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Abstract

It is a well known fact that in extensive form games with
perfect information, there is a Nash equilibrium with
support of size one. This doesn’t hold for games with
imperfect information, where the size of minimal sup-
port can be larger. We present a dependency between
the level of uncertainty and the minimum support size.
For many games, there is a big disproportion between
the game uncertainty and the number of actions avail-
able. In Bayesian extensive games with perfect infor-
mation, the only uncertainty is about the type of play-
ers. In card games, the uncertainty comes from dealing
the deck. In these games, we can significantly reduce
the support size. Our result applies to general-sum ex-
tensive form games with any finite number of players.

Introduction
Arguably the most important solution concept in non-
cooperative games is the notion of Nash equilibrium, where
no player improves by deviating from this strategy profile.
Support is defined as the set of actions played with non-zero
probability and there are many crucial implications related
to it.

Once the support is known, it is easy to compute the equi-
librium in polynomial time even for general-sum games.
Performance of some algorithms, namely the double-oracle
algorithm for extensive form games, is tightly bound to the
size of the support (Bosansky et al. 2013). Other work shows
that minimizing the support in abstracted games can lead
to better strategies in the original game (Ganzfried, Sand-
holm, and Waugh 2012). Finally, it is advantageous to prefer
strategies having a small support. Such strategies are both
easier to store and play.

Extensive form games model a wide class of games with
a varying levels of uncertainty. In the case of perfect infor-
mation, there is an optimal strategy using only one action in
any information set. In contrast, in some extensive games
with imperfect information, the player can be forced to use
all the possible actions to play optimally.

In this paper, we focus on the relation between the level of
uncertainty and the support size. We present an upper bound
for the support size based on the uncertainty level.
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Some games, such as Bayesian extensive games with
observable actions or card games (such as no-limit Texas
hold’em poker) have most of the information about the cur-
rent state observable by all players, and therefore a low level
of uncertainty. In these games, our bound guarantees the
existence of Nash equilibrium having the support size con-
siderably smaller than the number of all possible actions.

Instead of explicitly defining a level of uncertainty, we
use the concept of the public tree. This concept provides a
nice interpretation of uncertainty and public actions. Using
the public tree, we present a new technique called the equi-
librium preserving transformation, which transforms some
equilibrium strategy profile into another. We provide an up-
per bound on the number of public actions used in the trans-
formed Nash equilibrium.

Our approach also applies to games with non-observable
actions, where it simply limits the number of public actions.

Applying our result to specific games, we present a new
bound for the support size in these games.

For example, in no-limit Texas hold’em poker, there can
be any finite number of actions available in some informa-
tion sets. Our result implies the existence of an optimal
strategy for which the number of actions used in every in-
formation set depends only on the number of players and
the number of card combinations players can be dealt.

In Bayesian extensive games with observable actions, the
bound equals to the number of different player types the
chance can reveal.

Moreover, our proof is constructive. Given an extensive
form game and an optimal strategy, the equilibrium preserv-
ing transformation finds another optimal strategy satisfying
our bound in polynomial time.

Background
Extensive form games (Osborne and Rubinstein 1994, p.
200). An extensive form game consists of

• A finite set N (the set of players).
• A finite set H of sequences. Each member of H is a his-

tory, each component of history is an action. The empty
sequence is in H , and every prefix of a history is also his-
tory ((h, a) ∈ H =⇒ (h ∈ H)). h v h′ denotes that h
is a prefix of h′. Z ⊆ H are the terminal histories (they
are not a prefix of any other history).
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• The set of actions available after every non-terminal his-
tory A(h) = {a : (h, a) ∈ H}.
• A function p that assigns to each non-terminal history

an acting player (member of N ∪ c, where c stands for
chance).

• A function fc that associates with every history for which
p(h) = c a probability measure onA(h). Each such prob-
ability measure is independent of every other such mea-
sure.

• For each player i ∈ N , a partition Ii of h ∈ H : p(h) = i.
Ii is the information partition of player i. A set Ii ∈ Ii
is an information set of player i.
• For each player i ∈ N an utility function ui : Z → R.

