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Abstract

Our research aims at building interactive robots and agents
that can expand their knowledge by interacting with human
users. In this paper, we focus on learning goal-oriented tasks
from situated interactive instructions. Learning the structure
of novel tasks and how to execute them is a challenging com-
putational problem requiring the agent to acquire a variety of
knowledge including goal definitions and hierarchical con-
trol information. We frame acquisition of novel tasks as an
explanation-based learning (EBL) problem and propose an
interactive learning variant of EBL for a robotic agent. We
show that our approach can exploit information in situated in-
structions along with the domain knowledge to demonstrate
fast generalization on several tasks. The knowledge acquired
transfers across structurally similar tasks. Finally, we show
that our approach seamlessly combines agent-driven explo-
ration with instructions for mixed-initiative learning.

Introduction

With the recent advances in Al and robotics research, we
can expect general-purpose intelligent agents to become per-
vasive in many aspects on human life. The complete space
of tasks that the agents are expected to perform cannot
be predicted ahead of time. This limits what can be pre-
programmed in the agents. Therefore, a key design require-
ment is taskability - the agents should be able to learn diverse
tasks from their experiences in their environments.

Several tasks such as those in domestic environments
(Cakmak and Takayama 2013) can be characterized as
achieving a goal state through execution of a sequence of ac-
tions. For example, for a task such as set the table the agent
must instantiate a goal of achieving a set of spatial predicates
(including fork is on the right of the plate) and execute a se-
ries of object manipulation actions to achieve it. Several of
these tasks (such as serve dinner) can be hierarchically de-
composed into child tasks (make dinner, set the table, etc).
To learn these tasks, the agent must not only learn the goal
definition and how to recognize goal achievement from sen-
sory data, but also learn an execution policy defined over
child tasks and actions that achieves the goal in the environ-
ment. Learning such tasks through self-directed experience
alone can be slow, requiring repeated interactions with the
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environment. This has motivated research on incorporating
human supervision and feedback in agent’s learning.

Learning from demonstration (LfD) approaches (Argall
et al. 2009) have recently gained prominence in the robotics
community as a way of allowing naive human users to teach
new tasks and actions to a robot. LfD approaches typically
rely on traces obtained through teleoperation or kinesthetic
training. Using regression-based methods, these traces can
be used to directly approximate policy. Although LfD is
useful in learning primitive action-control policies (such as
for object manipulation), it is unsuitable for learning com-
plex tasks such as those characterized earlier. LfD does not
capture abstractions such as subtasks and the corresponding
transition models that are required for reasoning about and
learning goal-oriented tasks (Grollman and Jenkins 2010).
It usually requires many examples in order to induce the
intended hierarchical control structure (Allen et al. 2007).
Moreover, the representations are task-specific and are not
amenable to transfer to structurally similar tasks (Chao, Cak-
mak, and Thomaz 2011).

In this paper, we explore an alternative and complimen-
tary approach for interactively learning new tasks based
on explanation-based learning (EBL: DeJong and Mooney
1986). In our approach - situated interactive instruction - the
human expert and the robotic agent are simultaneously em-
bedded in a real-word domain. The human can observe the
robot’s workspace and how it manipulates its environment.
Through mixed-initiative linguistic interactions, the instruc-
tor guides the agent to execute a novel task. This guided ex-
ecution serves as a basis for acquiring task knowledge using
EBL. EBL methods offer several advantages over traditional
LfD. EBL methods work over relational representations that
not only allow the agent to reason about the structure of the
goal and how to achieve it but are also useful in linguis-
tic communication. These methods are knowledge-intensive
and exploit the agent’s domain knowledge to deduce gener-
ally applicable knowledge from a relatively small number of
examples. These properties make EBL an attractive alterna-
tive to study for interactive task learning.

