
Rounded Dynamic Programming for

Tree-Structured Stochastic Network Design

Xiaojian Wu and Daniel Sheldon and Shlomo Zilberstein

School of Computer Science
University of Massachusetts Amherst

{xiaojian,sheldon,shlomo}@cs.umass.edu

Abstract

We develop a fast approximation algorithm called rounded
dynamic programming (RDP) for stochastic network design
problems on directed trees. The underlying model describes
phenomena that spread away from the root of a tree, for ex-
ample, the spread of influence in a hierarchical organization
or fish in a river network. Actions can be taken to intervene
in the network—for some cost—to increase the probability
of propagation along an edge. Our algorithm selects a set of
actions to maximize the overall spread in the network un-
der a limited budget. We prove that the algorithm is a fully
polynomial-time approximation scheme (FPTAS), that is, it
finds (1�✏)-optimal solutions in time polynomial in the input
size and 1/✏. We apply the algorithm to the problem of allo-
cating funds efficiently to remove barriers in a river network
so fish can reach greater portions of their native range. Our
experiments show that the algorithm is able to produce near-
optimal solutions much faster than an existing technique.

Introduction

Many influence maximization problems can be formulated
as stochastic network design problems—represented as di-
rected graphs in which edges are present or absent stochas-
tically (Sheldon et al. 2010). When an edge is present, it
allows the flow of influence between two neighboring ver-
tices. Actions can be taken to increase the probability of
certain edges being present. Unlike the well-known source-
selection influence maximization problem of Kempe, Klein-
berg, and Tardos (2003), where actions determine where to
start the spread of influence, actions in this model intervene
directly to modify the dynamics of the model. For exam-
ple, to facilitate the rollout of new policies within a large
company, actions might provide incentives for managers to
push new policies to their subordinates upon being notified
by their own bosses. We assume that the actions are costly
and that there is a budget that limits the total cost of the ac-
tions that can be taken. The objective is to maximize a total
measure of reward associated with nodes that become influ-
enced. So, in our example, one might focus incentives on
less reliable managers or those with large units to reach as
many employees as possible.

Many ecological sustainability problems can be modeled
this way, for example, maximizing the spread of an endan-
gered species in some geographical region over time (Shel-

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

don et al. 2010; Golovin et al. 2011; Kumar, Wu, and Zilber-
stein 2012; Wu, Sheldon, and Zilberstein 2013).

The general stochastic network design problem is in-
tractable. It includes source-selection influence maximiza-
tion as a special case, and thus it is NP-hard to approximate
within 1� 1/e+ ✏ for any ✏ > 0 (Kempe, Kleinberg, and
Tardos 2003; 2005). One key difficulty is that, even when
the actions are fixed, it is #P-hard to compute the objective
function (Chen, Wang, and Wang 2010), a problem which
is essentially equivalent to the #P-complete s-t reliability
problem (Valiant 1979).

In this paper, we focus on the special case of stochas-
tic network design in tree-structured networks, which can
represent spreading phenomena in a hierarchical organiza-
tion or a river network. Our motivating application is a con-
servation planning problem involving the removal of barri-
ers in a river network that limit the accessibility of fish to
their native habitats (O’Hanley and Tomberlin 2005). In a
tree-structured network, a key aspect of the general prob-
lem becomes much easier: one can compute the probability
of spreading to any vertex, and thus the objective function,
in linear time. However, a simple reduction from the knap-
sack problem shows that the problem remains NP-hard. The
overall message is positive, though: we prove the existence
of an FPTAS for the tree-structured problem, which places
it among the easiest of NP-hard problems, and clearly beats
the 1�1/e+ ✏ inapproximability result for the general case.

A starting point for our work is that of O’Hanley and
Tomberlin (2005), who formulate the barrier-removal prob-
lem and present a pseudo-polynomial dynamic program-
ming algorithm to solve it. Their algorithm assumes that
all budgets and costs are integers and its running time is
quadratic in the budget size, which is a clear limitation. In
practice, to use the algorithm with large budgets one needs to
scale the budget and costs to much smaller values and round
them to integers; examples show that no optimality guaran-
tees can be made for such a cost-based rounding approach.

