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Abstract

We consider settings where a collective intelligence is formed
by aggregating information contributed from many indepen-
dent agents, such as product reviews, community sensing,
or opinion polls. We propose a novel mechanism that elic-
its both private signals and beliefs. The mechanism extends
the previous versions of the Bayesian Truth Serum (the orig-
inal BTS, the RBTS, and the multi-valued BTS), by allowing
small populations and non-binary private signals, while not
requiring additional assumptions on the belief updating pro-
cess. For priors that are sufficiently smooth, such as Gaus-
sians, the mechanism allows signals to be continuous.

Introduction
We consider settings where a collective intelligence is
formed by aggregating information contributed from many
independent agents, such as product reviews, community
sensing or opinion polls. To encourage participation and
avoid selection bias, agents should be rewarded for the infor-
mation they provide. It is important that the rewards provide
incentives for relevant and truthful information and discour-
age random or malicious reports.

Often the collected information cannot be easily verified
because it requires a large amount of effort to do so, or the
data is entirely private and subjective. This means that scor-
ing techniques based on direct verification, such as strictly
proper scoring rules (Savage 1971; Gneiting and Raftery
2007; Lambert and Shoham 2009) or prediction markets
(Hanson 2003; Chen and Pennock 2007), cannot be used to
elicit effort nor private information. In other words, incen-
tive schemes have to rely solely on the reported data.

The recent impossibility results (Waggoner and Chen
2013; Radanovic and Faltings 2013; Jurca and Faltings
2011) indicate that in order to allow incentive compatibility
when direct verification is not applicable, one cannot have
arbitrarily structured setting. Our setting is structured ac-
cording to the one introduced in (Prelec 2004), where agents
share a common prior belief, not known to the mechanism.
The model is depicted in Figure 1. An agent i receives a sig-
nal Si = si; updates her belief Pr(Sj |Si = si) regarding
what another agent j has observed; and makes the informa-
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tion report xi about her observation si and the prediction
report yi about her posterior belief Pr(Sj |Si = si).

Figure 1: The setting analyzed in this paper.

We want to obtain a mechanism for elicitation of agents’
private signals that is incentive compatible without requiring
additional restrictions on the setting. Moreover, the mech-
anism should extend to continuous domains. We note that
many information aggregation procedures operate on contin-
uous signals; a typical example is community sensing, such
as air quality monitoring (Aberer et al. 2010).

Our approach is closely related to the following three
techniques: the Bayesian Truth Serum (BTS) (Prelec 2004),
the Robust Bayesian Truth Serum (RBTS) (Witkowski
and Parkes 2012b) and the Multi-valued Robust Bayesian
Truth Serum (Multi-valued RBTS) (Radanovic and Faltings
2013). In contrast to the Peer Prediction Method (Miller,
Resnick, and Zeckhauser 2005), BTS introduces the pos-
sibility of scoring agents in peer prediction manner with-
out knowing their common prior. However, it assumes a
large population of agents. Using the shadowing mecha-
nism, RBTS provides bounded incentives for elicitation of
binary signals, while requiring no more than three agents.
Multi-valued RBTS extends RBTS to non-binary settings
at the expense of potentially large payments. Recently,
(Witkowski 2014) has provided a generalization of the shad-
owing method, and hence RBTS, to the non-binary case. No-
tice that both generalized RBTS and multi-valued RBTS put
additional restrictions on the belief updating process when
non-binary information is elicited. That is, they require the
belief change (absolute and relative respectively) from prior
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to posterior to be largest for the observed value. None of
the aforementioned BTS mechanisms allows continuous sig-
nals.

Contributions. We propose a novel mechanism called
the Divergence-based Bayesian Truth Serum. It allows non-
binary signals and is incentive-compatible even for small
populations, without requiring additional restrictions on the
BTS setting. Moreover, the divergence-based BTS is guaran-
teed to be individually rational with bounded payments, and,
for discrete signals, it permits differences in agents’ prior be-
liefs. Furthermore, it is the first BTS mechanism that can be
applied to continuous domains.

Related Work
Peer prediction (Miller, Resnick, and Zeckhauser 2005) elic-
its signal values, both discrete and continuous, using proper
scoring rules. The main drawback is that it requires the
mechanism to know agents’ priors. There are several varia-
tions of the peer prediction mechanism, such as budget min-
imizing payment schemes using automated mechanism de-
sign (Jurca and Faltings 2006; 2007).

