
Modal Ranking: A Uniquely Robust Voting Rule

Ioannis Caragiannis
University of Patras

caragian@ceid.upatras.gr

Ariel D. Procaccia
Carnegie Mellon University

arielpro@cs.cmu.edu

Nisarg Shah
Carnegie Mellon University

nkshah@cs.cmu.edu

Abstract

Motivated by applications to crowdsourcing, we study voting
rules that output a correct ranking of alternatives by quality
from a large collection of noisy input rankings. We seek vot-
ing rules that are supremely robust to noise, in the sense of
being correct in the face of any “reasonable” type of noise.
We show that there is such a voting rule, which we call the
modal ranking rule. Moreover, we establish that the modal
ranking rule is the unique rule with the preceding robustness
property within a large family of voting rules, which includes
a slew of well-studied rules.

Introduction
The emergence of crowdsourcing platforms and human
computation systems (Law and von Ahn 2011) motivates
a reexamination of an approach to voting that dates back
to the Marquis de Condorcet (1785). He suggested that
voters should be viewed as noisy estimators of a ground
truth — a ranking of the candidates by their true quality.
A noise model governs how voters make mistakes. For ex-
ample, under the noise model suggested by Condorcet —
also known today as the Mallows (1957) noise model —
each voter ranks each pair of alternatives in the correct
order with probability p > 1/2, and in the wrong order
with probability 1 − p (roughly speaking). This specific
noise model is quite unrealistic, and, more generally, the
very idea of objective noise is arguable in the context of
political elections, where opinions are subjective and there
is no ground truth. However, the noisy voting setting is
a perfect fit for crowdsourcing, where objective estimates
provided by workers — often as votes (Little et al. 2010;
Mao, Procaccia, and Chen 2013) — must be aggregated.

From this viewpoint, Condorcet and, more eloquently,
Young (1988), argued that a voting rule — which aggregates
input rankings into a single output ranking — should out-
put the ranking that is most likely to be the ground truth
ranking, under the given noise model. This approach has
inspired a significant number of recent papers by AI re-
searchers (Conitzer and Sandholm 2005; Conitzer, Rogn-
lie, and Xia 2009; Elkind, Faliszewski, and Slinko 2010;
Xia, Conitzer, and Lang 2010; Xia and Conitzer 2011;
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Lu and Boutilier 2011; Procaccia, Reddi, and Shah 2012;
Mao, Procaccia, and Chen 2013), some of which aim to
design voting rules that are maximum likelihood estimators
(MLEs) specifically for crowdsourcing settings.

But the maximum likelihood estimation requirement may
be too stringent. Caragiannis et al. (2013) point out that
a voting rule may be an MLE for a specific noise model,
but in realistic settings the noise can take unpredictable
forms (Mao, Procaccia, and Chen 2013). Instead, they pro-
pose the following robustness property, called accuracy in
the limit: as the number of votes grows, the voting rule
should output the ground truth ranking with high probability,
i.e., with probability approaching one.1 This allows a single
voting rule to be robust against multiple noise models. More-
over, the focus on a large number of votes is natural in the
context of crowdsourcing systems — the whole point is to
aggregate information provided by a massive crowd!

For example, social networks are enabling organizations
to solicit noisy information from millions of users. Indeed,
think of a technology company that asks fans to rank prod-
uct prototypes by their perceived chance of success. While a
large company can expect millions of votes, these votes are
noisy and the type of noise is unpredictable.

In this paper, we seek voting rules that are robust against
such unpredictable noise. Our research challenge is to

... find voting rules that are robust (in the accuracy in
the limit sense) against any “reasonable” noise model.

Our results. We give a rather clear-cut solution to the pre-
ceding research challenge: There is a voting rule that is ro-
bust against any “reasonable” noise model, and it is unique
within a huge family of voting rules. We call this supremely
robust voting rule the modal ranking rule. Given a collec-
tion of input rankings, the modal ranking rule simply selects
the most frequent ranking as the output. To the best of our
knowledge, this strikingly basic voting rule has not received
any attention in the literature, and for good reason: when
the number of voters is not huge compared to the number
of alternatives, it is likely that every ranking would appear
at most once, so the modal ranking rule does not provide

1In statistics, this property is known as consistency, but we
avoid this terminology as it has completely different interpretations
in social choice theory.
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Figure 1: The modal ranking rule is uniquely robust within
the union of three families of rules.

any useful guidance. However, when the number of voters is
very large, the modal ranking rule is quite sensible; we will
prove this intuitive claim formally.