We assume that the game satisfies the perfect recall ,
which guarantees that the players never forget any informa-
tion revealed to them nor the order in which the information
was revealed. Games that do not satisfy this property are not
guaranteed to have a behavioral Nash equilibrium.

Public Game Tree
The essential concept in our approach is that of a public
game tree. Informally, a public game tree is a game view
for an observer that knows no private information.

Figure 1: Extensive form game tree for one-card poker.

Public game tree, as introduced in (Johanson et al. 2011)
is a partition of the histories. P is a public partition and
ρ ∈ P is a public state if

• No two histories in the same information set are in differ-
ent public states.

• Two histories in different public states have no descen-
dants in the same public state.

• No public state contains both terminal and non-terminal
histories (public states are either terminal or non-
terminal).

The public tree offers a nice interpretation of imperfect
information. For games with perfect information, the public
tree is the same as the game tree. As the uncertainty grows,
more and more information sets collapse into a single public
state.

Figure 2: The public tree of a game in Figure (1). The struc-
ture of public states C,E,H, I is:
prev(E, 1) = {I1, I2}, last(E) = {I4, I6}
C(E) = {H, I}, A(I1  E) = [4]→ [10]
Ap(C  E) = {(I1, [4] → [10]), (I1, [5] → [14]),
(I2, [6]→ [11]), (I2, [7]→ [15])}

For the public game tree, we also define:
• The set of acting players in ρ ∈ P as p(ρ).
• If the same player acts in all histories h ∈ ρ, then we

define the acting player in ρ as: p(ρ) = p(h) for some
h ∈ ρ.

• C(ρ) to be set of child public states of ρ.
• For any public state ρ and any player i, we define

prev(ρ, i) to be the set of player’s last information sets
he could play in before reaching ρ. I ∈ prev(ρ, i) if:

p(I) = i, there are histories h ∈ ρ, h′ /∈ ρ, h′ ∈ I:
h′ v h and there is no history h′′ /∈ ρ : h′′ v h,
h′ v h′′, p(h′′) = i

• For any public state ρ, we define last(ρ) to be the last
information sets the player p(ρ) plays before leaving ρ.
I ∈ last(ρ) if I ∈ ρ, there is some history (h, a) /∈ ρ and
h ∈ ρ.

• We call a non-terminal public state ρ simple if an observer
knows which player acts and there are no information sets
that contain actions going to a different public state as
well as the actions that aren’t. Formally, p(h) = p(h′) 6=
c for all h, h′ ∈ ρ and no history has prefix in two different
information states from last(ρ).
• We define A(I  ρ) to be actions that a player can take

in I ∈ I in order to get to the public state ρ:

A(I  ρ) = {a ∈ A(I)|h ∈ I, (h, a) v h′, h′ ∈ ρ}
• Intuitively, actions are the edges connecting any two

nodes (histories) in Figure (1). We want public actions to
be the edges connecting any two public states as seen on
Figure (2). We define the public action going from public
state ρ to ρ′ as a set of pairs (information set, action):

Ap(ρ ρ′) = {(I, a) | I ∈ last(ρ), a ∈ A(I  ρ′)}
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See the box under the Figure (2) for examples of these
definitions.

Strategies and Equilibrium
Strategies and Utility
A strategy for player i, σi, is a function that maps I ∈ Ii
to a probability distribution over A(I) and πσ(I, a) is the
probability of action a. Σi denotes the set of all strategies
of player i. A strategy profile is a vector of strategies of
all players, σ = (σ1, σ2, . . . , σ|N |). Σ denotes the set of all
strategy profiles.

We denote πσ(h) as the probability of history h occurring
given the strategy profile σ. Let πσi (h) be the contribution of
player i to that probability. We can then decompose πσ(h)
as

πσ(h) =
∏

i∈N∪c
πσi (h)

Let π−i(h) be the product of all players contribution (in-
cluding chance), except that of player i. Define σ|I→a to be
the same strategy profile as σ, except that a player always
plays the action a in the information set I . Define ui(σ) to
be the expected utility for player i, given the strategic profile
σ.

The support of a strategy profile σ, supportσ(I), is the
set of actions that the player players with non-zero probabil-
ity in I .