(Witkowski and Parkes 2012a) describe a peer prediction
mechanism that does not require agents to have a common
prior. However, it requires that there is a temporal structure
in the setting and that agents’ private signals are binary. In
the mechanism, an agent first reports her private prior be-
lief regarding the possible observations, and then makes an
observation and reports it to the mechanism.

Collective revelation (Goel, Reeves, and Pennock 2009)
elicits individual predictions and aggregate estimates. It has
a setting similar to the peer prediction mechanisms, with the
common prior known to the mechanism, and agents that may
make multiple observations, generated from a distribution of
a particular form (e.g. Bernoulli distribution).

Truthful surveys (Lambert and Shoham 2008) is an elic-
itation mechanism developed for truthfully sampling opin-
ions. It does not assume that agents have common prior be-
liefs, but the mechanism provides only weak incentives, so
the agents are indifferent between truthful reporting and ly-
ing.

The helpful reporting mechanism of (Jurca and Faltings
2011) provides incentives for opinion polls. When a pub-
lic distribution (announced by the mechanism) is not close
to agents’ common prior, the mechanism is not incentive
compatible. Instead, agents are incentivized to report val-
ues that push the public distribution towards their common
prior. Once the public signal is close enough to the prior, the
mechanism becomes incentive compatible.

The output agreement mechanism of (Waggoner and
Chen 2013) rewards agents based on how close their re-
ports are according to a metric distance. It elicits common-
knowledge (e.g. mean), rather than private signals, but it
does not require strong assumptions on the structure of
agents’ beliefs.

The effort elicitation mechanism of (Dasgupta and Ghosh
2013) is developed for crowdsourcing settings. It applies for
elicitation of binary signals and relies on the fact that agents
solve multiple tasks that are a priori equivalent. Maximal ef-
fort and truthful reporting result in a maximal reward, while

a small number of trusted workers can be used to eliminate
the low effort equilibria.

Three interesting results relate to the BTS mechanism
mentioned in the introduction: (Prelec and Seung 2006) de-
scribe how to use the BTS mechanism in order to obtain the
ground truth even when the majority is wrong, while (Shaw,
Chen, and Horton 2011; Weaver and Prelec 2013) demon-
strate that the BTS mechanism rewards truthful responses
and has a positive effect in quality control.

The Setting
We model agents’ reasoning similar to (Prelec 2004; Miller,
Resnick, and Zeckhauser 2005; Witkowski and Parkes
2012b; Radanovic and Faltings 2013), where agents have a
common prior belief and use the same belief updating pro-
cedure. Our setting has the following structure:
• There are n ≥ 2 risk-neutral agents who make observa-

tions of a certain phenomenon, and report their observa-
tions to an entity called center. In return, the center re-
wards agents based on the quality of their reports, and the
quality is estimated by comparing the reports of different
agents. That is, the scoring function τ does not only de-
pend on the report of the agent that is being rewarded, but
also on the reports of other agents called peers.

• The agents have the common probabilistic belief that con-
sists of the state of the phenomenon T , which takes val-
ues from Ω, and agents’ observations Si (private signals),
which take values from Σ. Since in this paper we deal
with both continuous and discrete sets Ω and Σ, we use
both cumulative probability distributions Pr and proba-
bility density distributions p. For simplicity, we describe
the setting using only Pr.

• The signals Si are conditionally independent given T ,
meaning that their signals are generated according to
some distribution function dependent on the state T .
In probabilistic terms, this means that for two different
agents i and j, Pr(Si, Sj |T ) = Pr(Si|T )Pr(Sj |T ).

• Once an agent i measures the phenomenon, she updates
her beliefs Pr(Sj |Si) regarding what another agent j has
observed. The belief updating procedure follows Bayes’
rule. Note that our mechanism, in its general form, applies
also for the setting from (Radanovic and Faltings 2013),
where agents might have some other belief updating pro-
cedure.

• After the observation, an agent i submits two reports:
– Information report xi, which represents agent i’s re-

ported signal.
– Prediction report yi, which represents agent i’s predic-

tion regarding the frequencies of signal values in the
overall population. When agents are honest, this report
corresponds to agent i’s posterior belief Pr(Sj |Si).

• We assume a fully mixed prior, that is ∀si ∈ Σ,∀t ∈ Ω:

0 < Pr(T = t) < 1 ∧ 0 < Pr(Si = si|T = t) < 1

Using Bayes’ rule, Pr(Si|T ) and Pr(T ), it follows that
the posterior Pr(Sj |Si) is also fully mixed.
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• Finally, the signals Si are stochastically relevant: the dis-
tribution of Sj conditional on Si is different for different
realizations of Si (Miller, Resnick, and Zeckhauser 2005),
i.e. ∀si ∈ Σ,∀s̃i ∈ Σ\{si},∃ε > 0:

D(Pr(Sj |Si = si)||Pr(Sj |Si = s̃i)) > ε

where D(||) is a divergence function (e.g. KL diver-
gence).