The main contribution of this work is to develop an al-
ternate dynamic programming approach that is amenable
to rounding and to prove that the resulting algorithm—
rounded dynamic programming (RDP)—is an FPTAS for
tree-structured stochastic network design. Specifically, in
the worst case, the algorithm computes a (1� ✏)-optimal
solution in time O(n2/✏2), where n is the number of ver-
tices. Experiments show that the algorithm actually com-
putes near-optimal policies much faster: most problem in-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

479

stances on a large river network were solved within 1 minute
and produced solutions that were within 10% of optimal.

In Section 2, we formulate the barrier-removal and
stochastic network design problems. We introduce the RDP
algorithm in Section 3, and prove that it is an FPTAS in Sec-
tion 4. Section 5 discusses implementation issues. Experi-
ments in Section 6 show the benefits of the algorithm.

Problem Formulation

Our work on tree-structured stochastic network design is
motivated by the fish barrier removal problem, an important
ecological sustainability problem proposed by O’Hanley
and Tomberlin (2005) to combat dramatic population de-
clines of wild fish over the past two centuries due to the pres-
ence of river barriers. Dams and other barriers such as cul-
vert, floodgates and weirs harm populations by preventing
fish from accessing or moving between parts of their histori-
cal habitat. The way to address this problem is to retrofit ex-
isting barriers or to replace them by new instream structures
that make it easier for fish to pass. O’Hanley and Tomberlin
formulated the optimization problem of selecting a subset
of barriers to repair or remove so as to maximize the avail-
able upstream habitat for anadromous fish—species such as
salmon that live part of the year in oceans but travel up rivers
and streams to spawn.

In the barrier removal problem, fish swim upstream in
a tree T = (V,E) from the root or source vertex s (the
ocean) to access upstream habitat. Edges represents stream
segments and vertices represent either barriers (u 2 B ✓ V)
or junctions of multiple streams (u 2 V \ B). Initially, fish
are able to pass barrier u 2 B with probability pu, the pass-
ability of vertex u. A finite set of possible repair actions Au

is associated with barrier u. Action a 2 Au has cost cu,a
and, if taken, increases the passability to pu|a. We assume
that Au includes a default zero-cost “noop” action a0 such
that pu|a0

:= pu. A policy ⇡ selects an action ⇡(u)—either
a repair or noop—for each barrier. We write pu|⇡ :=pu|⇡(u)
for the passability of vertex u under policy ⇡.

Given a fixed policy ⇡, the accessibility P+
u|⇡ of node u

is the probability that a fish swimming upstream from s can
pass all the barriers up to and including u. It is useful to de-
fine this notion slightly more generally. Whenever v is an an-
cestor of u, define the v-u accessibility P+

v!u|⇡ as the prod-
uct of the barrier probabilities on the unique path from v to
u, including the probabilities pv|⇡ and pu|⇡ of the barriers at
the path’s endpoints. We now have P+

u|⇡ := P+
s!u|⇡ .

Upon passing the barrier at u, fish are able to use the
amount of habitat ru between u and its nearest upstream
neighbors (i.e., children in T). We refer to ru as the reward
of vertex u. The objective to be maximized is the total
accessibility-weighted reward:

z(⇡) =
X

u2V

P+
u|⇡ · ru. (1)

We refer to z(⇡) either as the value or the expected re-
ward (for reasons detailed below). The goal is to find a pol-
icy that maximizes z(⇡) subject to a budget b on the total
cost of all actions, that is, an optimal policy ⇡⇤ satisfies

⇡⇤ 2 argmax{⇡|c(⇡)b}z(⇡), where c(⇡) is the total cost
of actions taken by ⇡.

Our algorithms will be based on a simple recurrence for
the value of a policy. Let Tu be the subtree rooted at u and
let zu(⇡) =