We say that the public action Ap(ρ  ρ′) is supported
given the strategy profile σ, if for any (I, a) ∈ Ap(ρ  
ρ′), a ∈ supportσ(I). Let supportσp (ρ) be the set of all
supported public actions in ρ:

supportσp (ρ) = {Ap(ρ ρ′)|Ap(ρ ρ′) is supported in σ}

Nash Equilibrium and Regret
A Nash equilibrium is a strategy profile σ such that for any
player i ∈ N ,

ui(σ) ≥ max
σ∗i ∈Σi

ui((σ
∗
i , σ−i))

Overall regret Rσi is the difference between the player’s
utility given the strategy profile σ and the single strategy that
would maximize his value:

Rσi = max
σ∗i ∈Σi

ui(σ
∗
i , σ−i)− ui(σ)

Clearly, Ri is always non-negative and there is a simple
relation between the overall regret and Nash equilibrium:

Rσi = 0 ∀i ∈ N ⇐⇒ σ is Nash equilibrium

Counterfactual Values, Regret and Equilibrium
To show that some strategy profile σ is an equilibrium, we
could show that the regret Rσi = 0 for all players.

There is a way to bound this full regret Rσi using par-
tial regrets in all information sets. These partial regrets are
called counterfactual regrets.

The Counterfactual utility ui(σ, I) is the expected util-
ity given that information set I is reached and all players
play using strategy σ, except that player i plays to reach I
(Zinkevich et al. 2007):

ui(σ, I) =

∑
h∈I,h′∈Z π

σ
−i(h)πσ(h′|h)ui(h

′)

πσ−i(I)

The Counterfactual regret (Zinkevich et al. 2007) is then
defined as

Rσi (I) = max
a∈A(I)

πσ−i(I)(ui(σ|I→a, I)− ui(σ, I))

Theorem 1. (Zinkevich et al. 2007)

Rσi ≤
∑
I∈Ii

Rσi (I)

Note that in contrast to (Zinkevich et al. 2007), we are
not interested in the relation between average regret and ε-
equilibrium (which holds only for two players, zero-sum
games). We are interested only in bounding the regret of
strategy profile σ using the Theorem (1). Directly from that
theorem, we get the following corollary
Corollary 1. If Rσi (I) = 0 for all I ∈ Ii, i ∈ N , the strat-
egy profile σ forms a Nash equilibrium.

The converse implication is not true in general. There
can be an equilibrium with Rσi (I) > 0 for some I ∈ Ii. But
there is always some Nash equilibrium for whichRσi (I) = 0
for all I ∈ Ii. (It is easy too see that if Rσi (I) > 0 for
some I , the player i plays not to reach I , πσi (I) = 0. One
can make the counterfactual regret zero in these sets using
backward induction.)

Finally, there is a simple way to show that the strategy
profile σ′ is a Nash equilibrium by comparing it with another
Nash equilibrium.
Lemma 1. Given a Nash equilibrium σ, for which∑
I∈Ii R

σ
i (I) = 0, if we find a strategy profile σ′ such that

for all i ∈ N , I ∈ Ii and A ∈ A(I)

ui(σ|I→a, I) = ui(σ
′|I→a, I)

and in every information set, the strategy σ′i assigns a non
zero probability only to actions used with non-zero proba-
bility in σ, the strategy profile σ′ forms a Nash equilibrium
for which

∑
I∈Ii R

σ′

i (I) = 0.

The proof follows directly from the definition of counter-
factual regret.

Main Theorem
Our main result shows the existence of optimal strategy with
a limited number of supported public actions in simple pub-
lic states.
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Theorem 2. In any finite extensive form game, there is
an equilibrium strategy profile σ such that for every sim-
ple public state ρ, the number of supported public actions,
|supportσp (ρ)|, is bounded by

|last(ρ)|+
∑

j∈N\{p(ρ)}

∑
I∈prev(ρ,j)

|A(I  ρ)|

This bound has a nice interpretation for some specific
games. For example in games with publicly observable ac-
tions, the bound depends only on the uncertainty presented
by the chance.

We limit our technique only to simple public states, but
it is possible to generalize the result. If there are some in-
formation sets containing actions going to a different public
state as well as the actions that don’t, it’s easy to come up
with an equivalent game where all actions are public. We
are not aware of any well-known extensive form game hav-
ing public states that are not simple.

