equilibrium.

Proof. Consider the function h(p) = (q1,q2, ...,qn) where
pi,qi ∈ P|Si| are probability distributions over i’s actions and
qi = argmaxp′i

vi(p′i, p) with vi(p′i, p) = ui(p′i, p−i)−‖p′i−
pi‖2

2. We first show that this function is a well-defined2 con-
tinuous function and thus, because it acts upon a convex
compact set, must have a fixed point by Brouwer’s theorem.
We then proceed to show that any fixed point of h must be
an equilibrium.

Lemma 1. h is well-defined.

Proof. Let i be given. We show that qi is well-defined.
Since vi(p′i, p) — as a function of p′i — is a continuous

function on a compact space it must achieve its maximum.
It therefore suffices to show that there exists a unique maxi-
mizer to vi. Suppose for the purposes of contradiction there
exist two such qi, denoted x and y. Then let α ∈ (0,1) and
z = αx+(1−α)y. Now consider the value vi would achieve
at z:

vi(z, p) = ui(z, p−i)−‖z− pi‖2
2

= Ti(z, p−i)− fi (‖z− p̄i‖)−‖z− pi‖2
2.

Specifically, let us consider each term separately:

• Ti(z, p−i) = Ti(αx+(1−α)y, p−i)

= αTi(x, p−i)+(1−α)Ti(y, p−i).

• fi (‖z− p̄i‖)
= fi (‖αx+(1−α)y−α p̄i− (1−α)p̄i‖)
= f (‖α (x− p̄i)+(1−α)(y− p̄i)‖)
≤ f (α ‖x− p̄i‖+(1−α)‖y− p̄i‖)
≤ α f (‖x− p̄i‖)+(1−α) f (‖y− p̄i‖) .

where we have used the triangle inequality and the defini-
tion of convexity.

• ‖z− pi‖2
2 = ‖αx+(1−α)y− pi‖2

2

= ‖α(x− pi)+(1−α)(y− pi)‖2
2

≤ (α‖x− pi‖2 +(1−α)‖y− pi‖2)
2

≤ α‖x− pi‖2
2 +(1−α)‖y− pi‖2

2
where we have again used the triangle inequality and the
definition of convexity. Importantly, there are two critical
differences between this term and the previous one.
First, in this case the first inequality (created due to the use
of the triangle inequality of ‖ ·‖2) achieves equality if and

2We must prove that the argmax produces exactly one proba-
bility distribution.
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only if x− pi = β (y− pi) for some β ≥ 0. This is a well-
known fact of Lp norms3 and intuitively the condition is
equivalent to the two vectors facing the same direction.
Second, in this case the second equality (created due to
the use of convexity) is over a strictly convex function.
We thus have equality if and only if ‖x− pi‖2 = ‖y− pi‖2.
That is, the two vectors have the same magnitude.
From these two observations, we see that we have equality
if and only if x− pi = y− pi or more explicitly, x = y.
As we are assuming this is not the case, we have strict
inequality.

With this analysis of each term in separation, we get the fol-
lowing:

vi(z, p) = Ti(z, p−i)− fi (‖z− p̄i‖)−‖z− pi‖2
2

> αTi(x, p−i)+(1−α)Ti(y, p−i)

−α f (‖x− p̄i‖)− (1−α) f (‖y− p̄i‖)
−α‖x− pi‖2

2− (1−α)‖y− pi‖2
2

= αvi(x, p)+(1−α)vi(y, p)
= αvi(x, p)+(1−α)vi(x, p)
= vi(x, p).

Thus, z is strictly better than the assumed maximizers x and
y! This is a clear contradiction. (Lem 1)

Lemma 2. h is continuous.

Proof. We first establish some notation which we will use
throughout the proof.

• P will be the set of values that p can be drawn from.
• ‖ · ‖ will be the L2 norm for vectors in Rn and for p ∈

P,‖p‖2 =∑
n
i=1 ‖pi‖2. The induced metrics of these norms

will allow us to formally discuss continuity.
• p ∈ P will denote the arbitrary input point to h for which

we wish to show continuity.

Now it suffices to show that qi is continuous at p for arbitrary
i. Suppose ε > 0 is given. We wish to show that there exists
a δ such that ‖p− p′‖< δ implies ‖qi−q′i‖< ε where qi =
argmaxx vi(x, p) and q′i = argmaxx vi(x, p′).