To better understand this result (still on an informal level),
we need to clarify two points: What do we mean by “rea-
sonable” noise model? And what is the huge family of vot-
ing rules? Starting from the noise model, we employ some
additional notions introduced by Caragiannis et al. (2013).
We are interested in noise models that are d-monotone with
respect to a distance function d on rankings, in the sense
that the probability of a ranking increases as its distance
according to d from the ground truth ranking decreases. A
voting rule that is accurate in the limit with respect to any
d-monotone noise model is said to be monotone-robust with
respect to d. So, slightly more formally, the requirement is
that the rule be monotone-robust with respect to any distance
metric d.

Regarding the family of voting rules in which we prove
that modal ranking is the unique robust rule, it is formed by
the union of three families of rules: generalized scoring rules
(GSRs) (Xia and Conitzer 2008; 2009; Xia 2013) with the
no holes property, pairwise majority consistent (PM-c) rules,
and position dominance consistent (PD-c) rules (Caragian-
nis, Procaccia, and Shah 2013). GSRs are a large family of
voting rules that is known to capture almost all commonly-
studied voting rules. Theorem 1 asserts that a GSR with “no
holes” is monotone-robust with respect to all distance met-
rics if and only if it is the modal ranking rule. The no holes
property is a technical restriction, but in Theorem 2 we show
that it is quite mild by establishing that all prominent rules
that are known to be GSRs have the no holes property.

PM-c and PD-c rules together also contain most promi-
nent voting rules (Caragiannis, Procaccia, and Shah 2013).
These two families are disjoint, and neither is contained in
the family of GSRs. Theorem 3 asserts that PM-c and PD-c
rules do not have the desired robustness property, thereby
further extending the scope of the modal ranking rule’s
uniqueness to all rules that are PM-c or PD-c but not GSRs
(with no holes). See Figure 1 for a Venn diagram that illus-
trates the relation between these families of rules.

Related work. Our paper is most closely related to the
work of Caragiannis, Procaccia, and Shah (2013), who intro-
duced the classes of PM-c and PD-c rules as well as the no-
tions of d-monotone noise models, accuracy in the limit, and
monotone-robustness. Their main result is a characterization

of the distance metrics d for which all PM-c and PD-c rules
are monotone-robust. In other words, they fixed the family
of voting rules to be PM-c or PD-c rules, and asked which
distance metrics induce noise models for which all the rules
in these families are robust. While the answer is a family of
distance metrics that contains three popular distance metrics,
it does not contain several other prominent distance metrics
— moreover, it is by no means clear that natural distance
metrics are the ones that induce the noise one encounters in
practice. In contrast, instead of fixing the family of rules, we
fix the family of distances to be all possible distance met-
rics d, and characterize the “family” of voting rules that are
monotone-robust with respect to any d (this family turns out
to be a singleton).

On a technical level, we view vectors of rankings as points
in Qm! (m! is the number of possible rankings), where each
coordinate represents the fraction of times a ranking appears
in the profile. This geometric approach to the analysis of vot-
ing rules was initiated by Young (1975), and used by vari-
ous other authors (Saari 1995; 2008; Xia and Conitzer 2009;
Conitzer, Rognlie, and Xia 2009; Obraztsova et al. 2013;
Mossel, Procaccia, and Rácz 2013).

Preliminaries
Let A be the set of alternatives, where |A| = m. Let L(A)
be the set of rankings (linear orders) over A, and D(L(A))
be the set of distributions over L(A). A vote σ is a ranking
in L(A), and a profile π is a collection of votes. A voting
rule (sometimes also known as a “rank aggregation rule”) is
formally a deterministic (resp., randomized) social welfare
function (SWF) that maps every profile to a ranking (resp., a
distribution over rankings). We focus on randomized SWFs.
Deterministic SWFs are a special case where the output dis-
tributions are centered at a single ranking. In this paper we
do not study social choice functions (SCFs), which map each
profile to a (single) selected alternative.