Overview of our Approach
The core of our approach is a new technique we call equi-
librium preserving transformation. We start with a Nash
equilibrium for which Rσi (I) = 0 for all i ∈ N and I ∈ Ii,
which is guaranteed to exist. An equilibrium preserving
transformation carefully shifts probabilities locally, using
the public tree. Given a public state ρ, it shifts some prob-
abilities in information sets in ρ. The point is to keep the
strategy optimal for all players, while minimizing the num-
ber of supported public actions.

Applying this transformation to a single public state ρ, we
get a new equilibrium where the number of supported pub-
lic actions satisfies our bound. Thus, we bound the public
actions used in that information set, but we don’t touch the
strategies in any other public state.

Applying this transformation again to the new equilib-
rium, but in a different public state, we bound the number of
supported public actions in that public state. Since we don’t
touch actions in any other public state, we do not violate the
bound from the previous step.

Repeating this for all public states, we finally get a Nash
equilibrium where the bound holds for all simple public
states.

Optimality of the New Strategy
To show that the new strategy is an equilibrium, we leverage
the concept of counterfactual values. These values are de-
fined at the level of information sets and we can show that
the strategy is optimal by showing that these values remain
unchanged thanks to Lemma (1). Since we change the strat-
egy only in the information sets that are highly structured
(they are in the same public state), it’s relatively easy to
compute the changed counterfactual values in all informa-
tion sets.

Equilibrium Preserving Transformations
Given a Nash equilibrium σ where Rσi (I) = 0 for all I ∈ I,
the core idea of our approach is to transform this strategy

profile to another strategy profile σ′. We refer to this trans-
formation as equilibrium preserving transformation or EPT
and we denote the transformed strategy as σ′ = EPT (σ).

EPT shifts probabilities for a player locally, using the pub-
lic tree. Given some public state ρ, we carefully change
probabilities of outgoing actions. Since there’s only one
player acting in ρ, we change strategy only for this player
p(ρ) = i.

We change the strategy only in last(ρ), which are the last
information sets in which the player acts just before reaching
some ρ′ ∈ C(ρ).

We will continuously add some restrictions to our trans-
formation and show what these restrictions imply for the
new strategy profile σ′. Finally, we will see that if we trans-
form the strategy such that all these restrictions hold, σ′ is a
Nash equilibrium.

Restriction 1 The transformed strategy profile σ′ differs
from σ only in information sets I ∈ last(ρ)

Figure 3: In the new strategy σ′, we bound the number of
supported public actions (bold arrows).

The trick is to shift the probabilities in these information
sets to use as few actions as possible, while keeping the
strategy profile equilibrium. To do that, we keep the coun-
terfactual values unchanged for all information sets and all
actions.

To insure this, we impose two restrictions. The first one
fixes counterfactual values for all information sets after ρ.
The second one (together with the first one) fixes counter-
factual values for all other information sets.

Information Sets after ρ
To fix the counterfactual values for the information sets after
ρ, we do not shift the strategies arbitrarily. We only multiply
some action probabilities with carefully chosen constants.

The last information sets the player p(ρ) acts in before
leaving ρ are last(ρ). We consider the probability of all
actions a ∈ A(I  ρ′) for any I ∈ last(ρ). Our transfor-
mation is only allowed to multiply these action probabilities
using some constant, which we call κ(ρ ρ′).

Restriction 2 The probabilities of all outgoing actions
from ρ to some child public state ρ′ are all multiplied with
some constant κ(ρ  ρ′). For all I ∈ last(ρ) and a ∈
A(I  ρ′)

πσ
′
(I, a) = κ(ρ ρ′)πσ(I, a) (1)

We show later how to ensure that once we multiply the
probabilities with corresponding κ, we get a valid strategy
in every information set.
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Figure 4: Transformation multiplies probabilities of all
actions that go from ρ to some ρ′ with corresponding κ.
In this case κ(ρ ρ′1) = 1

5 and κ(ρ ρ′2) = 9
5 .

