
A Control Dichotomy for Pure Scoring Rules∗

Edith Hemaspaandra
Department of Computer Science
Rochester Institute of Technology

Rochester, NY 14623, USA

Lane A. Hemaspaandra
Department of Computer Science

University of Rochester
Rochester, NY 14627, USA

Henning Schnoor
Institut für Informatik

Christian-Albrechts-Universität zu Kiel
24098 Kiel, Germany

Abstract

Scoring systems are an extremely important class of election
systems. A length-m (so-called) scoring vector applies only
to m-candidate elections. To handle general elections, one
must use a family of vectors, one per length. The most elegant
approach to making sure such families are “family-like” is the
recently introduced notion of (polynomial-time uniform) pure
scoring rules (Betzler and Dorn 2010), where each scoring
vector is obtained from its precursor by adding one new coef-
ficient. We obtain the first dichotomy theorem for pure scor-
ing rules for a control problem. In particular, for construc-
tive control by adding voters (CCAV), we show that CCAV
is solvable in polynomial time for k-approval with k ≤ 3,
k-veto with k ≤ 2, every pure scoring rule in which only the
two top-rated candidates gain nonzero scores, and a particular
rule that is a “hybrid” of 1-approval and 1-veto. For all other
pure scoring rules, CCAV is NP-complete. We also investi-
gate the descriptive richness of different models for defining
pure scoring rules, proving how more rule-generation time
gives more rules, proving that rationals give more rules than
do the natural numbers, and proving that some restrictions
previously thought to be “w.l.o.g.” in fact do lose generality.

1 Introduction
Elections give rise to a plethora of interesting questions in
the social and political sciences, and have been extensively
studied from a computer-science point of view in the last two
decades. We study the control problem, in which the chair
of an election (ab)uses her power to try to affect the election
outcome. In this paper we focus on constructive control by
adding voters (CCAV), i.e., where the chair tries to make her
favorite candidate win by adding voters. Constructive con-
trol by adding voters is an extremely important control type,
since it occurs in (political) practice very often. A standard
example is the “Get-out-the-Vote” efforts of political par-
ties, aimed at (supposed) supporters of those parties. How-
ever, we should also mention that, as has been pointed out
for example in books by Riker (1986) and Taylor (2005), in
modern politics issues of candidate introduction or removal

∗Supported in part by NSF grants CCF-{0915792,1101452,
1101479} and by COST Action IC1205. Work done in part while
H. Schnoor visited RIT supported by an STSM grant of Cost Ac-
tion IC1205.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(CCAC/CCDC) have become highly important; the case of
Ralph Nader in two recent American elections vividly sup-
ports this point.

The computational complexity of CCAV and other forms
of control was first studied by Bartholdi, Tovey, and
Trick (1992), for plurality and (so-called) Condorcet elec-
tions. In this paper, we study the complexity of CCAV for
pure scoring rules, an attractive class introduced by Betzler
and Dorn (2010) that contains many important voting sys-
tems. A scoring rule for an election with m candidates is
defined by m coefficients α1 ≥ α2 ≥ · · · ≥ αm. Each voter
ranks the m candidates from her most favorite to her least
favorite; a candidate gains αi points from being in position
i on that voter’s ballot.

Well-known examples of families of scoring rules include
the following. Borda Count for m candidates uses coeffi-
cients m − 1,m − 2, . . . , 1, 0. k-approval uses coefficients
1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
m−k

; k-veto uses 1, . . . , 1︸ ︷︷ ︸
m−k

, 0, . . . , 0︸ ︷︷ ︸
k

. Dowdall

voting, used for Nauru’s parliament, uses 1, 12 ,
1
3 , . . . ,

1
m .

The construction of the scoring vector for a specific num-
ber of candidates usually follows a natural pattern, as in the
above examples. This leads to the definition of a “pure scor-
ing rule.” We discuss the notion of “purity” in detail in this
paper. (Basically, it means that at each length we insert one
entry into the previous length’s vector; all our above exam-
ples are pure.)

There is a rich literature on computational aspects of scor-
ing rules, e.g., dichotomy theorems on weighted manipu-
lation (Hemaspaandra and Hemaspaandra 2007), the pos-
sible winner problem (Betzler and Dorn 2010; Baumeister
and Rothe 2012), and bribery (Faliszewski, Hemaspaandra,
and Hemaspaandra 2009), as well as results about specific
voting systems (Betzler, Niedermeier, and Woeginger 2011;
Davies et al. 2011; Faliszewski, Hemaspaandra, and Hema-
spaandra 2013).

In this paper, we provide the first complete investigation
of the complexity of the unweighted CCAV problem for pure
scoring rules. We prove a dichotomy theorem that gives a
complete complexity-theoretic classification of that control
problem for pure scoring rules. Our result is as follows.

It turns out that there are only 4 types of pure scoring rules
for which CCAV is solvable in polynomial time:

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

712



1. k-approval for k ≤ 3,

2. k-veto for k ≤ 2,

3. every pure scoring rule in which only the two top-rated
candidates receive a nonzero score,

4. a particular rule which is a “hybrid” of 1-approval and 1-
veto: each voter awards her favorite candidate 1 point, and
her least favorite candidate −1 point.

For every pure scoring rule that is not one of the above
election systems, CCAV is NP-complete. The last rule men-
tioned above is particularly interesting for two reasons: First,
it was the only one for which the complexity of the possible
winner problem was left open in Betzler and Dorn (2010).
Second, it is the only one for which polynomial-time solv-
ability depends on the actual coefficients, and not only on the
<-order of the values: While this election system is equal
to the rule generated by coefficients 2, 1, . . . , 1, 0, the rule
generated by using coefficients 3, 1, . . . , 1, 0 leads to an NP-
complete CCAV-problem.

A key point in the proof of any dichotomy theorem is to
cover all relevant cases. We thus base our dichotomy result
on a study of the descriptional richness of definitions of scor-
ing protocols. We examine how variations of key param-
eters as the abovementioned purity requirement, the com-
plexity allowed to compute the coefficients, and the universe
from which the coefficients may be chosen affect the set of
election systems that can be represented. Interestingly, we
discover that assumptions made previously in the literature,
which were believed to be without loss of generality, in fact
restrict the rules that can be expressed. Taking these results
into account, we introduce a flexible purity condition that is
more robust with respect to the abovementioned variations.
We show that the new notion strictly generalizes pure scor-
ing rules with integer scores and coincides with pure scoring
rules with rational coefficients.