Families of SWFs. In order to capture many SWFs simul-
taneously, our results employ the definitions of three broad
families of SWFs.
• PM-c rules (Caragiannis, Procaccia, and Shah 2013): For

a profile π, the pairwise-majority (PM) graph is a directed
graph whose vertices are the alternatives, and there exists
an edge from a ∈ A to b ∈ A if a strict majority of the vot-
ers prefer a to b. A randomized SWF f is called pairwise-
majority consistent (PM-c) if for every profile π with a
complete acyclic PM graph whose vertices are ordered
according to σ ∈ L(A), we have Pr[f(π) = σ] = 1.

• PD-c rules (Caragiannis, Procaccia, and Shah 2013): In a
profile π, alternative a is said to position-dominate alter-
native b if for every k ∈ {1, . . . ,m − 1}, (strictly) more
voters rank a in first k positions than b. The position-
dominance (PD) graph is a directed graph whose ver-
tices are the alternatives, and there exists an edge from
a to b if a position-dominates b. A randomized SWF f
is called position-dominance consistent (PD-c) if for ev-
ery profile π with a complete acyclic PD graph whose
vertices are ordered according to σ ∈ L(A), we have
Pr[f(π) = σ] = 1.
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• GSRs (Xia and Conitzer 2008): We say that two vectors
y, z ∈ Rk are equivalent (denoted y ∼ z) if for every
i, j ∈ [k] we have yi ≥ yj ⇔ zi ≥ zj . We say that a
function g : Rk → D(L(A)) is compatible if y ∼ z im-
plies g(y) = g(z). A generalized scoring rule (GSR) is
given by a pair of functions (f, g), where f : L(A)→ Rk
maps every ranking to a k-dimensional vector, a com-
patible function g : Rk → D(L(A)) maps every k-
dimensional vector to a distribution over rankings, and
the output of the rule on a profile π = (σ1, . . . , σn) is
given by g (

∑n
i=1 f(σi)). GSRs are characterized by two

social choice axioms (Xia and Conitzer 2009), and have
interesting connections to machine learning (Xia 2013).
While GSRs were originally introduced as deterministic
SCFs, the definition naturally extends to (possibly) ran-
domized SWFs.

Noise models. A noise model G is a collection of distribu-
tions over rankings. For every σ∗ ∈ L(A), G(σ∗) denotes
the distribution from which noisy estimates are generated
when the ground truth is σ∗. The probability of sampling
σ ∈ L(A) from this distribution is denoted by PrG[σ;σ∗].

In order to rule out noise models that are completely out-
landish, we focus on d-monotonic noise models with respect
to a distance metric d, using definitions from the work of
Caragiannis et al. (2013). In more detail, a distance metric
over L(A) is a function d(·, ·) that satisfies the following
properties for all σ, σ′, σ′′ ∈ L(A):
• d(σ, σ′) ≥ 0, and d(σ, σ′) = 0 if and only if σ = σ′.
• d(σ, σ′) = d(σ′, σ).
• d(σ, σ′′) + d(σ′′, σ′) ≥ d(σ, σ′).

A noise modelG is called d-monotone for a distance met-
ric d if for all σ, σ′, σ∗ ∈ L(A), PrG[σ;σ∗] ≥ PrG[σ′;σ∗]
if and only if d(σ, σ∗) ≤ d(σ′, σ∗). That is, the closer a
ranking is to the ground truth, the higher its probability.

Robust SWFs. We are interested in SWFs that can recover
the ground truth from a large number of i.i.d. noisy esti-
mates. Formally, an SWF f is called accurate in the limit
with respect to a noise model G if, given an arbitrarily large
number of samples from G with any ground truth σ∗, the
rule outputs σ∗ with arbitrarily high accuracy. That is, for
every σ∗ ∈ L(A), limn→∞ Pr[f(πn) = σ∗] = 1, where πn
denotes a profile consisting of n i.i.d. samples from G(σ∗).
A voting rule f is called monotone-robust with respect to
a distance metric d if it is accurate in the limit for all d-
monotonic noise models.