The reason why the transformation is not allowed to
change the probabilities arbitrarily, but can only multiply
action probabilities of actions going from ρ to ρ′ with some
corresponding κ(ρ  ρ′), is to keep the counterfactual val-
ues in all information sets after ρ unchanged.
Lemma 2. If σ′ = EPT (σ, ρ), counterfactual values in all
information sets after ρ remain unchanged.
uj(σ

′|I→a, I) = uj(σ|I→a, I) for all j ∈ N and for all I
after ρ.

The proof (in Appendix A) follows directly form the definition
of uj(σ′|I→a, I).

Multiplying the strategies with corresponding κ is the
only transformation we do. Clearly, if κ(ρ  ρ′) = 0 for
some ρ′, Ap(ρ  ρ′) is not supported in the new strategy
profile. In other words, we are interested in finding as many
zero variables κ as possible.

Other Information Sets
The previous constraints keep the counterfactual values un-
changed for all players and all information sets after ρ.

To ensure that the counterfactual values don’t change in
other information sets, we shift strategies such that the coun-
tefactual values are unchanged in every I ∈ prev(ρ, j) for
all players j 6= p(ρ).

Restriction 3 For all players j 6= p(ρ), for all I ∈
prev(ρ, j) and for all a ∈ A(I  ρ)

uj(σ
′|I→a, I) = uj(σ|I→a, I) (2)

The point is that if we keep counterfactual values un-
changed only in these information sets, counterfactual val-
ues in all other information sets remain the same.
Lemma 3. If σ′ = EPT (σ, ρ), counterfactual values in all
information sets remain unchanged.

For the proof see Appendix A.

System of Linear Equations to Find κ
Now we will show how to find κ(ρ  ρ′) such that all re-
strictions are satisfied. We are interested only in ρ′ such

that Ap(ρ  ρ′) is supported, all other actions have zero
probability anyway. We find all κ using a systems of linear
equations (linearity is the crucial part), with variables κ ≥ 0.

First set of equations makes sure that σ′ is a valid strategy.
Adding another set of equations ensures that the counterfac-
tual values remain unchanged.

Finally, using the simple property of linear equations,
there must be a basic solution having limited number of non-
zero variables κ.

First System of Equations
First, we write a simple equation for every I ∈ last(ρ) to
make sure that we get a valid strategy after multiplying with
corresponding κ∑

ρ′∈C(ρ)

∑
a∈A(I ρ′)

πσ(I, a)κ(ρ ρ′) = 1 (3)

Since we write down this equation for every I ∈ last(ρ),
there are |last(ρ)| of equations in total. Note that these equa-
tions are indeed linear in the variable κ.

Second System of Equations
The second system of linear equations makes sure that the
restriction (3) is satisfied.

First, we compute the counterfactual values for the strat-
egy profile σ′ using the variables κ and the strategy profile
σ.

Lemma 4. There are some constants
c0(I, a) . . . c|C(ρ)|(I, a) such that the counterfactual
utility for all players j 6= p(ρ), for all I ∈ prev(ρ, j) and
for all a ∈ A(I  ρ)

uj(σ
′|I→a, I) = c0(I, a) +

∑
i={1...|C(ρ)|}

κ(ρ ρ′i) ci(I, a)

For the proof see Appendix A.

In the proof of the above lemma, we leverage the fact that
the values are unchanged in all information sets ρ′ ∈ ρ. The
history either passes through some ρ′ and its probability gets
multiplied with corresponding κ, or it doesn’t and the prob-
ability remains unchanged.

Using this result, we can simply add linear equations for
all players j 6= p(ρ), for all I ∈ prev(ρ, j) and for all a ∈
A(I  ρ)∑
i={1...|C(ρ)|}

κ(ρ ρ′i) ci(I, a) = uj(σ|I→a, I)− c0 (4)

Again, these equations are linear in the variable κ.

Final System of Equations
Putting together all equations from (3) and (4), we are inter-
ested in κ ≥ 0 such that
∀I ∈ last(ρ)∑

ρ′∈C(ρ)

∑
a∈A(I→ρ′)

πσ(I, a)κ(ρ→ ρ′) = 1
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∀j ∈ N \ {p(ρ)}, I ∈ prev(ρ, j), a ∈ A(I)∑
i={1...|C(ρ)|}

κ(ρ ρ′i) ci(I, a) = uj(σ|I→a, I)− c0 (5)

Combining previous results, we get a straightforward
corollary

Corollary 2. Any solution to (5) defines a valid equilibrium
preserving transformation.