The paper is structured as follows. In Section 2, we give
necessary preliminaries about the class of election systems
that we study. In Section 3, we study the descriptive richness
of definitions of positional scoring rules. Section 4 contains
our main complexity result. Some proofs and discussions
that are not included here due to space limitations can be
found in this paper’s technical report version (Hemaspaan-
dra, Hemaspaandra, and Schnoor 2014).

2 Preliminaries
As is standard, given an m-component (so-called “scoring”)
vector α = (α1, . . . , αm) such that α1 ≥ · · · ≥ αm, we
define a so-called (m-candidate) “scoring system” election
based on this by, for each voter (the voters vote by strict,
linear orders over the candidates), giving αi points to the
voter’s ith-most-favorite candidate. Whichever candidate(s)
get the highest number of points, summed over all voters,
are the winner(s). We refer to the αis as “coefficients.”

We will use the following very pure definition of pure
scoring rules, which removes some of the additional as-
sumptions that have been used in earlier work. Indeed, ear-
lier work asserted that (at least some of) these assumptions
were not restrictions; we will look at that issue anew below.

An election system E is a T -GSR (generalized scor-
ing rule) if there is a function f that on each input 0m,
m ≥ 1, outputs an m-component scoring vector αm =
(αm

1 , . . . , α
m
m) such that αm

1 ≥ . . . ≥ αm
m and each αi

j be-
longs to T , and for each m, the winner set under E is ex-
actly the winner set given by the scoring system using the
scoring vector αm. The notation 0m denotes a string of m
“0”s. Using this as the argument ensures that the generator’s
computation time is measured as a function of m, since its
input length is exactly m. Since the votes are of size at least
m each, this provides the natural, fair approach to framing
FP-uniformity (as we will do below). We call f a genera-
tor for E . While one can consider election systems based
on an f that is not computable, in practice we want there
to be an efficient algorithm computing f . This is expressed
with different uniformity conditions. If E is a T -GSR via
some generator f that can be computed in a complexity
class F , then E is an F-uniform-T -GSR and f is an F-
uniform T -generator. The values of T we will be interested
in are the naturals N, the nonnegative rationals Q≥0, the ra-
tionals Q, and the integers Z. Our most important value ofF
will be the polynomial-time functions, FP. When we do not
state “nonuniform” or some specific uniformity, we always
mean FP-uniform. When we put a name in boldface, it in-
dicates all the elections that can be generated by a generator
of the named sort, e.g., FP-uniform-Z-GSR is the class of
all polynomial-time-uniform generalized scoring rules with
integer coefficients, a class first defined and discussed by
Hemaspaandra and Hemaspaandra (2007).

A T -GSR (of whatever uniformity) is a T -PSR (pure
scoring rule) if it has a generator (of the same uniformity) f
satisfying the following “purity” constraint: For each m ≥
2, there is a component of αm that when deleted leaves ex-
actly the vector αm−1.

Throughout the paper we use the following observation,
which notes that two scoring vectors, after being “normal-
ized,” differ if and only if they are capturing distinct election
systems: An m-position scoring vector α = (α1, . . . , αm)
(over N) is normalized if αm = 0 and the greatest common
divisor of its nonzero αis is 1. Normalizing a given scoring
vector (over N or Z) is easily achievable in polynomial time:
subtract αm from each coefficient and then divide each coef-
ficient by the gcd (computed using Euclid’s gcd algorithm)
of the nonzero thus-altered coefficients. The normalization
of a scoring vector over Q (resp., Q≥0) is done by multiply-
ing through by the lcm of the denominators of the nonzero
coefficients, and then viewing that as a vector over Z (resp.,
N) and normalizing it as above.

Proposition 2.1. Let m ≥ 1 and let α and α′ be m-position
scoring vectors over T ⊆ Q. Then α and α′ have the same
winner sets on each m-candidate election if and only if α
and α′ both have the same normalized version.

The if direction basically follows from Observation 2.2 of
Hemaspaandra and Hemaspaandra (2007), as noted by Bet-
zler and Dorn (2010). The only if follows by giving a con-
struction that for any two unequal normalized scoring vec-
tors constructs a vote set on which their winner sets differ.
The construction works by “aligning” the vectors by mul-

713



tiplying each so that their first coefficients are equal, and
then using a padding construction to ensure that only two
candidates are crucial and that the winner sets can be dis-
tinguished by appropriately exploiting the first position at
which the aligned vectors differ.

Generators f1 and f2 are equivalent if they generate the
same election system. Due to Proposition 2.1, this is the case
if and only if, for each lengthm, the normalized scoring vec-
tors generated by f1 and f2 for m candidates are identical.

3 Descriptive Richness and PSRs
We now examine how amount of time used to generate
PSRs, and the universe the PSR’s coefficients are drawn
from, affect the family of election rules that can be obtained.
We also look at whether such a seemingly innocuous and
standard assumption as having the last coefficient always be-
ing zero in fact loses generality; we’ll see that it does lose
generality, but in a way that can in part be papered over.

Proofs or proof sketches for each of this section’s results,
and additional discussion, can be found in our technical re-
port version.

3.1 Generation Time Gives Descriptional
Richness

Does more generation time give a richer class of pure scor-
ing rules? A very tight time hierarchy can be achieved by
a legal form of cheating. In particular, consider any (nice)
time class that can for some m ≥ 3 generate a scoring vec-
tor over N of the form (α1, 1, . . . , 1︸ ︷︷ ︸

m−2

, 0) such that α1 is so

big that some other time class cannot generate this scoring
vector (for example, because it simply doesn’t have enough
time to write down enough bits to get a number as large as
α1). Our vector is normalized, and by Proposition 2.1 this al-
ready is enough to allow us to argue that the two time classes
differ in their winner sets. (This proof works for GSRs. And
it works for PSRs if the “nice”ness of the class allows it to
obey purity while employing the above approach—hardly an
onerous requirement.) However, that claim simply uses the
fact that more time can write more bits. A truly fair and far
more interesting separation would show that one can with
more time obtain more pure scoring rules in a way that does
not depend on using coefficient lengths that simply cannot
be produced by the weaker time class. In the dream case, all
coefficients in fact would simply be 0 or 1, so there are no
long coefficients in play at all. We in fact have achieved such
a hierarchy theorem. Full time constructibility is a standard
notion that most natural time functions satisfy and, as is stan-
dard, when we speak of a time function T (m) by convention
that is shorthand for max(m + 1, dT (m)e) (Hopcroft and
Ullman 1979). FDTIME[g(·)] denotes the functions com-
putable in the given amount of deterministic time.