P
v2T

u

P+
u!v|⇡ru denote the expected reward

of policy ⇡ when applied to Tu. For the barrier removal
problem, this corresponds to the case where all fish start at
u and swim upstream. The value zu(⇡) can be calculated by

zu(⇡) = pu|⇡

⇣
ru +

X

v2Ch(u)

zv(⇡)
⌘
, (2)

where Ch(u) is the set of children of u.
Stochastic Network Design The reader can easily ver-

ify that the objective z(⇡) in Eq. (1) is equivalent to the
expected reward in the following random experiment. For
each barrier u 2 B, an independent coin is flipped to deter-
mine whether u will remain in the graph (with probability
pu|⇡) or fail and be removed (with probability 1 � pu|⇡). In
the resulting subgraph T 0, a reward of ru is collected for
each node u that is reachable from the source s. Thus, the
fish barrier removal problem is equivalent to a stochastic
network design problem where actions are taken to reduce
failure probabilities at nodes in a directed tree, and a reward
is collected for each node that remains reachable from the
root. By the “live-edge” characterization of the Independent
Cascade Model (Kempe, Kleinberg, and Tardos 2003), the
problem is also equivalent to maximizing the spread of an
Independent Cascade from the source s (see also Sheldon et
al., 2010) by taking actions to increase the probability the
cascade propagates at nodes in the tree.

Rounded Dynamic Programming

For the knapsack problem, a dynamic programming algo-
rithm can be used to compute the optimal packing strat-
egy (Vazirani 2003). In this section we describe how similar
ideas can be applied to the barrier removal problem.

A key aspect of our algorithm will be to determine how to
partition the total value zu(⇡) obtained from Tu among the
children of u. To simplify this aspect of the algorithm and
proofs, we assume without loss of generality the following.
Assumption 1. Each node u in T has at most two children.
Any problem instance can be converted to this form by re-
placing nodes u with more than two children by a sequence
of nodes with exactly two children to achieve the same over-
all branching factor, where the newly added vertices are set
to be fully passable and the original reward ru is split equally
among u and the newly added vertices. In this way, a policy
for the modified tree can be mapped to a unique policy for
the original tree with the same expected reward.

The basic idea of the DP algorithm is to write a recurrence
for the quantity Cu(z), which is the minimum cost needed
to produce expected reward of exactly z for the subtree Tu.
This can be written as:

Cu(z) = min

a2A
u

Cu,a(z),

where Cu,a(z) is the minimum cost needed to produce value
z from Tu given that action a is taken. To compute Cu,a(z),

480

one must reason about how to split the overall reward z
among u and its children. The only difficult case is when
u has two children v and w, when we write:

Cu,a(z) = min

0dz0
u,a

cu,a + Cv(d) + Cw(z
0
u,a � d) (3)

Here, z0u,a =

z
p
u|a

� ru encodes the total value that the chil-
dren are required to contribute in order to get value z at their
parent. When u has a single child v, the expression simpli-
fies to Cu,a(z) = cu,a + Cv(z

0
u,a), and when u is a leaf

we have the base case: Cu,a(z) = cu,a if pu|aru = z, and
Cu,a(z) = +1 otherwise, meaning that it is impossible to
obtain value z. The optimal expected reward given the bud-
get limit b is the maximum value that we can get at the sub-
tree Ts with the cost at most b, namely max{z : Cs(z)  b}.

Unfortunately, this recurrence does not lead to an effi-
cient algorithm because the z values are real numbers, and
the number of z values that must be evaluated increases ex-
ponentially as the recurrence approaches the source. In the
design of the FPTAS of the knapsack problem, this is ad-
dressed by scaling down the profits by some factor K and
then rounding the scaled profits into integral values. In this
way, the intermediate sum of profits only takes a small num-
ber of integral values and only the least costs correspond-
ing to these values must be evaluated. Hence, the DP algo-
rithm takes polynomial time to produce a near optimal solu-
tion. However, simply rounding the rewards of vertices does
not address the difficulty in the barrier removal problem, be-
cause the accessibility-weighted rewards can have any real
value even when the rewards are integral.

We propose a novel way to discretize the continuous
space of the expected reward of each subtree. To do this,
we introduce the concept of rounded expected rewards of
subtrees, which are calculated by the following recurrence:

ẑu(⇡) = Ku

6664
pu|⇡

⇣
ru +

P
v2Ch(u) ẑv(⇡)

⌘

Ku

7775 (4)

where Ku is a distinct scaling factor associated with sub-
tree Tu. Recurrence (4) is very similar to the recurrence (2),
except that the value is first divided by a scaling factor
Ku, rounded into an integer and then enlarged back by the
same factor Ku. This effort discretizes the expected reward
of each Tu into {0Ku, 1Ku, .., `uKu} where `u is an inte-
ger with value being

lP
v2T

u

r
v

K
u

m
so that `uKu is an upper

bound of ẑu. Our dynamic programming algorithm called
rounded dynamic programming (RDP) looks for an optimal
policy ⇡0 such that ⇡0