The contributions of this paper are as follows. We pro-
pose a novel interactive learning paradigm for online learn-
ing of goal-oriented hierarchical tasks from linguistic task
instructions. We demonstrate that the task representations
and the proposed paradigm is comprehensive and can be



used to learn multiple tasks. The causal analysis in EBL
can be combined with information about the structure of in-
teractions for fast generalization to the entire space of task
variation from only a few, highly specific examples. We fur-
ther demonstrate that knowledge learned for a task is trans-
ferable and is useful in learning a different but structurally
similar task. Finally, we show that the proposed learning
paradigm is mixed-initiative and elegantly integrates agent-
driven exploration with instructional guidance distributing
the onus of learning between the agent and the instructor.

Background

Our approach is implemented in Rosie (Mohan et al. 2012)
a generally instructable agent developed using the Soar cog-
nitive architecture (Laird 2012). It has the mechanisms nec-
essary for perceiving and acting in the real world along with
appropriate long-term memories and learning algorithms
such as chunking that are useful for implementing our task
learning paradigm.

Rosie is embodied as a robotic arm (in Figure 1, left) that
manipulates small foam blocks on a table-top workspace
that simulates a kitchen. The workspace contains four loca-
tions: pantry, garbage, table, and stove that have associated
simulated functions. For example, when a stove is turned on,
it changes the simulated state of an object on it to cooked.
To act in the world, the agent sends primitive commands
to the controller that are translated to closed-loop policies.
The commands include actions for object manipulation:
point-to(o), pick-up(o), and put-down(z,y); and simu-
lated location operation: open(l), close(l), turn-on(stove),
and turn-off(stove). Human instructors can interact with
the agent through a chat interface. Rosie can learn basic
concepts such as perceptual attributes of objects (color: red,
size: large) and spatial relationships (on the shelf, to the
right of ) through instruction. This paper studies how the ba-
sic concepts can be composed to learn novel goal-oriented
tasks.

The instruction cycle implemented in Rosie begins with
an utterance from the instructor. The utterance is grounded
to internal representations used by Rosie for action and rea-
soning (Mohan, Mininger, and Laird 2013). From the utter-
ance content and the current interaction state, Rosie deter-
mines its next objective. It can be to learn a new concept
(in response to this is red, take an action in the environment
(open the pantry), or respond to the instructor’s questions
(what is to the left of the blue object?). If Rosie lacks knowl-
edge either to ground the utterance or to pursue its objective,
it asks questions such as I do not know red. Can you show
some examples? The instructor can then present examples
from the environment to teach the unknown concept.

Hierarchical Task Representation

Rosie’s beliefs about its state s € S are encoded as a set
of relational predicates P defined over the set of objects
O. They include unary predicates that describe the state
of an object, such as open(pantry), and binary predicates
that describe spatial relationships between two objects, such
as on(ol, 02)). The predicates are represented symbolically
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for reasoning and task learning, however, they eventually
ground out to functional and continuous perceptual state of
the environment. We assume a pre-encoded set of primitive
behaviors or actions A and corresponding models that pre-
dict the effects of their execution. To learn a task ¢ € T the
following concepts are acquired. We use the store(o) task
as an example to explain them. The store(o) task requires
the agent to place o in the open pantry and close it.
 parameters, a set of objects (O' C O) that are involved
in the application of the task ¢. Parameters can be explicit
or implicit. Explicit parameters are provided as arguments
in the task command. In store the red cylinder, the ob-
ject described by the red cylinder is an explicit parameter.
Implicit parameters are inherent to the task. The location
pantry is an implicit parameter of the task store and is not
specified in the task command. The agent must learn to
associate the task with its implicit parameters.
availability conditions, a set of state predicates (Pjx -
P) that have to be true conjunctively for the task ¢ to be
available for application.

child tasks, C* C AU T, a set of child tasks and actions
for the task ¢. A child task of store(o) is move which
establishes a spatial relationship ¢n between o and the
pantry.

policy, 7'(s) : S — C* that selects child tasks and ac-
tions based on the state of the environment.

termination conditions, a set of state predicates (PQ’Z C
P) that if true signify that the task goal has been achieved
and the policy should be terminated.

model, M*(s) : S — S that predicts the future state s’
after the task ¢ is executed in the current state s. It is rep-
resented as a set of rules that encode how predicates in s
transition to predicates in s’ under task .