Theorem 3.1. If T2(m) is a fully time-constructible function
and lim sup

n→∞

T1(m) log T1(m)
T2(m) = 0, then there is an election

rule in FDTIME[T2(m)]-uniform-{0, 1}-PSR that is
not in FDTIME[T1(m)]-uniform-Q-GSR.

The log factor here is not surprising; this is the standard
overhead it takes for a 2-tape Turing machine to simulate a
multitape TM. What is surprising is that no additional factor
of m is needed. Why might we expect such a factor? (We
caution that the rest of this paragraph is intended mostly
for those having familiarity with the diagonalization tech-
niques used to prove hierarchy theorems.) In the context of
a diagonalization construction (which is the basic technique
used in the proof of Theorem 3.1), one might expect to (all
counting against the overall time T2 limit) at vector-length
m have to “recreate” all the shorter vectors used in ear-
lier diagonalizations to ensure that the length-m and length-
(m − 1) vectors are related in a “pure” way. We however
sidestep the need for that overhead by a “purity”-inducing
trick: For each odd m our scoring vector will be of the form
1bm/2c0bm/2c+1, and at each even length, we purely extend
that to whichever of 1bm/2c+10bm/2c+1 or 1bm/2c0bm/2c+2

diagonalizes against the T1-time machine that is being di-
agonalized against (if this is an m when we have time to
so diagonalize). Briefly, we lurch back to fixed, safe way-
stations at every second length, and this removes the need to
recompute our own history.

3.2 Coefficient Richness Gives Descriptional
Richness

The richness and structure of the coefficient set for PSRs
affects how broad a class of election rules can be captured,
as shown by the following result. (Of course, trivially N-
PSR ⊆ Q≥0-PSR∩Z-PSR ⊆ Q≥0-PSR∪Z-PSR ⊆
Q-PSR.)
Theorem 3.2. Q≥0-PSR 6⊆ nonuniform-Z-PSR, Z-
PSR 6⊆ nonuniform-Q≥0-PSR, and Q-PSR 6⊆
nonuniform-Q≥0-PSR ∪ nonuniform-Z-PSR.

So for example, in pure scoring rules, (polynomial-time
uniformly) using positive rationals cannot be simulated by
naturals or integers, even nonuniformly. And in pure scor-
ing rules, (polynomial-time uniformly) using integers cannot
be simulated by naturals or positive rationals, even nonuni-
formly. One might think these claims are impossible, and
that by normalizing one can go back and forth, but it is pre-
cisely the purity requirement that is making that sort of ma-
nipulation impossible—there is a price to purity, and it is
showing itself here. (The final part of the theorem does not
follow automatically from the first two parts plus the trivial
observation before the theorem; just the weaker variant of
that part in which ∪ is replaced with ∩ follows from those.)
Note that enlarging the universe does not necessarily lead
to a larger class of election systems: For example, requiring
that coefficients are odd natural numbers gives the same set
of election systems as merely requiring them to be natural
numbers.

We mention a more flexible and highly attractive no-
tion of purity that erases the differences just discussed. T -
FPSRs (flexible pure scoring rules), of whatever uniformity
or nonuniformity, will be defined exactly the same way as T -
PSRs were defined, except the purity condition is changed
to: For each m ≥ 2, there is a component of αm whose
removal gives a scoring vector equivalent to αm−1. Due to

714



Proposition 2.1, this means that the relevant scoring vectors
have the same normalization. We call such generators flexi-
ble. For this notion we have for the nonuniform case and the
FP-uniform case (and most other nice cases), the following
equality.
Theorem 3.3. N-FPSR = Q-FPSR = Q≥0-FPSR =
Z-FPSR = Q-PSR.

3.3 Having Smallest Coefficient of Zero Loses
Generality—Slightly

Betzler and Dorn (2010) in their definition of scoring rules
require that at each m, we have αm

m = 0 (let us call this
condition norm-0), and comment that this is not a restric-
tion. We note that there are PSRs that cannot be generated
by any pure scoring rule meeting that constraint. What is at
issue here is a bit subtle: At each fixed length, the restriction
is innocuous. But in the context of families that are bound
by the purity constraint, the restriction loses generality. On
the other hand, we will also note that each pure scoring rule
has a generator that is “close” to meeting that constraint—it
meets it at all but finitely many lengths.

Betzler and Dorn (2010) also have a “gcd is 1” condi-
tion (although the phrasing is not crystal clear as to whether
the gcd constraint applies to the union of all nonzero co-
efficients that occur over all lengths, or whether it must in
fact apply separately at each length; the latter (which we
call norm-gcd) would block the vector (2, 0) but the former
would not if the next step were, for example, (3, 2, 0)). How-
ever, the gcd issues also can be made to go away “almost ev-
erywhere.” In particular, we have established the following.
Theorem 3.4. There is an FP-uniform PSR that is not gen-
erated even by any nonuniform PSRnorm-0 generator. On the
other hand, every FP-uniform (respectively, nonuniform)
PSR is generated by a FP-uniform (respectively, nonuni-
form) PSR generator that for all but a finite number of m
has the property that the last coefficient, αm

m, is zero and the
gcd of the nonzero coefficients in the length-m vector is one.