Background
Strictly proper scoring rules elicit agents’ beliefs regard-
ing the event whose outcome eventually becomes a com-
mon knowledge. When the event realizes, the center rewards
agent i for her prediction yi with a strictly proper scoring
rule R(yi, t), where t is the realization of the event (the
ground truth). Every strictly proper scoring rule is associ-
ated with the divergence function D(||), that measures the
difference between the expected scores when a true belief
is reported and when some other prediction is reported. Ex-
amples of strictly proper scoring rules are the logarithmic
scoring rule and the quadratic scoring rule, associated with
the KL divergence and the Euclidean distance respectively
(see (Gneiting and Raftery 2007) for more details).

When the ground truth is not available to the center, the
scoring functions τ have to be based on a comparison of the
reports. The primary goal of the center is to elicit private
signals Si, so agents’ reports should at least contain their
information reports. The information reports alone, how-
ever, do not allow incentive compatibility (see Theorem 1
in (Radanovic and Faltings 2013)).

Bayesian Truth Serums thwart the issue by introducing
an additional report: the prediction report. Accordingly, the
BTS scores are composed of the information score and the
prediction score:

τtotal = τinfo︸ ︷︷ ︸
information score

+ τpred︸ ︷︷ ︸
prediction score

If an agent’s information score does not depend on her pre-
diction report and her prediction score does not depend on
her information report, we call the payment scheme τtotal
decomposable (Radanovic and Faltings 2013). Both RBTS
and Multi-valued RBTS are decomposable, while the orig-
inal BTS is decomposable in the limit case when the num-
ber of agents goes to infinity, which coincides with the re-
quirement for incentive compatibility. It is not surprising
that these mechanisms require some additional restrictions
of the BTS setting to be incentive compatible - with no spe-
cific conditions on the agents’ belief updating process, it is
not possible to construct an incentive compatible decompos-
able payment scheme (see Theorem 2 in (Radanovic and
Faltings 2013)). This leads us to mechanisms that do not
have decomposable structure.

Divergence-based Bayesian Truth Serum
As mentioned in the previous section, decomposable pay-
ment schemes cannot achieve incentive compatibility when
no restrictions are placed on the belief updating process.
Thus, we investigate a broader class of mechanisms where

the information score is not independent of the predic-
tion report. Indeed, this is exactly what makes our mecha-
nism robust: it successfully copes with small populations,
non-binary signal values and arbitrary (but common among
agents) belief updating procedures.

Divergence-based BTS. Consider observations Si taking
values from a countable discrete set, in particular, Σ ⊆
N0 = {0, 1, ...}. The divergence-based BTS has two steps:

1. Each agent i is asked to provide her information report xi
and her prediction report yi.

2. Each agent i is linked with a randomly chosen peer agent
j and is rewarded with a score:

−1xj=xi∧D(yi||yj)>Θ︸ ︷︷ ︸
information score

+ R(yi, xj)︸ ︷︷ ︸
prediction score

(1)

where 1xj=xi
is the indicator variable, R is a strictly

proper scoring rule, D(||) is the divergence associated to
a strictly proper scoring rule, and Θ is a parameter of the
mechanism.

The prediction score part of the mechanism rewards agent
i if her prediction report yi matches the distribution of in-
formation reports xj submitted by other agents. Contrary to
all earlier versions of BTS, the information score penalizes
the agent if its information report agrees with its peer while
its prediction report does not. Disagreement between predic-
tion reports is characterized by the condition that the diver-
gence between the reports is larger than a threshold Θ. The
intuition behind this penalty is that honest agents will not
have such an inconsistency with their peers. The following
theorem shows the condition on the belief structure and the
choice of Θ that make this intuition true.

Theorem 1. Let Σ ⊆ N0. The divergence-based BTS is
strictly Bayes-Nash incentive-compatible when n ≥ 2 and
agents’ posteriors satisfy ∀x ∈ Σ,∀x̃ ∈ Σ\{x}:

D(Pr(Sj |Si = x)||Pr(Si|Sj = x))

≤ Θ < D(Pr(Sj |Si = x)||Pr(Si|Sj = x̃)) (2)

Proof. Consider an agent iwho observes si and believes that
her peer agent is honest, and suppose condition (2) is satis-
fied.