Let X = {x | ‖x−qi‖ < ε} and assume that Xc is non-
empty (if this is not the case, decrease the size of ε until this
is the case). Furthermore, as Xc is a closed subset of a com-
pact set, it is compact as well. Now note that vi(y, p) is a con-
tinuous function of y and therefore achieves its maximum
on the compact set Xc, denoted Mε . Importantly, Lemma 1
shows that M 6= Mε where

M = max
x

vi(x, p) = vi(qi, p).

We now further observe that vi(x,q) is a continuous func-
tion of q on a compact set and thus, by the Heine-Cantor
theorem is uniformly continuous. We therefore have that
there exists some δ > 0 such that if ‖p− p′‖< δ then

|vi(x, p)− vi(x, p′)|< M−Mε

2
3This is due to the biconditional conditions for equality in

Minkowski’s inequality.

for all x. Two important consequences of this are:

• vi(qi, p′) = vi(qi, p)− vi(qi, p)+ vi(qi, p′)

≥ vi(qi, p)−|vi(qi, p)− vi(qi, p′)|

> M− M−Mε

2
=

M+Mε

2
• For all y ∈ Xc: vi(y, p′) = vi(y, p)− vi(y, p)+ vi(y, p′)

≤ vi(y, p)+ |vi(y, p)− vi(y, p′)|

< Mε +
M−Mε

2
=

M+Mε

2
Together, these imply that vi(qi, p′) > vi(x, p′) and so
argmaxx vi(x, p′) ∈ X . Thus, ‖qi−q′i‖< ε . (Lem 2)

We have shown that h is indeed well-defined and contin-
uous. By Brouwer’s fixed point theorem, it must therefore
have a fixed point. Our next lemma demonstrates that such
fixed points are equilibria.

Lemma 3. Any fixed point of h represents an equilibrium in
the biased game.

Proof. Suppose for the purposes of contradiction we have a
fixed point of h that is not an equilibrium. That is, suppose
h(p) = p and there exists some i such that player i gains by
the unilateral deviation from pi to p′i. Now let α ∈ [0,1] and
z = α p′i +(1−α)pi. Then we have:

vi(z, p) = ui(z, p−i)−‖z− pi‖2
2

= Ti(z, p−i)− fi (‖z− p̄i‖)−‖z− pi‖2
2.

Similarly to the proof of Lemma 1 we find that

Ti(z, p−i) = αTi(p′i, p−i)+(1−α)Ti(pi, p−i)

and

fi(‖z− p̄i‖)≤ α f
(∥∥p′i− p̄i

∥∥)+(1−α) f (‖pi− p̄i‖) .

Moreover,

‖z− pi‖2
2 = ‖α p′i +(1−α)pi− pi‖2

2

= ‖α(p′i− pi)‖2
2

= α
2‖p′i− pi‖2

2.

We therefore find that:

vi(z, p)

= Ti(z, p−i)− fi (‖z− p̄i‖)−‖z− pi‖2
2

≥ αTi(p′i, p−i)+(1−α)Ti(pi, p−i)

−α f
(∥∥p′i− p̄i

∥∥)− (1−α) f (‖pi− p̄i‖)
−α

2‖p′i− pi‖2
2

= αui(p′i, p−i)+(1−α)ui(pi, p−i)−α
2‖p′i− pi‖2

2.

Now let us consider this lower bound, call LB. For α = 0
we have LB = ui(pi, p−i) — which is tight (as z = pi in this
case). That is, we have equality. Moreover, we have

∂

∂α
LB|α=0 = ui(p′i, p−i)−ui(pi, p−i).
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Importantly, we assumed that it was advantageous for player
i to deviate from pi to p′i and thus we have that ui(p′i, p−i)−
ui(pi, p−i)> 0. Therefore, there exists a small α such that

vi(z, p)> ui(pi, p−i)

= ui(pi, p−i)−‖pi− pi‖2
2

= vi(pi, p).

This is a clear contradiction. (Lem 3)

To conclude, we have argued that h has a fixed point, and
every fixed point is an equilibrium of the biased game. This
completes the proof of the theorem. (Thm 1)

Let us now examine the assumptions that Theorem 1
makes. The assumption that the fi are continuous and con-
vex, and that the norms are Lp norms, can be seen as mild
technical assumptions. But the assumption that the fi are
non-decreasing has more conceptual bite.