Does the second sentence of the theorem imply that each
PSR has all its vectors the same at each length (except
for a finite number of exceptional lengths) as the vectors
of some PSR that satisfies norm-0 and norm-gcd? The an-
swer is actually “no.” The somewhat subtle issue at play is
that PSRs can generate vectors that no generator satisfying
norm-0 and norm-gcd can ever generate, such as the family
(3, 2, . . . , 2, 0). So one should not from our above theorem
claim that it follows from the main dichotomy theorem of
Betzler and Dorn (2010), as completed by Baumeister and
Rothe (2012), that we can read off the complexity (of the
possible winner problem) even in our slightly more flexible
case. However, our above theorem does—in light of the ac-
tual proof case decomposition used in those papers (which
is based on issues such as whether one has an unbounded
number of positions that differ and so on) and some addi-
tional argumentation to connect to that and in particular to
note that Betzler and Dorn (and Baumeister and Rothe) are
in effect quietly covering well even those cases that do not
satisfy gcd constraints—connect so well to their work that
each of our cases is settled by their proofs.

4 A Control Dichotomy for PSRs
We study the following problem for an election system E :
When R is a set of registered voters, is there some subset of
the unregistered voters U of size at most k that we can add
to the election to ensure that p is the winner?
Definition 4.1. Let E be an election system. The construc-
tive control problem for E by adding voters, E-CCAV, is the
following problem: Given two multisets sets of votes R and
U , a candidate p and a number k, is there a set A ⊆ U with
‖A‖ ≤ k such that p is a winner of the election if the votes
in the multiset R ∪A are evaluated using the system E?

We often use a generator, f , as a shorthand for the election
system (scoring rule family) it generates, e.g., we write f -
CCAV. For a generator f , we use αf,m = (αf,m

1 , . . . , αf,m
m )

to denote the scoring vector generated by f form candidates
and its individual coefficients. To simplify presentation, we
only consider FP-uniform generators. However our results
continue to hold as long as we can solve the following ques-
tion in polynomial time: Given m, i, and j in unary, does
αm
i > αm

j hold, where f(m) = (αm
1 , . . . , α

m
m)?

Our main result is a complexity dichotomy for f -CCAV
when f is an FP-uniform pure Q-generator (or, equivalently
due to Theorem 3.3, a FP-uniform flexible N-generator).
Recall that equivalent generators result in the same election
system, hence, due to Proposition 2.1, Theorem 4.2 implies
polynomial-time results for all generators with the same nor-
malization as one below. We state our main result.
Theorem 4.2. Let f be a FP-uniform pure Q-generator.
Then f -CCAV is solvable in polynomial time if f is equiva-
lent to one of the following generators:
• f1 = (1, 1, 1, 0, . . . , 0) (this generates 3-approval),
• f2 = (1, . . . , 1, 0) or f3 = (1, . . . , 1, 0, 0) (1/2-veto),
• for some α ≥ β, f4 = (α, β, 0, . . . , 0),
• f5 = (2, 1, . . . , 1, 0).
In all other cases, f -CCAV is NP-complete.

Note that 1- and 2-approval are covered by the genera-
tor f4. The remainder of the paper contains the proof of
Theorem 4.2: Section 4.1 contains the algorithms for all
polynomial-time solvable cases, Section 4.2 contains our
hardness results, and the proof of Theorem 4.2 follows in
Section 4.3.

4.1 Polynomial-Time Results
The following result is proven by Lin (2012).
Theorem 4.3. E-CCAV is solvable in polynomial time if E
is k-approval with k ≤ 3 or k-veto with k ≤ 2.

Due to Proposition 2.1, Theorem 4.3 implies that CCAV
remains polynomial-time solvable for “scaled” versions of
k-approval with k ≤ 3 or k-veto with k ≤ 2, i.e., gener-
ators of the form (α, β, γ, δ, . . . , δ) with β, γ ∈ {α, δ} or
(α, . . . , α, β, γ) with β ∈ {α, γ}. We now look at a gener-
alization of 2-approval: Voters approve of 2 candidates, and
can distinguish between their first and second choice. CCAV
for this generalization remains efficiently solvable. In con-
trast, Theorem 4.11 shows that our control problem for the
corresponding generalization of 3-approval is NP-hard.

715



Theorem 4.4. Let α ≥ β be fixed. Then f -CCAV is
polynomial-time solvable for f = (α, β, 0, . . . , 0).

Proof. Due to Theorem 4.3, assume α > β. Let ` be the
smallest natural number such that `(α − β) ≥ β. Let an
instance with candidates C, favorite candidate p, registered
voters R, and potential voters U be given; let k be the num-
ber of voters that can be added. Assume ` ≤ k, otherwise
brute-force. Let V1 (V2) be the set of voters in U that put p
in the first (second) spot. Clearly, we add voters only from
V1∪V2. Assume w.l.o.g. that two voters who vote identically
in the first two positions also rank the remaining candidates
identically. In particular, two voters in V1 (V2) are different
if and only if they vote different candidates in the second
(first) place. We use the following facts (whose proofs can
be found in our technical report version).

Fact 1. For i ∈ {1, 2}, given a set S ⊆ V1 ∪ V2, it can be
checked in polynomial time whether S can be extended, by
adding at most k − ‖S‖ voters from Vi to make p win.

Fact 2. To make p win, it is never better to add ` voters from
V2 than adding ` pairwise different voters from V1.

Due to Fact 2, we do not have to consider solutions that
use ` or more voters from V2 and leave ` or more distinct
voters from V1 unused. So if a solution exists, we can find
one using fewer than ` voters from V2, or leaving fewer than
` pairwise different voters from V1 unused. For both cases
we will test whether there is a corresponding solution.

We start with the first case. Since ` is constant, we can
test every subset S ⊆ V2 with ‖S‖ < `. For each of these S,
we use Fact 1 to check in polynomial time whether S can be
extended to a solution by adding voters only from V1.

For the second case, we determine in polynomial time
whether there is a solution that does not leave ` pairwise
different voters from V1 unused as follows: We encode the
choice of the unused voters from V1 as a function u : C →
{0, . . . , ‖V1‖} that states, for each candidate c, the number
of unused V1-voters placing c second. Since we look for so-
lutions satisfying the second case, we only consider func-
tions u for which u(c) > 0 for at most `− 1 candidates.