Due to the properties of the strictly proper scoring rules,
agent i’s prediction score is in expectation maximized when
she reports yi = Pr(Sj |Si = si), and because stochastic
relevance holds, this is a strict optimum.

If agent i’s prediction report is yi = Pr(Sj |Si = si),
then from condition (2) we conclude that the maximum of
her information score is achieved when she reports xi = si,
and is equal to 0.

Since the optimal value of the information score is equal
to 0 and the prediction score is maximized when yi =
Pr(Sj |Si = si), it follows that xi = si and yi =
Pr(Sj |Si = si) is agent i’s best response.

We still need to prove that this is the strictly optimal re-
sponse. Since yi = Pr(Sj |Si = si) is strictly optimal re-
sponse for the prediction score, and xi = si achieves the
optimal value of the information score, it is enough to show
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that agent i’s information score is negative in expectation for
xi 6= si and yi = Pr(Sj |Si = si). Due to condition (2) and
the fully mixed posteriors, the expected score for reporting
xi 6= si and yi = Pr(Sj |Si = si) is:

Pr(Sj = xi|Si = si)(−1D(Pr(Sj |Si=si)||Pr(Si|Sj=xi))>Θ)

= −Pr(Sj = xi|Si = si) < 0

Putting it all together, truthful reporting is a strict Bayes-
Nash equilibrium of the divergence-based BTS.

The direct consequence of Theorem 1 is that the
divergence-based BTS applies to all former BTS settings,
with no specific restrictions.
Corollary 1. The divergence-based BTS is strictly Bayes-
Nash incentive-compatible in the BTS, the RBTS and the
Multi-valued RBTS settings for Θ = 0 and n ≥ 2.

Proof. These settings are special cases of the setting in-
troduced in this paper that satisfy 0 = D(Pr(Sj |Si =
x)||Pr(Si|Sj = x)) < D(Pr(Sj |Si = x)||Pr(Si|Sj =
x̃)). So Theorem 1 can be applied with Θ = 0

A convenient feature of the divergence-based BTS is that
it allows a population of agents to have different prior be-
liefs, as long as the agents’ posteriors are more similar when
they observe the same value than when their observations
are different. This is exactly what condition (2) states, and
is very realistic if agents indeed have similar observations.
Notice that we formalized similarities between posteriors of
two different agents using parameter Θ. Although we have
assumed that the center knows Θ, it is possible to make the
divergence-based BTS a non-parametric method.
Non-parametric divergence-based BTS. To make the
divergence-based BTS a non-parametric method, we change
its second step. In addition to a peer agent j, the modified
method also uses a randomly chosen reference agent k, and
the overall score for agent i becomes:

−1xj=xi∧xk 6=xi∧D(yi||yj)>D(yi||yk)︸ ︷︷ ︸
information score

+ R(yi, xj)︸ ︷︷ ︸
prediction score

(3)

Theorem 2. Let Σ ⊆ N0. The non-parametric divergence-
based BTS is strictly Bayes-Nash incentive-compatible when
n ≥ 3 and agents’ posteriors satisfy condition (2) of Theo-
rem 1.
Proof (Sketch). For agent i who observes si and honest
agents j and k, D(yi||yj) < D(yi||yk) holds whenever
agent i reports xi = xj 6= xk and yi = Pr(Sj |Si =
xi). In that case the information score achieves the opti-
mal value (the optimum is also achieved when xi 6= xj or
xi = xk). Because the prediction score is a strictly proper
scoring rule, agent i’s best response is to report xi = si
and yi = Pr(Sj |Si = si). The strictness can be proven the
same way as in Theorem 1.

Individual Rationality
Appropriate scaling of the divergence-based BTS with a
bounded scoring rule R leads to ex-post individual rational-
ity and bounded payments.

Proposition 1. Consider Σ ⊆ N0 and the divergence-based
BTS scheme τ with the quadratic scoring rule defined by the
equation:

R(yi, xj) = 2− (1− yi(xj))
2 −

∑
x∈Σ\{xj}

yi(x)2

Then, α(τ + 1), where α > 0, produces scores in [0, 3α].

Proof. The minimum of the quadratic score is 0 and this can
happen when yi(x 6= xj) = 1. The maximum is achieved
when yi(xj) = 1 and is equal to 2. On the other hand, the
minimum and the maximum of the information score is -1
and 0, respectively. Therefore α(τ + 1) produces values in
[0, 3α].