Modal Ranking is Unique Within GSRs
In this section, we characterize the modal ranking rule —
which selects the most common ranking in a given profile
— as the unique rule that is monotone-robust with respect
to all distance metrics, among a wide sub-family of GSRs.
For this, we use a geometric equivalent of GSRs introduced
by Mossel, Procaccia, and Rácz (2013) called “hyperplane
rules”. Like GSRs, hyperplane rules were also originally de-
fined as deterministic SCFs. Below, we give the natural ex-
tension of the definition to (possibly) randomized SWFs.

Given a profile π, let xπσ denote the fraction of times the
ranking σ ∈ L(A) appears in π. Hence, the point xπ =
(xπσ)σ∈L(A) lies in a probability simplex ∆m!. This allows
us to use rankings from L(A) to index the m! dimensions of
every point in ∆m!. Formally,

∆m! =

x ⊆ Qm!

∣∣∣∣∣∣
∑

σ∈L(A)

xσ = 1

 .

Importantly, note that ∆m! contains only points with rational
coordinates. Weights wσ ∈ R for all σ ∈ L(A) define a
hyperplane H where H(x) =

∑
σ∈L(A) wσ · xσ for all x ∈

∆m!. This hyperplane divides the simplex into three regions;
the set of points on each side of the hyperplane, and the set
of points on the hyperplane.
Definition 1 (Hyperplane Rules). A hyperplane rule is
given by r = (H, g), where H = {Hi}li=1 is a finite
set of hyperplanes, and g : {+, 0,−}l → D(L(A)) is a
function that takes as input the signs of all the hyperplanes
at a point and returns a distribution over rankings. Thus,
r(π) = g(sgn(H(xπ))), where

sgn(H(xπ)) = (sgn(H1(xπ)), . . . , sgn(Hl(x
π))),

and sgn : R→ {+, 0,−} is the sign function given by

sgn(x) =


+ x > 0

0 x = 0

− x < 0

Next, we state the equivalence between hyperplane rules
and GSRs in the case of randomized SWFs. This equiva-
lence was established by Mossel et al. (2013) for determin-
istic SCFs; it uses the output of a given GSR for each set of
compatible vectors to construct the output of its correspond-
ing hyperplane rule in each region, and vice-versa. Simply
changing the output of the g functions of both the GSR and
the hyperplane rule from a winning alternative (for deter-
ministic SCFs) to a distribution over rankings (for random-
ized SWFs) and keeping the rest of the proof intact shows
the equivalence for randomized SWFs.
Lemma 1. For randomized social welfare functions, the
class of generalized scoring rules coincides with the class
of hyperplane rules.

We impose a technical restriction on GSRs that has a clear
interpretation under the geometric hyperplane equivalence.
Intuitively, it states that if the rule outputs the same ranking
(without ties) almost everywhere around a point xπ in the
simplex, then the rule must output the same ranking (without
ties) on π as well. More formally, consider the regions in
which the simplex is divided by a set of hyperplanes H. We
say that a region is interior if none of its points lie on any
of the hyperplanes in H, that is, if for every point x in the
region, sgn(H(x)) does not contain any zeros.

For x ∈ ∆m!, let

S(x) = {y ∈ ∆m!|∀σ ∈ L(A), xσ = 0⇒ yσ = 0}
denote the subspace of points that are zero in every coor-
dinate where x is zero. We say that an interior region is
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adjacent to x if its intersection with S(x) contains points
arbitrarily close to x.

Definition 2 (No Holes Property). We say that a hyper-
plane rule (generalized scoring rule) has no holes if it out-
puts a ranking σ with probability 1 on a profile π whenever
it outputs σ with probability 1 in all interior regions adjacent
to xπ .

When this property is violated, we have a point xπ such
that the output of the rule on xπ is different from the output
of the rule almost everywhere around xπ , creating a hole at
xπ . We later show (Theorem 2) that the no holes property is
a very mild restriction on GSRs.

We are now ready to formally state our main result.

Theorem 1. Let r be a (possibly) randomized generalized
scoring rule without holes. Then, r is monotone-robust with
respect to all distance metrics if and only if r coincides with
the modal ranking rule on every profile with no ties (i.e., r
outputs the most frequent ranking with probability 1 on every
profile where it is unique).