Thus we can brute-force over all of these possibilities as
follows:

1. In the outer loop, we test every subset S ⊆ C with ‖S‖ ≤
` − 1. Since ` is a constant, there are only polynomially
many of these sets.

2. For each such S, we test all functions u as above for which
u(c) > 0 holds iff c ∈ S. Such a function can be re-
garded as a function u : S → {1, . . . , ‖V1‖}. There are
‖V1‖‖S‖ ≤ ‖V1‖`−1 many of these functions. Since ‖V1‖
is bound by the input size and ` is a constant, this number
is polynomial in the input size.

So we can polynomially go through all possibilities of
potentially unused V1-voters, which is the same as going
through all possible sets S′ of used V1-voters. For each of
these sets S′, we again use Fact 1 to check in polynomial

time whether S′ can be extended to a solution. This com-
pletes the proof.

Our final polynomial-time case is the generator
(2, 1, . . . , 1, 0). Here every voter “approves” one can-
didate and “vetoes” another. This case is interesting for two
reasons. First, it is the only case where the algorithm de-
pends on the coefficients itself, as opposed to their >-order.
Namely, for all α > β > 0 with α 6= 2β, f -CCAV with
f = (α, β, . . . , β, 0) is NP-complete (Theorem 4.12.2).
Second, this case was the only one left open in Betzler and
Dorn’s (2010) possible winner dichotomy; the question was
eventually settled by Baumeister and Rothe (2012), who
proved NP-completeness.

Theorem 4.5. f -CCAV is solvable in polynomial time for
the generator f = (2, 1, . . . , 1, 0).

Proof. Let C, R, and U be the set of candidates, registered
voters, and unregistered voters, p the preferred candidate,
and k the number of voters we can add. We add no voter
voting p last, and it is never better to add a voter voting p
second than to add one voting p first. So we first add all vot-
ers from U that place p in the first position. If there are more
than k of these voters, we choose the ones to add with the ob-
vious greedy strategy that always picks, among all available
votes of the form p > · · · > c, the one where c currently
has the highest score. After this preprocessing, all relevant
voters in U vote c1 > · · · > c2 with p /∈ {c1, c2}. To sim-
plify presentation, we use Proposition 2.1 and consider f as
the generator (1, 0, . . . , 0,−1). Then the score of p is deter-
mined by the votes in R.

We reduce the problem to min-cost (network) flow,
which can be solved in polynomial time. Let S =∑

c∈C−{p} score(c). We use the following nodes and edges:

1. For each c ∈ C − {p}, there is a node c, additionally,
there are source and target nodes s and t.

2. There is an edge from candidate c1 to candidate c2 with
cost 1 and with capacity equal to the number of voters in
U voting c2 > · · · > c1.

3. For each candidate-node c, there is an edge from s to c
with cost 0 and capacity score(c) and an edge from c to t
with cost 0 and capacity score(p).

Now p can be made winner with at most k additional vot-
ers if and only if there is a flow from s to t with value S and
cost at most k: Clearly, network flows with cost at most k
correspond to subsets of U with size at most k, and using an
edge (c1, c2) r times corresponds to adding r voters voting
c2 > · · · > c1, since this vote transfers one point from c1 to
c2. The capacity of the outgoing edges of s ensure that each
candidate initially gets the correct number of points (since S
points must be distributed), the edges to t ensure that in the
end, no candidate may have more points than p.

The above results cover all polynomial-time cases of
Theorem 4.2. We now turn to the NP-complete cases.

716



4.2 Hardness Results
We use the standard NP-complete problem 3DM (3-
dimensional matching).

Definition 4.6. 3DM is defined as follows:
Input Pairwise disjoint sets X , Y , and Z with

‖X‖ = ‖Y ‖ = ‖Z‖, and a set M ⊆
X × Y × Z.

Question Is there a set C ⊆ M with ‖C‖ = ‖X‖
that covers X , Y , and Z?

We say that C covers X (resp., Y , Z) if every element from
X (resp., Y , Z) appears in a tuple of C. Since X , Y , and Z
are pairwise disjoint, in this case every element from X (Y ,
Z) appears in the first (second, third) component of a tuple
from C. Since ‖X‖ = ‖Y ‖ = ‖Z‖, a set C ⊆ M with
‖C‖ = ‖X‖ covers X (Y , Z) if and only if no two tuples
from C agree in the first (second, third) component. A set C
covering X , Y , and Z is called a cover.

Constructing Elections In our hardness proofs, we often
need to set up the registered voters to ensure specific scores
for the candidates. The following lemma (whose proof can
be found in our technical report version) shows that, if there
is a “dummy” candidate to whom any surplus points can be
“shifted,” we can obtain every set of relative scores that can
be expressed as a polynomial-size linear combination of the
coefficients in the scoring vector.

Lemma 4.7. Given a scoring vector (α1, . . . , αm), and for
each c ∈ {1, . . . ,m − 1}, numbers ac1, . . . , a

c
m in signed

unary, and a number k in unary, we can compute, in poly-
nomial time, votes such that the scores of the candidates
when evaluating these votes according to the scoring vec-
tor (α1, . . . , αm) are as follows: There is some o such that
for each c ∈ {1, . . . ,m − 1}, score(c) = o +

∑m
i=1 a

c
iαi,

and score(c) > score(m) + kα1.

The value o in Lemma 4.7 is the common offset for all
relevant scores. The actual value of o is irrelevant, since the
winner of the election is determined by the relative scores.
The value k is given so that the computed votes ensure that
the dummy candidate m cannot win the election with the
addition of at most k voters.