In addition to the guarantee that participation in the mech-
anism is individually rational, the proposition tells us that the
center can scale α so that the total payoff to all agents does
not exceed a fixed budget. For example, when the center has
budget β, it can use α = β

3n to ensure that the budget is
not exceeded. The same holds for the continuous BTS (de-
scribed in the next section) with the continuous version of
the quadratic scoring rule.

Divergence-based BTS for Continuous Signals
All of the BTS mechanisms are based either on matching
information reports of an agent and her peer, or the shad-
owing method, i.e. appropriately shifting a peer’s posterior
in the direction of the agent’s information report. These ap-
proaches do not directly extend to continuous domain. One
way of dealing with this issue is to discretize the continuous
domain and consider all the values from a certain interval to
be the same when matching is done.
Continuous BTS. Consider observations Si taking contin-
uous values, in particular, Σ = R. The continuous BTS has
the following steps:

1. Each agent i is asked to provide the information report xi
and the prediction report yi, as in the divergence based
BTS.

2. For each agent i, the mechanism samples a number δi
from a uniform distribution, i.e. δi = rand((0, 1)). The
continuous domain Σ = R is then uniformly discretized
with the discretization interval of a size δi and the con-
straint that value xi is in the middle of the interval it be-
longs to. We denote the interval of a value xi by ∆i

x. The
constraint can then be written as xi =

max ∆i
x−min ∆i

x

2 .
3. Finally, an agent i is scored using a modified version of

the divergence-based BTS score:

−1xj∈∆i
x∧D(yi||yj)>δiΘ︸ ︷︷ ︸

information score

+ R(yi, xj)︸ ︷︷ ︸
prediction score

(4)

The parameter Θ reflects how close the posteriors of
two similar signals are. When agents are fully confident Θ
should be big, because posteriors of two similar signals can
be significantly different. On the other hand, when agents
make mistakes the posteriors of two similar signals are close
to each other, making the lower bound on Θ smaller. This
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fact can be used to set the appropriate value of Θ. For exam-
ple, in community sensing, the center can assume that every
sensor is worse than some accurate sensor, so the center can
adjust Θ according to the specifics of the accurate sensor.
For a Θ parameter that never underestimates the divergence
D(||) of agents posteriors that observe similar values, the
continuous BTS is incentive compatible:
Theorem 3. Consider Σ = R, n ≥ 2 and suppose Θ ∈
(0,∞) is such that ∀xi ∈ Σ,∀δi ∈ (0, 1),∀xj ∈ ∆i

x:
D(p(Sj |Si = xi)||p(Si|Sj = xj)) ≤ δiΘ (5)

Then the continuous BTS is strictly Bayes-Nash incentive-
compatible.1

Proof. Suppose agent i observes si and believes that her
peer j is honest. Whenever agent i reports xi and yi =
p(Sj |Si = xi), her information score is equal to 0, because
(5) holds. The prediction score is a strictly proper scoring
rule, so in expectation the optimal choice for the prediction
report is agent i’s posterior yi = p(Sj |Si = si) - this is
a strict optimum due to stochastic relevance. Therefore, re-
porting si and p(Sj |Si = si) is a Bayes-Nash equilibrium.
As it was the case with Theorem 1, in order to show that
truthful reporting is a strict equilibrium, we need to prove
that, for any information report other than si, agent i’s infor-
mation score is in expectation negative when her prediction
report is yi = p(Sj |Si = si).

Let xi 6= si. Since δi can be arbitrarily small, consider δi1
such that si /∈ ∆i1

x . From stochastic relevance, we know that
there exists ε such that:
∀xj ∈ ∆i1

x : D(p(Sj |Si = si)||p(Si|Sj = xj)) > ε (6)

Now, consider δi2 = min(δi1,
ε
Θ ). Since ∆i2

x ⊆ ∆i1
x , it fol-

lows from (6) that:
∀xj ∈ ∆i2

x : D(p(Sj |Si = si)||p(Si|Sj = xj)) > ε ≥ δi2Θ

Moreover, Pr(xj ∈ ∆i2
x |Si = si) =

∫
xj∈∆i2

x
p(Sj =

xj |Si = si)dxj > 0 due to the fully mixed posteriors. So,
for any xi 6= si, the expected information score of agent i
who reports xi and yi = p(Sj |Si = si) is strictly negative.

Therefore, reporting si and p(Sj |Si = si) is a strict
Bayes-Nash equilibrium.