What would a biased game with decreasing fi look like?
For example, recall our discussion of security games, where
a mixed strategy equates to a potentially costly redeploy-
ment of resources. One of the possible interpretations is to
set the base strategy to be the uniform distribution (that is,
a uniformly random assignment of resources), and let the
defender be biased away from this strategy, that is, the fi
functions are negative and strictly decreasing.

Unfortunately, it turns out that Theorem 1 is simply not
true for decreasing fi functions: a biased game may not ad-
mit equilibria even when all the other assumptions hold, i.e.,
the fi are continuous convex functions and the norms are Lp
norms. Below we construct such an example.
Example 2. Suppose we have a two-player game with:

T1 =

[
4 0
0 0

]
, T2 =

[
0 4
0 0

]
,

B1

([
x

1− x

])
=−

∥∥∥∥[ x
1− x

]
−
[

1
0

]∥∥∥∥2

2
,

and

B2

([
y

1− y

])
=−

∥∥∥∥[ y
1− y

]
−
[

0
1

]∥∥∥∥2

2
,

where the Bi describe the bias terms. Then the utility of
the (row) player 1 as a function of x and y is: u1(x,y) =
2(x2 + 2(y− 1)x+ 1). Similarly, the utility of the (column)
player 2 is: u2(x,y) = 2(y2−2xy+2x). Now note that as u1
is an upward-facing parabola in x, its maximum over the set
x ∈ [0,1] is reached at one of the endpoints (i.e. x ∈ {0,1}).
So let us consider these two cases.

Suppose first that x = 0. Then u2(x,y) = u2(0,y) = 2y2

and so u2 is maximized for y ∈ [0,1] when y = 1. However,
this implies that u1(x,y) = u1(x,1) = 2x2 +2 and thus u1 is
maximized when x = 1 — a contradiction.

Now suppose instead that x = 1. Then u2(x,y) =
u2(1,y)= 2(y2−2y+2) and so u2 is maximized for y∈ [0,1]
when y = 0. However, this implies that u1(x,y) = u1(x,0) =
2(x2− 2x+ 1) and thus u1 is maximized when x = 0 — a
contradiction.

4 Computation of Equilibria

In this section we investigate the computation of equilibria
in biased games. From the outset our expectations are quite
low, as even in normal form games, computing a Nash equi-
librium is computationally hard (Daskalakis, Goldberg, and
Papadimitriou 2009; Conitzer and Sandholm 2008). How-
ever, there are various equilibrium computation algorithms
that work well on average or in special cases, such as the
famous Lemke-Howson (1964) Algorithm.

A major challenge in our (much more general) setting
is that algorithms for computing Nash equilibria in normal
form games typically rely on the property that if p is a Nash
equilibrium and si is a pure strategy in the support of pi, then
si is itself a best response to p−i. This is clearly not the case
when it comes to biased games and their equilibria. This can
be seen in Example 1, where pure strategies in the support
of p1 are never best responses to p2.

To further illustrate the difficulties that one encounters in
our setting, we note that in normal form games with two
players and rational payoffs, there exist Nash equilibria de-
fined by rational probabilities (Nash 1950), and this is, of
course, true if there is only one player. In contrast, below
we give an example of a biased game with one player and ra-
tional parameters, but only irrational equilibrium. Note that
this also demonstrates the strict generality of this setting to
the standard setting.

Example 3. Consider the game where the sole player has
two strategies with payoffs 1 and 0, and the bias term is
‖p− [1/2,1/2]ᵀ‖4

2. A simple analysis then yields that the
sole equilibrium is to play the first strategy with probability
1
2 +

1
2 3√2

.

Due to these difficulties, we focus on certain subsets of
biased games (which, in particular, circumvent Example 3).
Specifically, we consider the two-player (and later, more
generally the n-player) setting with a bias term of the form
c‖ · ‖1 or c‖ · ‖2

2 where c ≥ 0 is some constant. Crucially,
this still generalizes the classic setting. Our goal is to gener-
alize the (extremely simple) support enumeration algorithm
for computing Nash equilibria (see, e.g., (von Stengel 2007,
Algorithm 3.4)).