“Many” Different Coefficients We now show that the
CCAV-problem is NP-complete for generators using “many”
different coefficients. Consider any generator f using (at
least) 7 different coefficients for some length m. Then with
αf,m = (αf,m

1 , αf,m
2 , αf,m

3 , αf,m
4 , . . . , αf,m

m−2, α
f,m
m−1, α

f,m
m )

we know that αf,m
4 > αf,m

m−2. This condition in fact suf-
fices for the CCAV problem to be NP-hard; the result ap-
plies to, e.g., Borda, 3-veto, and 4-approval (the latter two
use just two different coefficients, but satisfy αf,m

4 > αf,m
m−2

for m ≥ 7).
For 4-approval or 3-veto, NP-hardness can be proven by

positioning the elements of M from a 3DM-instance, along
with p, in the 4 top positions of an unregistered 4-approval
vote or (without p) in the last 3 positions of an unregistered
3-veto vote. In our cases, we can always “simulate” one of
these systems: If αf,m

4 > αf,m
m−2, then being ranked in one

of the first 4 positions is strictly better than being ranked in
one of the last 3 positions. Roughly speaking, if “many” in-
termediate coefficients are larger than the last 3, then the last
3 are the “exception,” and we can use them to “simulate” 3-
veto. On the other hand, if “many” intermediate coefficients
are smaller than the first 4, then the first 4 are the “excep-
tion” and we “simulate” 4-approval.1 NP-hardness for both
3-veto and 4-approval is proved by Lin (2012); however we
use a direct reduction from 3DM in our generalization.

We start with the “simulation” of 3-veto. The statement of
the following result is a bit unusual. It indeed gives a reduc-
tion for generators meeting the condition αf,m

3k+1 > αf,m
m−2

for all m. But beyond that the function g gives what we call
a “partial” reduction from 3DM to f -CCAV for fs that meet
the condition for some values of m. In the proof, the size of
the 3DM instance is artificially enlarged to ensure that this
“partial reduction” meets an analogue counterpart in such a
way that for every generator f that satisfies αf,m

4 > αf,m
m−2

for some m, we know that for each large enough m, one
of the two reductions can be applied. (Our technical report
version provides additional discussion of this.)

Theorem 4.8. Let f be an FP-uniform Q-generator. Then
there exists an FP-computable function g such that

• g takes as input an instance I3DM of 3DM and produces
an instance ICCAV of f -CCAV with m = 6k candidates,
where k = ‖X‖ = ‖Y ‖ = ‖Z‖.

• If αf,m
3k+1 > αf,m

m−2, then: I3DM is a positive instance of
3DM iff ICCAV is a positive instance of f -CCAV.

Proof. We write αi for αf,m
i . W.l.o.g., let X = {s1, . . . ,

sk}, Y = {sk+1, . . . , s2k}, and Z = {s2k+1, . . . , s3k}. We
use the following candidates:

1. Each si ∈ {s1, . . . , s3k} is a candidate.
2. p is the preferred candidate.
3. There are dummy candidates d1, . . . , dm−3k−1. We as-

sume there are at least 3 dummy candidates, i.e., k ≥ 2.

We now use Lemma 4.7 to construct the set R of registered
voters such that the scores of the candidates are as follows.
(In the following, we “normalize” the scores of all candi-
dates using the score of p as a base. So we pretend that the
number o from the application of Lemma 4.7 is zero in or-
der to simplify the presentation, clearly the absolute points
of all candidates must be positive and are shifted by the ac-
tual number o from the lemma.)

1. score(p) = 0.
2. score(si) = kα1− (k− 1)α1+i−αm−r(i), where r(i) =

2, 1, 0 depending on whether si ∈ X,Y, Z, respectively.
(So αm−r(i) is exactly the amount of points that si gains
from a vote that “vetoes” si, see below)

3. score(di) < −kα1 for i ∈ {1, . . . , dm−3k−1}.

1For generators where both cases apply such as f =
(2, 2, 2, 2, 1, 1, 1, . . . , 1, 0, 0, 0), either reduction works.

717



Let M ⊆ X × Y × Z be the set from I3DM. For each
(x, y, z) = (sh, si, sj) ∈ M (so clearly h < i < j), we add
an available voter to U voting as follows:

p > s1 > · · · > sh−1 > d1 > sh+1 > · · · > si−1 >
d2 > si+1 > · · · > sj−1 > d3 > sj+1 > · · · > s3k >
d4 > · · · > dm−3k−1 > x > y > z.

We say that such a vote vetoes the candidates x, y, and z,
and identify elements of M and the corresponding votes.

We show that the reduction is correct. First assume that
the instance of 3DM is positive, and let C ⊆M be the cover
with ‖C‖ = k. We add the voters corresponding to the ele-
ments of C in the obvious way and show that p indeed wins
the resulting election.

To see this, it suffices to show that p has at least as
many points as each candidate si, since by construction, the
dummy candidates cannot win the election with adding at
most k votes. So let i ∈ {1, . . . , 3k}. The final score for p
and si are as follows:

• p gains α1 points in each of the k additional votes, so p
ends up with exactly kα1 points.
• si gains (k − 1)α1+i points from the (k − 1) votes cor-

responding to elements (x, y, z) ∈ C with si /∈ {x, y, z},
and αm−r(i) points from the single vote vetoing si. So
si ends up with a final score of kα1 − (k − 1)α1+i −
αm−r(i) + (k − 1)α1+i + αm−r(i) = kα1 as well.

For the converse, let C ⊆ M be a set of at most k votes
whose addition lets p win. If this is not a cover, then there is
some si that is vetoed in none of the added votes. We now
compare the points of p and si.

1. p gains α1 points in each of the ‖C‖ additional votes, so
p ends up with exactly ‖C‖α1 points.

2. Since si is not vetoed in any new vote, si gains α1+i

points in each added vote and thus ends up with kα1 −
(k − 1)α1+i − αm−r(i) + ‖C‖α1+i points.

Since ‖C‖ ≤ k, α1 ≥ αi+1 and αi+1 ≥ α3k+1 > αm−2 ≥
αm−r(i), it follows that kα1 − (k − 1)α1+i − αm−r(i) +
‖C‖α1+i − ‖C‖α1

= (k − ‖C‖)(α1 − α1+i)︸ ︷︷ ︸
≥0

+α1+i − αm−r(i)︸ ︷︷ ︸
>0

> 0. So si

beats p if C is not a cover; since by assumption adding C
makes p win, C must be a cover.

In a similar way, we can prove an analogous result for all
scoring rules that “can implement” 4-approval in the sense
that being voted in one of the first 4 positions is strictly better
than being voted in most “later” positions. The proof of the
following result is very similar to the proof of Theorem 4.8,
except that an additional argument is needed to ensure that
the favorite candidate cannot be made a winner with less
than k additional voters. The proof can be found in our tech-
nical report version.