= max{⇡:c(⇡)b} ẑ(⇡). Specifically,
the algorithm finds the minimal cost needed to get each of
the discretized values ẑu using the following recurrence in
place of (3):

Cu,a(ẑ) = min

(ẑ
v

,ẑ
w

)2U
u,a

(z)
cu,a + Cv(ẑv) + Cw(ẑw) (5)

where the set Uu,a(ẑ) defined by
8
<

:(ẑv, ẑw)

������

ẑ = Ku

j
p
u|a(ru+ẑ

v

+ẑ
w

)

K
u

k
,

ẑv 2 {0, ...,Kv`v}, ẑw 2 {0, ...,Kw`w}

9
=

; (6)

contains, for action a, all pairs of integral values that sub-
trees Tv and Tw can take to get the rounded expected reward
ẑ at Tu by (4). Similarly, the optimal rounded expected re-
ward of the whole river network is max {ẑ : Cs(ẑ)  b} and
the policy that achieves that value is the one we search for.

Theoretical Analysis of the Algorithm

In this section, we present our main result.
Theorem 1. The Rounded Dynamic Programming (RDP)
algorithm is an FPTAS. Specifically, let OPT be the value of
the optimal policy. By assigning the scaling factors {Kv} in
a certain (described below), the RDP algorithm computes a
policy with value at least (1�✏)OPT and runs in time O(

n2

✏2)

in the worst case.
We prove Theorem 1 by first showing the approximation

guarantee and then analyzing the running time of RDP.

Approximation Guarantee

Let ⇡⇤ be the optimal policy and let ⇡0 be the policy returned
by RDP. We wish to bound the value loss z(⇡⇤

)� z(⇡0
).

The idea of the proof is to first bound the difference be-
tween the true objective value z(⇡) and the RDP objective
value ẑ(⇡) for an arbitrary policy ⇡, which can be done by
analyzing the error incurred by the rounding operations in
the recurrence of Eq. (4). By showing that the rounded ob-
jective function ẑ is uniformly close to z for all policies ⇡, it
is straightforward to show that optimizing with respect to ẑ
provides a nearly-optimal policy with respect to z.

To analyze the error introduced by rounding, fix a policy ⇡
and let �u(⇡) 2 [0, 1) be the fractional part of the quantity
that is rounded in Eq. (4), so that Ku�u(⇡) is the total loss
due to rounding when computing the recurrence for node u.
Then it is straightforward to show that the total error is equal
to the sum of the rounding errors at each node u weighted
by the accesibility of the parent of node u under policy ⇡.
Lemma 1. For any policy ⇡, the difference between the
original and rounded objective functions is

z(⇡)� ẑ(⇡) =
X

u2V

P+
pa(u)|⇡Ku�u(⇡) (7)

where pa(u) denotes the parent of u.
To make the above notation consistent for the case u = s,
assume the existence of a distinguished vertex s0 = pa(s) /2
V such that rs

o

= 0 and P+
s0|⇡ = 1 for all ⇡.

Now, to bound the optimality gap z(⇡⇤
) � z(⇡0

), note
that z(⇡0

) � ẑ(⇡0
) � ẑ(⇡⇤

), where the first inequality holds
because the rounded policy value always underestimates the
true policy value, and the second inequality holds because
⇡0 is optimal with respect to ẑ. Thus we have

z(⇡⇤
)� z(⇡0

)  z(⇡⇤
)� ẑ(⇡⇤

), (8)
so it suffices to bound the gap between the original and
rounded objective on the optimal policy ⇡⇤ using Lemma 1.
Lemma 2. The RDP policy ⇡0 has value at least (1�✏)OPT
if the following condition on the scaling factors {Ku} holds:X

u2V

P+
pa(u)|⇡⇤Ku  ✏z(⇡⇤

). (9)

481

Proof. The left side of Eq. (9) is an upper bound on z(⇡⇤
)�

z(⇡0
), which can be seen by substituting Eq. (7) into Eq. (8)

and then applying the bound �u(⇡
⇤
)  1.