This polyhedron is clearly bounded and non-empty (κ =
1 is a solution to (5)). Finally, we use the well known prop-
erty of basic solutions. There must be some basic solution
where the number of non-zero variables κ is no larger than
the number of equations (Bertsimas and Tsitsiklis 1997).
Since number of equations is

|last(ρ)|+
∑

j∈N\{p(ρ)}

∑
I∈prev(ρ,j)

|A(I  ρ)| (6)

our main theorem is proven. Moreover, we can find this
solution efficiently in polynomial time using linear program-
ming (Ye 1991).

Example Games
In this section, we mention few existing games and show
how our bound applies to these. As far as we know, these
are the first bounds on the support size presented for these
games.

Games where the players see the actions of all other play-
ers are called games with publicly observable actions. The
only uncertainty comes from the actions of chance. In these
games, all public states are simple and all information sets
in any public state ρ form last(ρ).

Because all actions are public, |A(I  ρ)| = 1 for all ρ
and for all I ∈ prev(ρ, j). Consequently, the second term
of (6) becomes

∑
j∈N\{p(ρ)} |prev(ρ, j)|.

Finally, the bound for supported public actions implies an
upper bound on the size of supportσ(I) for every I ∈ ρ.

|supportσ(I)| ≤ |supportσp (ρ)|

Bayesian Extensive Games with Observable
Actions
Bayesian extensive games with observable actions (Osborne
and Rubinstein 1994, p. 231) are games with publicly ob-
servable actions, where the only uncertainty comes from the
initial move of chance. Chance selects a player type θ ∈ Θi

for each player i. Because chance acts at the very begin-
ning of the game, the number of information sets grouped in
every public state ρ, equals |Θp(ρ)| = |last(ρ)|. Similarly,
|prev(ρ, j)| = |Θj |.
Corollary 3. For any Bayesian extensive games with ob-
servable actions, there’s a Nash equilibrium where the size
of supportσ(I) for any I ∈ I is bounded by∑

i∈N
|Θi| (7)

No-limit Texas Hold’em Poker
In Texas hold’em poker, players are dealt two private cards
out of a deck of 52 cards. Four betting rounds follow and
dealer deals some more publicly visible cards between these
betting rounds.

In no-limit version, players can bet any amount of money
up to their stack in every betting round. For example in the
2014 AAAI Computer Poker Competition, there are up to
20000 actions available in information sets (ACPC 2014).

All betting is publicly visible, and the only uncertainty is
about the private cards the players were dealt. |prev(ρ, j)| =
last(ρ) =

(
52
2

)
for any player j and any public state ρ.

Corollary 4. In Texas hold’em poker, there’s a Nash equi-
librium where the size of supportσ(I) for any I ∈ I is
bounded by (

52

2

)
|N | (8)

Using some isomorphisms, we can further decrease the
bound in some situations. In Texas hold’em poker, there are
169 non-isomorphic (Waugh 2013) pairs in the first round
(called preflop).

Corollary 5. In Texas hold’em poker, there’s a Nash equi-
librium where the size of supportσ(I) for all information
set in the first round (preflop) is bounded by

169 |N | (9)

Conclusion
We present a new technique called equilibrium preserving
transformation, that implies the existence of Nash equilib-
rium having a bounded support. Our bound shows a relation
between the level of uncertainty and the support size.

For Bayesian extensive games with observable actions
and card games, our bound implies relatively small support.
Finally, given any Nash equilibrium, EPT finds another equi-
librium having the bounded support in polynomial time.

Future Work
We intent to explore the possibility of using EPT for finding
good abstractions of action space in games such as poker.
The idea is to first create a toy game with small level of un-
certainty. Once we find Nash equilibrium in this toy game,
we can use EPT to get an equilibrium using only a small
number of actions. Hopefully, this approach will help us to
find actions that also work nicely in the original game.
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