Theorem 4.9. Theorem 4.8 also holds when the condition
αf,m
k+1 > αf,m

m−2 is replaced with αf,m
4 > αf,m

m−3k+1.

As mentioned above, we now put the two reductions
above together to obtain the NP-hardness result of this sec-
tion, i.e., to prove that f -CCAV is NP-complete as soon
as there is a number m where the coefficients of f satisfy
αf,m
4 > αf,m

n−2. If this condition is true, then we know that
one of the inequalities αf,m

4 ≥ αf,m
5 ≥ · · · ≥ αf,m

m−3 ≥
αf,m
m−2 is in fact strict. Depending on the position of this strict

inequality, we choose which reduction to apply: If the strict
inequality appears “close” to the first candidate, then the first
“few” positions are strictly better than “most,” and the sys-
tem can “simulate” k-approval for some k ≥ 4. On the other
hand, if the strict inequality appears “close” to the last can-
didate, then the last “few” positions are worse than “most,”
and we can similarly “simulate” k-veto for some k ≥ 3. The
proof of the following theorem can be found in our technical
report version.
Theorem 4.10. f -CCAV is NP-complete for every FP-
uniform pure Q-generator f with αf,m

4 > αf,m
m−2 for some

m.

“Few” Different Coefficients We now study pure gener-
ators f not covered by Theorem 4.10, i.e., where αf,m

4 ≤
αf,m
m−2 for allm. Then form ≥ 6, αf,m is of the form (αf,m

1 ,

αf,m
2 , αf,m

3 , αf,m
4 , . . . , αf,m

4 , αf,m
5 , αf,m

6 ). The reductions
above cannot work in this case, since there are no 3 positions
“worse than most” and no 4 positions “better than most.”

Due to Theorem 3.3, we can regard f equivalently as flex-
ible N-generators or as pure Q-generators. For the latter rep-
resentation, purity requires that all coefficients from αf,m

also appear in αf,m+1. So the above numbers α1, . . . , α6

do not depend on m. We can use a fixed affine transforma-
tion for these finitely many coefficients and, using Proposi-
tion 2.1, rewrite all coefficients as natural numbers.

Our next hardness result concerns a generalization of
3-approval. Recall from Theorem 4.3 that CCAV for 3-
approval itself, i.e., the generator (α, α, α, 0, . . . , 0), is solv-
able in polynomial time. In Theorem 4.4, we proved a gener-
alization of 2-approval to still give a polynomial-time solv-
able CCAV-problem. We now show that the analogous gen-
eralization of 3-approval leads to NP-completeness.
Theorem 4.11. Let α ≥ β ≥ γ > 0 and α 6= γ. Let f
be the generator giving (α, β, γ, 0, . . . , 0). Then f -CCAV is
NP-complete.

Proof. Let M be the set from an instance of 3DM with
‖M‖ = n, and let k = ‖X‖ = ‖Y ‖ = ‖Z‖ (recall X ,
Y , and Z must be pairwise disjoint). We use the candidates
X∪Y ∪Z∪{p}∪{Si, S

′
i | Si ∈M} and a dummy candidate

d to be able to apply Lemma 4.7. We use the lemma to set up
the registered votes such that the resulting relative scores are
as follows: score(p) = α+ 2γ, score(c) = (n+ 2k)β + 2γ
for all c ∈ X∪Y ∪Z, score(Si) = (n+2k)β+min(α, 2γ),
and score(S′i) = (n+ 2k)β + α+ γ for each Si ∈M . Fur-
ther, score(d) < −(n + 2k)α1. For each Si = (x, y, z), we
introduce four unregistered voters voting as follows:

x > p > Si > . . . .
y > p > Si > . . . .

718



z > p > S′i > . . . .
Si > p > S′i > . . . .

We show that p can be made a winner of the election by
adding at most n+2k voters if and only if the 3DM-instance
is positive, i.e., there is a set C ⊆ M with ‖C‖ = k and for
Si 6= Sj ∈ C, Si and Sj differ in all three components.

First assume that there is such a cover. In this case, p can
be made a winner of the election by adding the following
voters: For each Si = (x, y, z) ∈ C, we add the votes x >
p > Si, y > p > Si, and z > p > S′i. For each Si =
(x, y, z) /∈ I , we add the vote Si > p > S′i. Note that this
adds exactly 3k + (n − k) = n + 2k votes. Adding these
votes results in the following scores:

• p gains β points in each added vote, so p gains (n+2k)β
points and p’s final score is α+ 2γ + (n+ 2k)β,

• each candidate in X ∪ Y ∪ Z gains α points, leading to a
final score of α+ (n+ 2k)β + 2γ︸ ︷︷ ︸

previous score

as well,

• for each Si ∈ C, we have that score(Si) =
(n+ 2k)β +min(α, 2γ)︸ ︷︷ ︸

previous score

+2γ ≤ (n + 2k)β + α + 2γ,

which again is the score of p.
• for each Si /∈ C, we have score(Si) = (n + 2k)β +

min(α, 2γ)+α ≤ (n+2k)β+2γ+α, equal to the score
of p.
• for each S′i (independent of whether S′i ∈ C or S′i /∈ C),

we have score(S′i) = (n+ 2k)β + α+ γ︸ ︷︷ ︸
previous score

+γ = (n +

2k)β + α+ 2γ, again this is the score of p.

Thus all candidates tie and so in particular, p is a winner
of the election.

For the converse, assume that p can be made a winner by
adding at most n + 2k voters. Since each S′i initially beats
p, at least one vote is added. Thus there is a candidate c ∈
X ∪ Y ∪ Z with score(c) ≥ (n+ 2k)β + 2γ + α, or some
S′i with score(S′i) ≥ (n+2k)β +α+2γ. In both cases, we
need to add at least n+2k voters to ensure that p has at least
α+ 2γ + (n+ 2k)β points as well.