Lemma 2 is useful as a generic condition on the scaling
factors {Ku} for obtaining a (1 � ✏)-optimal policy. There
are different ways of setting the values so Eq. (9) is satified,
and the particular choice will affect the running time of the
algorithm. Indeed, note that a larger value of Ku leads to a
coarser discretization of the value space at node u, and thus
the RDP algorithm will take less time to evaluate the recur-
rence for all discretized values. Thus, in practice we would
like to set the scaling factors as large as possible while still
satisfying Eq. (9). We first present a particular way of set-
ting the values that is rather coarse but lets us prove both the
approximation guarantee and the worst-case running-time
bound. In Section 5 we discuss practical improvements.
Lemma 3. Let the scaling factor Ku = K = ✏m/2 for all
nodes u, where m = minu2V ru is the minimum reward of
any node. Then the policy ⇡0 returned by RDP is a (1 � ✏)-
optimal policy.
Proof. Rewrite the left side of Eq. (9) as

X

u2V [s0\L

P+
u|⇡⇤

⇣ X

v2Ch(u)

Kv

⌘

where L are the leaves of T . By setting Ku = ✏m/2
and recalling that u has at most two children, we haveP

v2Ch(u) Kv  ✏m  ✏ru, so the sum is bounded by
X

u2V \L

P+
u|⇡⇤✏ru  ✏

X

v2V

P+
u|⇡⇤ru = ✏z(⇡⇤

)

From the proof it is clear that we can set the scaling factors
larger while still proving the bound.
Lemma 4. Let the scaling factor Ku = ✏rpa(u)/deg(pa(u))
where deg(v) is the number of children of v. Then the policy
⇡0 returned by RDP is a (1� ✏)-optimal policy.

In practice, the scaling factors of Lemma 4 will always
lead to faster running-times than those in Lemma 3. How-
ever, they do not improve the worst-case asymptotic bounds.

Runtime Analysis

In this subsection, we will prove that the running time of
the RDP algorithm is O(

n2

✏2) in the worst case if the scaling
factors Ku are assigned as in Lemma 3. First, it is reasonable
to assume that the rewards are constant with respect to n.
Assumption 2. There are universal constants m and M
such that m  ru  M for all u 2 V .

For example, in our application the rewards are the
lengths of accessible stream segments; these should not vary
with the size of the stream network being modeled.

First, let’s examine the time spent computing the recur-
rence for a single node u. The value of Cu,a(ẑ) is computed
for all a 2 Au and `u different value of ẑ. If u is a leaf or
has only one child (denote these nodes by V1), then it takes
constant time to compute Cu,a(ẑ). Otherwise u has two chil-
dren (denote these nodes by V2), and the RDP recurrence (5)

iterates over each pair in Uu,a(ẑ) to determine how to split
the value ẑ. Thus, if we assume |Au| is constant, the time
spent at a single level of the recurrence is

O(`u), u 2 V1, O(`u�u), u 2 V2,

where �u is any upper bound on |Uu,a(·)|. We will argue the
following two facts below.
Fact 1. For a node u with two children v and w, the number
of pairs |Uu,a(ẑ)| evaluated by the RDP recurrence is O(`0u)
where `0u = min{`v, `w}.
Fact 2. Under the assumptions made so far, the number of
discretized values `u at node u is equal to O(nu/✏), where
nu is the number of nodes in Tu.

Using these two facts we can rewrite the running times
above as O(nu/✏) for u 2 V1 and as O(nuku/✏

2
) for

u 2 V2 where ku = min{nv : v 2 Ch(u)} is size of
the smaller of u’s subtrees. Now, if we define T (n) as the
maximum running time of RDP for any tree of size n, the
following recurrence is satisfied for n > 1:

T (n)  max

0kbn/2c

⇣
O(n(k+1)/✏2)+T (k)+T (n�k�1)

⌘
,

with the base case of T (1) = O(1). The case k > 1 captures
a root node with two subtrees of size k and n � k � 1, and
the case k = 0 captures a root node with a single child, so
the subtree size is n � 1. It can be shown inductively that
T (n) is O(n2/✏2) (details are given in the appendix of the
full version of the paper), which proves the main result. 2

Proof of Facts 1 and 2. Fact 2 is a direct consequence of
the definitions we have made. Let UBv =

P
u2T

v

rv . Then

`u =

⇠
UBu

Ku

⇡


⇠
nuM

Ku

⇡
= O

⇣nu

✏

⌘
.