Let us first consider the L2 case: player i has a bias term
of the form ci‖ · ‖2

2 where ci ≥ 0. Recall that for each player
i, if the strategy of the other player is fixed, then i simply
wishes to maximize his utility ui(pi). That is, for every
player i, we wish to have that ui(pi) is maximized subject
to the constraints that the entries of pi are nonnegative and
sum to one. The Karush-Kuhn-Tucker (KKT) conditions on
a player’s utility then give necessary and sufficient condi-
tions for maximization — sufficiency is due to the concav-
ity of the objective and the affine nature of the constraints.
Thus, equilibrium computation is equivalent to solving the
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following system. For all i and pure strategies j of i:

pi, j ≥ 0
µi, j ≥ 0

µi, j pi, j = 0

pᵀi~1 = 1
STANDARD(i, j)−2 BIAS(i, j)+λi +µi, j = 0.

where

STANDARD(i, j) =
d

d pi, j
Ti(p1, p2),

and
BIAS(i, j) = ci (pi, j− p̄i, j) .

Crucially, aside from the µi, j pi, j = 0 conditions, the com-
plete characterization is then a linear feasibility program.
We can thus consider the 2|S1|+|S2| possibilities (recall that
|Si| is the number of pure strategies of player i) of which one
of µi, j and pi, j are zero to find the equilibria. That is, for ev-
ery player i and strategy j of i we set one of µi, j and pi, j to
zero and solve the resulting linear program. This computes
an equilibrium exactly (albeit in exponential time).

Dealing with bias terms of the form ci‖ · ‖1 where ci ≥ 0
is largely analogous. The important difference appears due
to the discontinuity of the derivative of the L1 norm. Via a
simple case analysis which we omit here, we see that for all
i and pure strategies j of i:

pi, j ≥ 0
µi, j ≥ 0

µi, j pi, j = 0

pᵀi~1 = 1.

and at least one of two discontinuity-caused requirements
must be satisfied: either

STANDARD(i, j)−BIAS(i, j)+λi +µi, j = 0
BIAS(i, j)≥ 0

or

STANDARD(i, j)+BIAS(i, j)+λi +µi, j = 0
BIAS(i, j)≤ 0.

Therefore, to compute an equilibrium when all players have
c‖ · ‖1 bias terms we can consider the 4|S1|+|S2| linear pro-
grams that arise. That is, for every player i who has a c‖ · ‖1
bias term, and strategy j of i, we set one of µi, j and pi, j
to zero (as before) and also determine which of the two
discontinuity-caused requirements we will choose to include
in our linear program — the players who have c‖ · ‖2

2 bias
terms are dealt with as before.

The next statement summarizes the discussion above.

Theorem 2. Given a biased game with two players and bias
terms of the form ci‖pi− p̄i‖2

2 or ci‖pi− p̄i‖1, an equilib-
rium can be computed by solving at most 4|S1|+|S2| linear
programs.

Although we have discussed the algorithm only for the
two-player setting, this approach can be extended to multi-
ple players at the cost of solving multilinear programs in-
stead of linear ones. The discrepancy is caused due to the
STANDARD(i, j) term: the derivative in its expression is
multilinear for n ≥ 3. This is a generalization of the se-
quential approach discussed by Widger and Grosu (2009)
for normal form games.

5 Discussion
In our model of biased games, a player’s bias term is
fi (‖pi− p̄i‖). Consider a more general definition of the bias
term, fi

(∥∥pi−
(

p̄i +∑ j∈[n] γi, j p j
)∥∥) , where the γi, j are real

weights such that γi, j = 0 if players i and j do not have the
same number of pure strategies. The new term ∑ j∈[n] γi, j p j
captures a different type of bias, towards playing a mixed
strategy that is similar to, or different from, those played by
other players. This extension can help capture well-known
social phenomena, such as homophily (the propensity of
individuals to bond with others that are similar to them-
selves). Interestingly, all our results (existence and com-
putation) also hold for the more general definition of biased
games. However, it seems poorly motivated in the context of
the settings discussed in Section 1, which is why we chose to
simplify the presentation by focusing on the more restricted
definition of biased games.

We feel that our existence result (Theorem 1) is rather
general, but the computation of equilibria in biased games
poses difficult problems even for zero-sum games. Still, we
have been able to identify some rather interesting properties
of two-player zero-sum biased games with bias terms of the
form c‖pi− d p̄i‖2

2 for some constants c > 0 and d, which
lead us to conjecture that, under these conditions, there ex-
ists a unique equilibrium. Of course, the conditions of this
conjecture are quite restrictive. In order to tackle equilib-
rium computation in biased games under assumptions as
general as those of Theorem 1, fundamentally new ideas are
required.
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