It remains to see how to set the parameter Θ. Consider
D(p(Sj |Si = xi)||p(Si|Sj = xj)) as a function of xj for
a fixed xi = 2. Condition (5) simply states that one can
find a coefficient c such that c|xj − 2| ≥ D(p(Sj |Si =
2)||p(Si|Sj = xj)) for xj ∈ (1.5, 2.5). As shown in Fig-
ure 2, this corresponds to the divergence being bounded by
two lines. More formally:
Proposition 2. Consider Σ = R. If ∀xi ∈ R, D(p(Sj |Si =
xi)||p(Si|Sj = xj)) is a continuously differentiable and
bounded function of xj ∈ (xi − 1/2, xi + 1/2)\{xi}, then:

Θ ≥ max
xi

max
xj∈(xi−1/2,xi+1/2)\{xi}∣∣∣∣∂D(p(Sj |Si = xi)||p(Si|Sj = xj))

∂xj

∣∣∣∣
satisfies condition (5) of Theorem 3.

1Notice that Θ <∞.

Figure 2: The divergence of posteriors as a function of a
peer’s report.

Proof (Sketch). The statement follows from the fact that
function f(xj) = Θ|xj−xi|−D(p(Sj |Si = xi)||p(Si|Sj =
xj)) is equal to 0 when xj = 0, and increases as |xj − xi|
increases.

Proposition 2 applies for many divergence functions
D(||), like KL divergence or Euclidean distance, as long
as the common prior is sufficiently smooth. For example,
if Ω = R, p(Si = xi|T = t) and p(T = t) are continu-
ously differentiable functions of t, p(Si = xi|T = t) is a
continuously differentiable function of xi, and D(||) is the
KL divergence, then one can use Proposition 2 to obtain a
lower bound on Θ.

The continuous BTS is a parametric mechanism, so the
center needs to set the parameter Θ. Notice that the only re-
striction for incentive compatibility is that the center sets Θ
big enough. However, there is a tradeoff between the value
of Θ and the expected value of margin difference of the in-
formation score between truthful and non-truthful reporting.
That is, the larger Θ is, the smaller the expected punishment
is for an agent who deviates from truthful reporting.

If the divergence function D(p(Sj |Si = xi)||p(Si|Sj =
xj)) increases as |xj − xi| increases, it is possible to make
the continuous BTS a non-parametric method.
Non-parametric continuous BTS. To make the continu-
ous BTS a parameter-free method, we introduce a randomly
selected reference agent k and change the score to:
−1xj∈∆i

x∧xk /∈∆i
x∧D(yi||yj)>D(yi||yk)︸ ︷︷ ︸

information score

+ R(yi, xj)︸ ︷︷ ︸
prediction score

(7)

Proposition 3. Let Σ = R. Suppose that ∀xi, xj , xk ∈ Σ:
|xj − xi| < |xk − xi| =⇒
D(p(Sj |Si = xi)||p(Si|Sj = xj))

< D(p(Sj |Si = xi)||p(Si|Sk = xk))

Then the non-parametric continuous BTS is strictly Bayes-
Nash incentive compatible for n ≥ 3.
Proof (Sketch). For agent i who observes si and honest
agents j and k, D(yi||yj) < D(yi||yk) holds whenever
xj ∈ ∆i

x, xk /∈ ∆i
x and agent i reports xi and yi =

p(Sj |Si = xi). In that case (or if xj /∈ ∆i
x or xk ∈ ∆i

x)
the information score achieves the optimal value. Because
the prediction score is a strictly proper scoring rule, agent i’s
best response is to report xi = si and yi = p(Sj |Si = si).
The strictness can be proven as in Theorem 3.
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Gaussian Prior
Consider Ω = Σ = R and agents whose belief system is
based on the Gaussian distribution:
• The signal values Si are generated by a Gaussian p(Si) ∼
N (µT , σ), where σ is fixed, while µT defines the state
T and is distributed according to the Normal distribution
p(µT ) ∼ N (µ0, σ0).

• An agent i uses Bayesian updating to obtain her belief
p(Sj |Si) regarding what an agent j has observed.

That is, agents’ belief system is composed of four parame-
ters {µT , µ0, σ, σ0} (that define the Gaussian prior) and the
Bayesian updating rule.