For Fact 1, we see by (6) that any pair (ẑv, ẑw) in Uu,a(ẑ)
satisfies

ẑ

Ku


pu|a(ru + ẑv + ẑw)

Ku
<

ẑ

Ku
+ 1

Without loss of generality, assume that `0u = `v  `w. For
each ẑv in {0, ..., `vKv}, ẑw satisfies

ẑ

pu|a
� ru � ẑv  ẑw <

ẑ +Ku

pu|a
� ru � ẑv

The number of different integral values in this range is at
most

j
K

u

p
u|aKw

k
+1 which is O(1) and thus the total number

of pairs is O(`v).

Implementation

We now discuss techniques to improve runtime in practice.
Setting the Scaling Factors Recall from Lemma 2

that the scaling factors must satisfy
P

u2V P+
pa(u)|⇡⇤Ku 

✏z(⇡⇤
) to give the approximation guarantee. To prove the

FPTAS, it suffices to set Ku = ✏m/2 for all u, but in
Lemma 4 we gave a different way of setting Ku on a per-
node basis that provides the same guarantees and is always
faster. However, in practice, we observe that setting the scal-
ing factors to a constant value ↵ that is larger than ✏m/2 still
finds near-optimal policies and runs much faster.

482

Figure 1: River networks in Massachusetts

We briefly explain this apparent contradiction. First, note
that we only wish to bound the sum

P
u2V P+

pa(u)|⇡⇤Ku, so
we can trade off the magnitude of the individual terms to
achieve the same overall bound. For the individual terms, we
want to keep Ku small whenever P+

pa(u)|⇡⇤ is large, which
makes sense intuitively: we want a finer resolution at node
u when it is more accessible under the optimal policy. Fi-
nally, by the reasoning of the previous section, the domi-
nant component of the running time can be approximated
as

P
u2V2

`u`
0
u ⇡

P
u2V2

(UBu/Ku)
2. Here we assume

`u ⇡ `0u. From this it is clear that nodes with very small
values of Ku have a disproportionately large effect on the
running time. That said, the value of Ku at those nodes may
have a minor effect on the approximation bound, especially
if P+

u|⇡⇤ is small. Overall, an obvious way to reduce the run-
ning time is simply to increase Ku at those nodes to be in
line with the values elsewhere, knowing there is some “play”
in the approximation bound. This naturally leads back to a
constant setting of Ku to some value higher than ✏m/2. By
doing this we are relaxing the approximation guarantee to
achieve better empirical performance.

Detecting Infeasible Policies The algorithm can be made
faster by exploiting the budget limit b. The idea is to ignore
pairs (ẑv, ẑw) in the RDP recurrence when the cost to obtain
either ẑv or ẑw in the subtree already exceeds b, because
these will lead to infeasible policies. This technique speeds
up the algorithm especially when the budget limit is small.
In our experiments, we observe that even for the subtrees at
intermediate depths, a large percentage of values are pruned.

Experiments

In our experiments, we use data from the CAPS project (Mc-
Garigal et al. 2011) for the Connecticut River watershed in
Massachusetts (shown in red in Fig. 1), which has 18550 ver-
tices including 596 dams and 7566 crossings that include
different types of small barriers. We assigned passage prob-
abilities to dams and road-stream crossings based on tech-
niques developed in the CAPS project. For dams, the struc-
tural height of the dam is a proxy for passability, which maps
through a logistic function to a probability value. A subset of
road-stream crossings were directly assessed by a field pro-
tocol; the remaining crossings were assigned passage scores
based on a fitted predictive model. Passage scores were then
transformed to probabilities, resulting in a typical range of
[0.7, 1.0] for road-crossings and [0, 0.15] for dams.