Before proving the theorem, we wish to point out three
subtleties. First, our assumption of accuracy in the limit im-
poses a condition on the rule as the number of votes goes to
infinity. This has to be translated into a condition on all finite
profiles; we do this by leveraging the structure of generalized
scoring rules.

Second, if there are several rankings that appear the same
number of times, a monotone-robust rule can actually output
any ranking with impunity, because in the limit this event
happens with probability zero.

Third, every noise model G that is monotone with respect
to some distance metric satisfies PrG[σ∗;σ∗] > PrG[σ;σ∗]
for all pairs of different rankings σ, σ∗ ∈ L(A). It seems in-
tuitive that the converse holds, i.e., if a noise model satisfies
PrG[σ∗;σ∗] > PrG[σ;σ∗] for all σ 6= σ∗ then there exists a
distance metric d such that G is monotone with respect to d
— but this is false. Hence, our condition asks for accuracy in
the limit for noise models that are monotone with respect to
some metric, instead of just assuming accuracy in the limit
with respect to all noise models where the ground truth is
the unique mode.

Proof of Theorem 1. Let r be a (possibly) randomized gen-
eralized scoring rule without holes. Using Lemma 1, we
represent r as a hyperplane rule. Let r = (H, f) where
H = {Hi}li=1 is the set of hyperplanes.

First, we show the simpler forward direction. Let r output
the most frequent ranking with probability 1 on every profile
where it is unique. We want to show that r is monotone-
robust with respect to all distance metrics. Take a distance
metric d, a d-monotonic noise model G, and a true ranking
σ∗. We need to show that r outputs σ∗ with probability 1
given infinitely many samples from G(σ∗).

Note that d satisfies d(σ∗, σ∗) = 0 < d(σ, σ∗) for all
σ 6= σ∗. Hence, G must satisfy PrG[σ∗;σ∗] > PrG[σ;σ∗]
for all σ 6= σ∗. Now, given infinite samples from G(σ∗),
σ∗ becomes the unique most frequent ranking with proba-
bility 1. Thus, r outputs σ∗ with probability 1 in the limit, as
required.

For the reverse direction, let r be d-monotone-robust for
all distance metrics d. Take a profile π∗ with a unique most
frequent ranking σ∗. Recall that xπ

∗

σ denotes the fraction of
times σ appears in π∗ and note that xπ

∗

σ∗ > xπ
∗

σ for all σ 6=
σ∗. We also denote by Xπ∗

σ the number of times σ appears
in π∗.

The rest of the proof is organized in three steps. First,
we define a distance metric d, a d-monotonic noise model
G, and a true ranking. Second, we show that given samples
from G(σ∗), in the limit r outputs σ∗ with probability 1 in
every interior region adjacent to xπ

∗
. Finally, we use the no

holes property of r to argue that Pr[r(π∗) = σ∗] = 1.

Step 1: We define d as

d(σ, σ′) =

{
max(1, |Xπ∗

σ −Xπ∗

σ′ |) if σ 6= σ′,

0 otherwise.

We claim that d is a distance metric. Indeed, the first two
axioms are easy to verify. The triangle inequality d(σ, σ′) ≤
d(σ, σ′′) + d(σ′′, σ′) holds trivially if any two of the three
rankings are equal. When all three rankings are distinct,

d(σ, σ′′) + d(σ′′, σ′)

= max(1, |Xπ∗

σ −Xπ∗

σ′′ |) + max(1, |Xπ∗

σ′′ −Xπ∗

σ′ |)
≥ max(1 + 1, |Xπ∗

σ −Xπ∗

σ′′ |+ |Xπ∗

σ′′ −Xπ∗

σ′ |)
≥ max(1, |Xπ∗

σ −Xπ∗

σ′ |) = d(σ, σ′).