Now, suppose that agent i observes signal Si = si. From
the Bayesian updating of Gaussian distributions (Bishop
2006), it follows that agent i’s posterior belief regarding
agent j’s observations is a Gaussian p(Sj |Sx = si) ∼
N (µsi , σsi) with the parameters equal to:

µsi =

µ0

σ2
0

+ si
σ2

1
σ2
0

+ 1
σ2

, σ2
si =

1
1
σ2
0

+ 1
σ2

+ σ2 (8)

The KL divergence of two normal distributions N (µ1, σ1)
and N (µ2, σ2) is equal to (Ihara 1993):

log
σ2

σ1
+

σ2
1

2σ2
2

+
(µ1 − µ2)2

2σ2
2

− 1

2
(9)

From the expressions (8) and (9) it follows that the KL di-
vergence of agent i’s and agent j’s posteriors is:

D(p(Sj |Si = xi)||p(Si|Sj = xj)) = k(σ, σ0) · (xj − xi)2

2σ2

where k(σ, σ0) =
σ2
0

σ2
0+σ2

σ2
0

2σ2
0+σ2 . Using Proposition 2, we

obtain Θ that satisfies the conditions of Theorem 3:

Θ ≥ max
xi

max
xj∈(xi−1/2,xi+1/2)\{xi}

∣∣∣∣k(σ, σ0) · 2(xj − xi)
2σ2

∣∣∣∣
≥ k(σ, σ0) · 1

2σ2
(10)

The center does not need to know parameters σ and σ2
0 : it is

sufficient to overestimate (10). We often have that σ0 � σ,
and hence k(σ, σ0) ≈ 1

2 . In that case, the center only needs
to underestimate the value of σ. For example, if agents are
sensors with accuracy below a certain threshold, the center
can infer the minimal value of σ.

The KL divergence of the Gaussian posteriors satisfies
the conditions of Proposition 3, which means that one can
also use the non-parametric continuous BTS. The Gaussian
prior has also another convenient property. Namely, the BTS
mechanisms ask agents to report their observations and their
posterior beliefs. For an agent i, reporting her posterior be-
lief in the Gaussian model comes down to reporting two pa-
rameters µsi and σsi , where si is the agent’s observation. So
the whole report consists of only three scalar values. One
might wonder if it is possible to relax the common prior
assumption, considering that the divergence-based BTS can
cope with a heterogeneous population. If continuous signals
are allowed and natural distributions are used for prior be-
liefs (e.g. Gaussians), then it is not possible to achieve in-
centive compatibility unless agents have a common prior.

Proposition 4. Let Ω = Σ = R and suppose two agents i
and j use the Gaussian priors that might be different. Then
no mechanism τ based on the information and prediction
reports is strictly Bayes-Nash incentive compatible.

Proof. Let us assume the opposite, i.e. there exists a mecha-
nism τ that incentivizes agents to reveal their private signals,
regardless of their prior. Consider a population consisting
of two agents i and j with the priors {µT , µi0, σ, σ0} and
{µT , µj0, σ, σ0}. Suppose they observe signals si and sj re-
spectively, and that agent j believes agent i is honest. Let us
denote the expected payoff of agent j by τj . Now, consider
µi0 = µj0. Incentive compatibility of τ implies:

∀s′j 6= sj : τj(sj , {µsj , σsj}) > τj(s
′
j , {µsj , σsj}) (11)

Consider now µ′
j
0 6= µi0 and s′j = σ2

σ2
0
(µi0 − µ′

j
0) + sj . From

expression (8), we know that the agent j’s posterior remains
the same, i.e. µsj = µs′j and σsj = σs′j . However, from (11)
it follows that the best response of agent j is to report sj , not
s′j . That is, τ cannot incentivize both agent j, who has the
same prior as agent i, and agent j, who has different prior
than agent i, to report honestly.

Conclusion
This paper explores information elicitation mechanisms
where the mechanism designer does not have access to the
ground truth nor to the participants’ beliefs. We constructed
a new payment scheme that operates in the BTS settings and
applies to small populations of agents and non-binary sig-
nals. When discrete signals are elicited, the scheme permits
differences in agents’ priors, as long as the agents’ posteri-
ors are more similar when they observe the same value than
when their observations are different.

As many settings require elicitation of continuous vari-
ables, we also derive a mechanism that can be applied for
continuous domains. The mechanism depends on a param-
eter, but, when agents’ common prior is smooth, the only
condition for incentive compatibility is that the parameter
is sufficiently large. We also investigated under what condi-
tions it is possible to obtain a non-parametric version of our
method, and showed that the sufficient conditions are satis-
fied for Gaussian priors.

The non-existence of an incentive compatible mecha-
nism for heterogenous populations and continuous signals
(Proposition 4) shows that not many improvements can be
made in the investigated setting. Therefore, the main di-
rection of our future research is to adapt the mechanism
for settings where additional information is known to the
mechanism, e.g. where the setting has a temporal structure
(Witkowski and Parkes 2012a) or the mechanism can extract
useful statistics from statistically independent reports (Das-
gupta and Ghosh 2013).