Since n + 2k votes are added, and each of these votes
gives points to p and 2 other candidates, there are 2n + 4k
positions awarding points in the added votes that are filled
with (not necessarily different) candidates other than p. Each
of the 3k candidates from X ∪Y ∪Z can only gain α points
without beating p in the election, so each of these can fill
at most one of these 2n + 4k positions. So at least 2n + k
positions must be filled by (again, not necessarily different)
candidates from {Si, S

′
i | 1 ≤ i ≤ n}. Each S′i can appear

at most once in the third position without beating p. Since
there are n candidates of the form S′i, it follows that there
must be n+ k occurrences of candidates Si in the first three
positions of the added votes. Since no Si can gain α + γ
points without beating p,2 each Si can either appear in a vote

2To see this, we compute the difference between the score of Si

after gaining α + γ points and that of p after gaining (n + 2k)β

Si > p > S′i, or in up to two votes of the form c > p > Si

with c ∈ X ∪ Y . (Si = (x, y, z) cannot appear in three of
these, since then one of x and y would gain too many points.)
So the only way to fill n+k positions with candidates of the
form Si is having 2k occurrences of Si in the third place, and
n − k occurrences of Si in the first place. In order to fill all
positions, each S′i has to appear once in the final position,
and due to the above, n − k of these occurrences are in a
vote of the form Si > p > S′i. Thus there are k votes of the
form z > p > S′i. It follows that there are 3k votes added
that vote a candidate from X ∪ Y ∪ Z in the first position,
and n − k voters are added that vote some Si first. Since
no Si may appear both in first and in last position, and each
S′i may appear only once, and each xi, yi, and zi may gain
only α points, it follows that the added votes correspond to
a cover.

We also have proved the following cases NP-complete;
the proofs can be found in our technical report version.
Theorem 4.12. The problem f -CCAV is NP-complete if f is
one of the following pure generators:

1. f = (α1, α2, α3, α4, . . . , α4, α5, 0) with α2 > α4 > 0.
2. f = (α1, α2, . . . , α2, 0) with α1 /∈ {α2, 2α2}, α2 > 0.
3. f = (α1, α2, . . . , α2, α5, 0) with α1 > α2 > α5.
4. f = (α1, . . . , α1, α5, 0) with α1 > α5 > 0.

4.3 Proof of Dichotomy Theorem
We now use the individual results from Sections 4.1 and 4.2
to prove our main dichotomy result, Theorem 4.2:

Proof. The polynomial cases follow from Theorems 4.3,
4.4, and 4.5, we prove hardness. If αf,m

4 > αf,m
m−2 for

some m, hardness follows from Theorem 4.10. So assume
αf,m
4 = · · · = αf,m

m−2 for all m ≥ 6. As argued in
the discussion after Theorem 4.10, we assume αm,f =
(α1, α2, α3, α4, . . . , α4, α5, α6) for each m ≥ 6. Due to
Proposition 2.1, we can assume α6 = 0. We reduce the num-
ber of relevant coefficients from 5 to 3:

1. If α4 = 0, then, since f does not generate 3-approval and
is not equivalent to f4, α1 > α3 > 0. Hardness follows
from Theorem 4.11.

2. If α2 > α4 > 0, hardness follows from Theorem 4.12.1.

So assume α2 = α3 = α4 > 0, i.e., f is of the form
(α1, α2, . . . , α2, α5, 0). We make a further case distinction:

1. If α2 = α5, then since f does not generate 1-veto, we
know that α1 6= α5 = α2. Since f is not equivalent
to (2, 1, . . . , 1, 0), we know that α1 6= 2α2. Thus NP-
hardness follows from Theorem 4.12.2.

2. If α2 > α5, then depending on whether α1 > α2 > α5 or
α1 = α2 > α5, hardness follows from Theorem 4.12.3 or
Theorem 4.12.4 (note that in the latter case, we know that
α5 6= 0, since f does not generate 2-veto).

points. This value is (n+2k)β+min(α, 2γ) +α+ γ −α− γ −
(n+ 2k)β = min(α, 2γ)− γ. Since α > γ and γ > 0, this value
is strictly positive, so Si indeed beats p if Si gains α+ γ points.

719



Acknowledgments
We thank the AAAI 2014 and COMSOC 2014 reviewers for
helpful comments and suggestions.

References
Bartholdi, III, J.; Tovey, C.; and Trick, M. 1992. How hard
is it to control an election? Mathematical and Computer
Modeling 16(8/9):27–40.
Baumeister, D., and Rothe, J. 2012. Taking the final step
to a full dichotomy of the possible winner problem in pure
scoring rules. Information Processing Letters 112(5):186–
190.
Betzler, N., and Dorn, B. 2010. Towards a dichotomy of
finding possible winners in elections based on scoring rules.
Journal of Computer and System Sciences 76(8):812–836.
Betzler, N.; Niedermeier, R.; and Woeginger, G. 2011. Un-
weighted coalitional manipulation under the Borda rule is
NP-hard. In Proceedings of the 22st International Joint Con-
ference on Artificial Intelligence, 55–60. AAAI Press.
Davies, J.; Katsirelos, G.; Narodytska, N.; and Walsh, T.
2011. Complexity of and algorithms for Borda manipula-
tion. In Proceedings of the 25th AAAI Conference on Artifi-
cial Intelligence, 657–662. AAAI Press.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2009. How hard is bribery in elections? Journal of Artificial
Intelligence Research 35:485–532.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2013. Weighted electoral control. In Proceedings of the
12th International Conference on Autonomous Agents and
Multiagent Systems, 367–374. International Foundation for
Autonomous Agents and Multiagent Systems.
Hemaspaandra, E., and Hemaspaandra, L. 2007. Dichotomy
for voting systems. Journal of Computer and System Sci-
ences 73(1):73–83.
Hemaspaandra, E.; Hemaspaandra, L.; and Schnoor, H.
2014. A control dichotomy for pure scoring rules. Techni-
cal Report arXiv:1404.4560 [cs.GT], Computing Research
Repository, arXiv.org/corr/.
Hopcroft, J., and Ullman, J. 1979. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley.
Lin, A. 2012. Solving Hard Problems in Election Sys-
tems. Ph.D. Dissertation, Rochester Institute of Technology,
Rochester, NY.
Riker, W. 1986. The Art of Political Manipulation. Yale
University Press.
Taylor, A. 2005. Social Choice and the Mathematics of
Manipulation. Cambridge University Press.

720