0 1000 2000 3000 4000 50000

1

2

3

4

5x 106

E
x
p
ec
te
d
R
ew

a
rd

Budget Size

RDP
DP+ (Optimum)
90% Optimum

(a) Optimality w.r.t. budget

1000 2000 3000 4000 50000

200

400

600

800

1000

R
u
n
ti
m
e
(s
ec
)

Budget Size

RDP
DP+

(b) Runtime w.r.t. budget

Figure 2: Solution quality and runtime for different budgets

20 40 60 800

1

2

3

4

5

β

R
a
ti
o

Runtime
Expected Reward
90%

(a) Time & value for method (1)

200 400 600 800 10000

0.2

0.4

0.6

0.8

1

α

R
a
ti
o

Runtime
Expected Reward
90%

(b) Time & value for method (2)

Figure 3: Impact of different methods to set Ku

Using this dataset, we compared our RDP algorithm
with the dynamic programming algorithm, called DP+,
of O’Hanley and Tomberlin (2005), which assumes that the
costs of actions and the budget b are integral values. DP+ is
optimal under this assumption. However, unlike RDP, DP+
is not scalable to large action costs. Therefore, to perform
the evaluation we used relatively small integral costs.

For road-crossings, most of the probabilities are close to
1 to start with, and relatively cheap actions can be taken
to clear out the crossing completely. For example, we use
Au = {a1} with (pu|a1

= 1.0, cu|a1
= 20). In contrast, it

is relatively difficult and expensive to remove dams com-
pletely, so multiple strategies must be considered to im-
prove the passability of dams. For example, we may have
Au = {a1, a2, a3} with (pu|a1

= 0.2, cu|a1
= 20), (pu|a2

=

0.5, cu|a2
=40) and (pu|a3

=1.0, cu|a3
=100).

Experimental Results

Approximation Quality Fig. 2(a) shows the expected re-
ward of the computed policy for different budgets, as well
as OPT (the value of the optimal policy) and 90%OPT. In
these experiments, we set all Ku to be a constant ↵ = 450.
We see that the actual expected reward of the computed pol-
icy is very close to the optimal value and guaranteed to be
greater than the 90%OPT .
Runtime Fig. 2(b) shows the computation time of our al-
gorithm (with the optimization of detecting infeasible poli-
cies) compared with DP+ over a range of budget sizes. We
see that RDP runs much faster than the optimal algorithm
DP+. Moreover, the runtime of DP+ increases quadratically
with the budget size while RDP’s runtime remains essen-
tially constant, even for very large budget sizes. For exam-
ple, when the budget size is 5000, DP+ takes about 20 min-
utes while RDP takes only 20 seconds.

Fig. 2(a) and 2(b) together show that by setting Ku =

450, RDP runs much faster than DP and produces a near-
optimal policy (within 90%).
Different Settings of Ku We compared the two different

483

Habitat Accessibility: 0 1.0

(a) budget = 0, z = 5.4⇥ 105 (b) budget = 1000, z = 2.2⇥ 106 (c) budget = 10000, z = 5.8⇥ 106

Figure 4: Visualization of several barrier removal policies

ways of setting Ku as discussed in Section 5: (1) setting
Ku = �K 0

u where K 0
u are the values specified in Lemma 4,

and (2) Ku = ↵. We used the constants ↵ and � to relax the
optimality guarantee and study the effect on runtime/quality
(Fig. 3). The runtime ratio is the ratio of RDP’s runtime to
DP+’s runtime. The value ratio is the ratio of the expected
reward of the computed policy obtained by RDP to the op-
timal expected reward obtained by DP+. We found that for
method (1) that before the expected reward becomes worse
than 90% of optimal, RDP takes more time than DP+. For
method (2), as ↵ increases up to 950, the quality of the pol-
icy remains above 90%, but the runtime ratio is less than 0.1.
This matches the intuitive explanation provided in Section 5.

0.5 1 1.5 2
x 104

0

2

4

6

Size of network

R
u
n
ti
m
e
(s
ec
)

No Predetect
With Predetect

Figure 5: RDP’s runtime achieving 90% optimality

Runtime Curve Theoretically, we proved that in the worse
case the complexity of RDP is O(

n2

✏2). However, in practice,
we can get a better computation time by using the techniques
described in Section 5. By applying the technique of detect-
ing infeasible policies, runtime was reduced by at least 20%
over a range of budget sizes. When the budget size is small,
many computations can be pruned and runtime is reduced
by up to 55%. Moreover, as just shown, the value of Ku

can be selected in a better way to further reduce the com-
putation time dramatically. Fig. 5 shows the minimum time
needed to produce a 90% optimal policy as a function of
network size. Subnetworks of different sizes were extracted
from the original network for these experiments. The min-

imum time is obtained by applying method (2) and choos-
ing the largest constant ↵ that produces the desired quality.
Surprisingly, both curves—with and without detecting the
infeasible policies—are nearly linear except for some small
fluctuation in the middle.