Acknowledgments
The work reported in this paper was supported by Nano-
Tera.ch as part of the OpenSense2 project. We thank the
anonymous reviewers for useful comments and feedback.

775



References
Aberer, K.; Sathe, S.; Chakraborty, D.; Martinoli, A.; Bar-
renetxea, G.; Faltings, B.; and Thiele, L. 2010. Opensense:
Open community driven sensing of environment. In
ACM SIGSPATIAL International Workshop on GeoStream-
ing (IWGS), 39–42.
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning. Springer.
Chen, Y., and Pennock, D. M. 2007. A utility framework for
bounded-loss market makers. In Proceedings of the Twenty-
Third Conference on Uncertainty in Artificial Intelligence
(UAI2007), 49–56.
Dasgupta, A., and Ghosh, A. 2013. Crowdsourced judge-
ment elicitation with endogenous proficiency. In Proceed-
ings of the 22nd ACM International World Wide Web Con-
ference (WWW13).
Gneiting, T., and Raftery, A. E. 2007. Strictly proper scoring
rules, prediction, and estimation. Journal of the American
Statistical Association 102:359–378.
Goel, S.; Reeves, D. M.; and Pennock, D. M. 2009. Col-
lective revelation: A mechanism for self-verified, weighted,
and truthful predictions. In Proceedings of the 10th ACM
conference on Electronic commerce (EC 2009).
Hanson, R. D. 2003. Combinatorial information market
design. Information Systems Frontiers 5(1):107–119.
Ihara, S. 1993. Information Theory for Continuous Systems.
World Scientific Publisher Co. Pte. Ltd.
Jurca, R., and Faltings, B. 2006. Minimum payments that
reward honest reputation feedback. In Proceedings of the 7th
ACM Conference on Electronic Commerce (EC’06), 190–
199.
Jurca, R., and Faltings, B. 2007. Robust incentive-
compatible feedback payments. In Agent-Mediated Elec-
tronic Commerce, volume LNAI 4452, 204–218. Springer-
Verlag.
Jurca, R., and Faltings, B. 2011. Incentives for answering
hypothetical questions. In Workshop on Social Computing
and User Generated Content (EC-11).
Lambert, N., and Shoham, Y. 2008. Truthful surveys. In
Proceedings of the 3rd International Workshop on Internet
and Network Economics (WINE 2008).
Lambert, N., and Shoham, Y. 2009. Eliciting truthful an-
swers to multiple-choice questions. In Proceedings of the
tenth ACM conference on Electronic Commerce, 109–118.
Miller, N.; Resnick, P.; and Zeckhauser, R. 2005. Eliciting
informative feedback: The peer-prediction method. Man-
agement Science 51:1359–1373.
Prelec, D., and Seung, S. 2006. An algorithm that finds truth
even if most people are wrong. Working paper.
Prelec, D. 2004. A bayesian truth serum for subjective data.
Science 34(5695):462–466.
Radanovic, G., and Faltings, B. 2013. A robust bayesian
truth serum for non-binary signals. In Proceedings of the
27th AAAI Conference on Artificial Intelligence (AAAI’13).

Savage, L. J. 1971. Elicitation of personal probabilities and
expectations. Journal of the American Statistical Associa-
tion 66(336):783–801.
Shaw, A.; Chen, D. L.; and Horton, J. 2011. Designing
incentives for inexpert human raters. In Proceedings of the
ACM 2011 Conference on Computer Supported Cooperative
Work (CSCW 11).
Waggoner, B., and Chen, Y. 2013. Information elicitation
sans verification. In Information Elicitation Sans Verifica-
tion. In Proceedings of the 3rd Workshop on Social Comput-
ing and User Generated Content (SC13).
Weaver, R., and Prelec, D. 2013. Creating truth-telling in-
centives with the bayesian truth serum. Journal of Marketing
Research 50:289–302.
Witkowski, J., and Parkes, D. C. 2012a. Peer prediction
without a common prior. In Proceedings of the 13th ACM
Conference on Electronic Commerce (EC’ 12), 964–981.
Witkowski, J., and Parkes, D. C. 2012b. A robust bayesian
truth serum for small populations. In Proceedings of the 26th
AAAI Conference on Artificial Intelligence (AAAI’12).
Witkowski, J. 2014. Robust Peer Prediction Mechanisms.
Ph.D. Dissertation, Albert-Ludwigs-Universitat Freiburg:
Institut fur Informatik.

776