Now, define the noise model G where

PrG[σ;σ′] =
1/(1 + d(σ, σ′))∑

τ∈L(A) 1/(1 + d(τ, σ′))
for σ′ 6= σ∗.

and PrG[σ;σ∗] = xπ
∗

σ . Note that G is trivially d-monotone
for true rankings other than σ∗. Denoting the number of
votes in π∗ by n∗, since σ∗ is the unique most frequent
ranking, we have that d(σ, σ∗) = n∗(xπ

∗

σ∗ − xπ
∗

σ ) for all
σ 6= σ∗. Hence, PrG[σ1;σ∗] ≥ PrG[σ2;σ∗] if and only if
d(σ1, σ

∗) ≤ d(σ2, σ
∗) and G is also d-monotone for the

true ranking σ∗. We conclude that G is a d-monotonic noise
model.

Step 2: Let πn denote a profile consisting of n i.i.d. samples
from G(σ∗). Since r is monotone-robust for every distance
metric, we have

lim
n→∞

Pr[r(πn) = σ∗] = 1. (1)

If π∗ has only one ranking, then only that ranking will
ever be sampled. Hence, we will have Pr[xπn = xπ

∗
] = 1,

and Equation (1) would imply that the rule must output σ∗
with probability 1 on π∗.

Assume that π∗ has at least two distinct votes. We want
to show that r outputs σ∗ with probability 1 in every interior
region adjacent to xπ

∗
. As n → ∞, the distribution of xπn

tends to a Gaussian with mean xπ
∗

and concentrated on the
hyperplane ∑

σ∈L(A)|xπ∗σ >0

xπnσ = 1.

619



This follows from the multivariate central limit theorem;
see (Mossel, Procaccia, and Rácz 2013) for a detailed expla-
nation. Note that the sum ranges only over the rankings that
appear in π∗ because in the distribution G(σ∗), the proba-
bility of sampling a ranking σ that does not appear in π∗ is
zero.

Since the Gaussian lies in the subspace S(xπ
∗
), we set

the coordinates corresponding to rankings that do not appear
in π∗ to zero in all the hyperplanes, and remove the hyper-
planes that become trivial. Hereinafter we only consider the
rest of the hyperplanes, and the regions they form around
xπ
∗
, all in the subspace S(xπ

∗
).

If none of the hyperplanes pass through xπ
∗
, then there is

a unique interior region K which actually contains xπ
∗

as
its interior point. In this case, the limiting probability of xπn
falling inK will be 1, as the Gaussian becomes concentrated
around xπ

∗
. Thus, Equation (1) implies that r outputs σ∗

with probability 1 in K, and therefore on π∗.
If there exists a hyperplane passing through xπ

∗
, then

each interior region K adjacent to xπ
∗

is the intersection
of finitely many halfspaces whose hyperplanes pass through
xπ
∗
. LetK and S(xπ∗) denote the closures ofK and S(xπ

∗
)

respectively in Rm!.2 Thus,K is a pointed convex cone with
its apex at xπ

∗
, and must subtend a positive solid angle (in

S(xπ∗ ) at its apex since the hyperplanes are distinct. By def-
inition, the solid angle K forms at xπ

∗
is the fraction of vol-

ume (the Lebesgue measure in S(xπ∗)) covered by K in a
ball of radius ρ (again in S(xπ∗)) centered at xπ

∗
, as ρ→ 0

(see, e.g., Section 2 in (Desario and Robins 2011)).
Since the Gaussian is symmetric in S(xπ∗) around xπ

∗
,

and the limiting distribution of xπn converges to the Gaus-
sian, the limiting probability of xπn lying in K is positive.
This holds for every interior regionK adjacent to xπ

∗
. Thus,

Equation (1) again implies that r outputs σ∗ with probability
1 in every interior region adjacent to xπ

∗
.

Step 3: Finally, because r has no holes and it outputs σ∗

with probability 1 in every interior region adjacent to xπ
∗
,

we conclude that r must also output σ∗ with probability 1
on π∗. (Proof of Theorem 1)

To complete the picture, we wish to show that the no holes
condition that Theorem 1 imposes on GSRs is indeed unre-
strictive, by establishing that many prominent voting rules
(in the sense of receiving attention in the computational so-
cial choice literature) are GSRs with no holes. One issue
that must be formally addressed is that the definitions of
prominent voting rules typically do not address how ties
are broken. For example, the plurality rule ranks the alter-
natives by their number of voters who rank them first; but
what should we do in case of a tie? Below we adopt uni-
formly random tie-breaking, which is almost always used in
political elections (e.g., by throwing dice or drawing cards in

2We remark that considering the closures is necessary since
∆m! contains only points with rational coordinates; hence it (as
well as any subset of it) has measure zero.

small municipal elections where ties are not unlikely to oc-
cur). From a theoretical point of view, randomized tie break-
ing is necessary in order to achieve neutrality with respect
to the alternatives (Moulin 1983). In fact, we have proven
the following theorem for a wide family of randomized tie-
breaking schemes, but here we focus on uniformly random
tie-breaking for ease of exposition.