Visualizing the resulting policies To give some sense of
how the policies improve the ability of fish to access their
habitats, Fig. 4 illustrates the accessibility of each stream
segment by a distinct color from the color bar at the top.
Barriers that are repaired by some action are designated by
green circles, regardless of the specific repair action. The
budget in (c) is 10 times larger relative to (b), leading to a
substantial increase in the number of repaired crossings as
they are much cheaper to repair compared to dams, and re-
sulting in significantly better overall accessibility.

Conclusion

We developed a fast approximation algorithm that uses
rounded dynamic programming (RDP) for solving the fish
barrier removal problem. The algorithm can be used to com-
pute near optimal policies for tree-structured stochastic net-
work design problems. We analyzed the characteristics of
the algorithm and proved that it is an FPTAS. When applied
to the Connecticut River watershed in Massachusetts, RDP
can produce near-optimal results within a small fraction of
the runtime of the benchmark optimal algorithm DP+. More-
over, RDP can easily scale up to larger action costs and bud-
get sizes, while DP+ is not scalable. These results provide
an effective planning tool for restoring accessibility of na-
tive fish habitat in large river networks.

A promising line of future work is to better exploit the
interplay between running time and solution quality in RDP
(cf. Section 5). For example, one could potentially derive
better upper bounds UBu using properties of the problem
instance, or use an iterative approach that first computes an
optimal policy at a coarse discretization, and then makes the
discretization finer at nodes with high accessibility.

484

Acknowledgments

We thank Brad Compton and Scott Jackson for providing the
river network and barrier data and helping with the interpre-
tation of the data.

References

Chen, W.; Wang, C.; and Wang, Y. 2010. Scalable influence
maximization for prevalent viral marketing in large-scale so-
cial networks. In Proceedings of the 16th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 1029–1038.
Golovin, D.; Krause, A.; Gardner, B.; Converse, S. J.; and
Morey, S. 2011. Dynamic resource allocation in conserva-
tion planning. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence, 1331–1336.
Kempe, D.; Kleinberg, J.; and Tardos, É. 2003. Maximizing
the spread of influence through a social network. In Pro-
ceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 137–146.
Kempe, D.; Kleinberg, J.; and Tardos, É. 2005. Influential
nodes in a diffusion model for social networks. In Automata,
languages and programming. Springer. 1127–1138.
Kumar, A.; Wu, X.; and Zilberstein, S. 2012. Lagrangian
relaxation techniques for scalable spatial conservation plan-
ning. In Proceedings of the 26th AAAI Conference on Artifi-
cial Intelligence, 309–315.
McGarigal, K.; Compton, B. W.; Jackson, S. D.; Plunkett,
E.; Rolih, K.; Portante, T.; and Ene, E. 2011. Conservation
assessment and prioritization system (CAPS). Technical re-
port, Department of Environmental Conservation, Univ. of
Massachusetts Amherst.
O’Hanley, J. R., and Tomberlin, D. 2005. Optimizing the
removal of small fish passage barriers. Environmental Mod-
eling and Assessment 10(2):85–98.
Sheldon, D.; Dilkina, B.; Elmachtoub, A.; Finseth, R.; Sab-
harwal, A.; Conrad, J.; Gomes, C.; Shmoys, D.; Allen, W.;
Amundsen, O.; and Vaughan, W. 2010. Maximizing the
spread of cascades using network design. In Proceedings
of the 26th Conference on Uncertainty in Artificial Intelli-
gence, 517–526.
Valiant, L. G. 1979. The complexity of enumeration and
reliability problems. SIAM Journal on Computing 8(2):410–
421.
Vazirani, V. 2003. Approximation Algorithms. Springer.
Wu, X.; Sheldon, D.; and Zilberstein, S. 2013. Stochastic
network design for river networks. In NIPS Workshop on
Machine Learning for Sustainability.

485