Theorem 2. Under uniformly random tie-breaking, all po-
sitional scoring rules (including plurality and Borda count),
the Kemeny rule, single transferable vote (STV), Copeland’s
method, Bucklin’s rule, the maximin rule, Slater’s rule, and
the ranked pairs method are generalized scoring rules with-
out holes.

The rather intricate proof of Theorem 2 appears in the full
version of the paper.3 The comprehensive list of GSRs with
no holes includes all prominent rules that are known to be
GSRs (Xia and Conitzer 2008; Mossel, Procaccia, and Rácz
2013) — suggesting that the no holes property does not im-
pose a significant restriction beyond the assumption that the
rule is a GSR. One prominent rule is conspicuously miss-
ing — the fascinating but peculiar Dodgson rule (Dodgson
1876), which is indeed not a GSR (Xia and Conitzer 2008).

Impossibility for PM-c and PD-c Rules
Theorem 1 establishes the uniqueness of the modal rank-
ing rule within a large family of voting rules (GSRs with no
holes). Next we further expand this result by showing that
no PM-c or PD-c rule is monotone-robust with respect to all
distance metrics. Thus, the modal ranking rule is the unique
rule that is monotone-robust with respect to all distance met-
rics in the union of GSRs with no holes, PM-c rules, and
PD-c rules. Crucially, as shown in Figure 1, the families of
PM-c and PD-c rules are disjoint, and neither one is a strict
subset of GSRs.

Theorem 3. For m ≥ 3 alternatives, no PM-c rule or PD-c
rule is monotone-robust with respect to all distance metrics.

In the proof of Theorem 3 we employ the following intu-
itive but somewhat technical statement, whose proof appears
in the full version of the paper.

Lemma 2. Given a specific ranking σ∗ ∈ L(A) and a prob-
ability distribution D over the rankings of L(A) such that

arg max
τ∈L(A)

Pr
D

[τ ] = {σ∗},

there exists a distance metric d over L(A) and a d-
monotonic noise model G with PrG[σ;σ∗] = PrD[σ] for
every σ ∈ L(A).

Proof of Theorem 3. Let A = {a1, . . . , am} be the set of
alternatives. We use a4−m as shorthand for a4 � . . . � am.
Fix

τ = a1 � . . . � am,
and

σ∗ = a2 � a1 � a3 � a4−m.
3Available at: www.cs.cmu.edu/˜arielpro/papers.
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First, we prove that no PM-c rule is monotone-robust with
respect to all distance metrics. In particular, using Lemma
2, we will construct a distance metric d and a d-monotonic
noise modelG such that no PM-c rule is accurate in the limit
for G.

Consider the distributionD over L(A) defined as follows:

PrD[a2 � a1 � a3 � a4−m] = 4
9 ,

PrD[a1 � a2 � a3 � a4−m] = 3
9 ,

PrD[a1 � a3 � a2 � a4−m] = 2
9 ,

PrD[σ] = 0, for all σ not covered above.

By Lemma 2, there exist a distance metric d and a d-
monotonic noise model G such that PrG[σ;σ∗] = PrD[σ]
for every σ ∈ L(A).

Given infinite samples from G(σ∗), a 5/9 fraction — a
majority — of the votes have a1 in the top position. A 7/9
fraction of the votes prefer a2 to a3, while all votes prefer
a2 and a3 to any other alternative besides a1. Clearly, ai is
preferred to ai+1 for i ≥ 4. Hence, in the PM graph, the
alternatives are ordered according to τ = a1 � a2 � a3 �
a4−m. Therefore, every PM-c rule outputs τ in the limit,
which is not the ground truth. Thus, no PM-c rule is accurate
in the limit for G.

The construction for PD-c rules is more complex. Here,
we will show that there is a noise model such that, given
infinite samples for a specific ground truth, the PD graph
of the profile induces a ranking that is different from the
ground truth. The distribution D above is not sufficient for
our purposes since there are pairs of alternatives (e.g., a2
and a3) that have the same probability of appearing in the
first three positions of the outcome; hence, the PD graph of
profiles with infinite samples may not be complete. Instead,
we will use a distribution D′ so that all probability values of
this kind are different.

Let
0 = δ1 < δ2 < ... < δm

so that
∑m
i=1 δi = 1. Define the probability distribution D′′

as follows. Pick one out of them alternatives so that alterna-
tive ai is picked with probability δi. Rank alternative ai last
and complete the ranking by a uniformly random permuta-
tion of the alternatives in L(A) \ {ai}. Now, the distribu-
tion D′ is defined as follows: With probability 9/10 (resp.,
1/10), the output ranking is sampled from the distributionD
(resp., D′′).

The important property of distributionD′′ is that for every
k ∈ [m − 1], the probability that alternative ai is ranked in
the first k positions is exactly (1−δi)k

m−1 , i.e., strictly decreas-
ing in i. On the other hand, distribution D has the property
that for every k ∈ [m − 1], the probability that alternative
ai is ranked in the first k positions is non-increasing in i.
Hence, their linear combination D′ has the property that
for every k ∈ [m − 1], the probability that alternative ai
is ranked in the first k positions is strictly decreasing in i.
Additionally,

arg max
τ∈L(A)

Pr
D′

[τ ] = {σ∗}.

Hence, we can apply Lemma 2 to obtain a distance metric d′
and a d′-monotonic noise model G′ so that an infinite num-
ber of samples from G′(σ∗) induce a complete PD graph
corresponding to the ranking τ = a1 � a2 � a3 � a4−m,
which is different from the ground truth σ∗. Thus, no PD-c
rule is accurate in the limit for G′.

We conclude that no PM-c rule or PD-c rule is monotone-
robust with respect to all distance metrics.

The restriction on the number of alternatives in Theorem 3
is indeed necessary. For two alternatives,L(A) contains only
two rankings, and all reasonable voting rules coincide with
the majority rule that outputs the more frequent of the two
rankings. It can be shown that, in this case, the majority rule
is monotone-robust with respect to all distance metrics.

Caragiannis et al. (2013) show that the union of PM-c and
PD-c rules includes all positional scoring rules, Bucklin’s
rule, the Kemeny rule, ranked pairs, Copeland’s method, and
Slater’s rule. Two prominent SWFs that are neither PM-c nor
PD-c are the maximin rule and STV. In the example given in
the proof of Theorem 3, the maximin rule and STV would
also rank the wrong alternative (a1) in the first position with
probability 1 in the limit. Thus, Theorem 3 gives another
proof that prominent voting rules are not monotone-robust
with respect to all distance metrics.

Discussion
Perhaps our main conceptual contribution is the realization
that the modal ranking rule — a natural voting rule that
was previously disregarded — can be exceptionally useful
in crowdsourcing settings. Interestingly, from a classic so-
cial choice viewpoint the modal ranking rule would appear
to be a poor choice. It does satisfy some axiomatic proper-
ties, such as Pareto efficiency — if all voters rank x above
y, the output ranking places x above y (indeed, the rule al-
ways outputs one of the input rankings). But the modal rank-
ing rule fails to satisfy many other basic desiderata, such as
monotonicity — if a voter pushes an alternative upwards,
and everything else stays the same, that alternative’s position
in the output should only improve. So our uniqueness re-
sult implies an impossibility: a voting rule that is monotone-
robust with respect to any distance metric d and is a GSR
with no holes, PD-c rule, or PM-c rule, cannot satisfy the
monotonicity property. A similar statement is true for any
social choice axiom not satisfied by the modal ranking rule.
That said, social choice axioms like monotonicity were de-
signed with subjective opinions, and notions of social jus-
tice, in mind. These axioms are incompatible with the set-
tings that motivate our work on a conceptual level, and — as
our results show — on a technical level.
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