Although our representation bears similarities with HTNs
(Erol, Hendler, and Nau 1992) and MAXQ (Dietterich 2000)
hierarchies, there are important differences. Control knowl-
edge in HTNs is encoded as conditional actions whereas in
our representation it is encoded as a state-sensitive policy.
Encoding it as a policy allows the agent to robustly operate
in dynamic environments where the state may change inde-
pendent of agent’s actions without extra planning. In con-
trast to our representation, typical MAXQ hierarchies oper-
ate in propositional domains.

Task Learning with Interactive EBL

To learn a novel task using EBL the agent must have access
to instances of the task concepts identified in the previous
sections and a domain theory to explain how the instances
are valid examples of the task concepts. The instances are
acquired interactively by prompting the instructor and situ-
ating the interactions in the perceptible state. The action and
task models (pre-encoded and learned) serve as the domain
theory. Our design tightly couples execution of the task with
exploratory and instruction-driven learning. If the agent ex-
periences any failures during task execution, it asks ques-
tions to resolve them or performs an exploration using its
domain-knowledge. Below we describe how known tasks
are executed first and then how novel tasks are acquired.



Instructor: Store the red cylinder
Agent: What is the goal of the task?
Instructor: The red cylinder is in the pantry and the

- ~
Semantic Memory
goal

?

riiii“riiii“fi 77“15)( store
! [ [

| move H close H open |
I i

\ )‘\ J‘\ !

pantry

3>

Ll
pantry is closed.
Agent: What action should I take next?
Instructor: Open the pantry.
Agent: What action should I take next?
Instructor: Move the red cylinder to the pantry.
Agent: What action should I take next?
Instructor: Close the pantry.

. Agent: What action should I take next?

. Instructor: You are done.

. retrospective explanation.

closed

) SN

B ettt e

- = S VENOUIA I WN =

[N

Figure 1: (left) the robotic arm (center) semantic representation of store (right) interactions for instance acquisition

Executing a known task On receiving a task command
store the red cylinder, the agent generates a correspond-
ing task instantiation by grounding it in its knowledge and
perceptible state. Let this task instantiation be ¢(o1) where
01 is an object that satisfies the linguistic description the
red cylinder. The agent, then, begins to execute t(o1) (as
described in Algorithm 1). The agent’s relational semantic
memory stores the general goal and policy description for a
task along with the constraints on how they are instantiated.
The agent can access these by querying its memory using
the retrieve(type?,t) function which returns the general
definitions of the goal, policy, or subtasks of task ¢.

The graph (Figure 1) beginning at node ¢ represents the
task store and associates it with a goal definition (node g*),
its child tasks (node c?), and the policy description (node 7?).
The subgraph at node I* encodes linguistic information for
the verb store. Node [o] represents a slot that can be filled by
any object that satisfies the description in the direct-object of
the verb store. The instantiation of the goal predicate in is
constrained to the object in slot [o] (explicit parameter) and
pantry (implicit parameter). The subgraph at node 7! en-
codes that the policy is parameterized by [o]. The graph also
encodes the association between the ¢ and its child tasks.

On retrieving the goal and policy descriptions, the agent
instantiates them with the task parameters to generate a de-
sired state and a policy. The policy is represented as rules in
the agent’s rule-based procedural memory. The availability
conditions of the child actions/tasks determine if they can be
executed in a state (avail(s, ¢)). Given the state and the set
of actions/tasks that can be executed in that state, the policy
suggests a child action/task based on the current state, which
is then applied (Algorithm 1: line 11). The task execution is

Algorithm 1 Executing a task.

1: procedure execute(state s, task t)
2: g« retrieve(type goal, task t)
3:  if exists(g) then

4 d « instantiate(g, {01, 02, ...
5:  else goal-query (t)
6
7
8

)

C* « retrieve(type children,task t)
C + instantiate(c’, {01, 02, ...})
. 7t + retrieve(type policy, task t)
9:

7 < instantiate(n’, {01, 02,...})
10:  while ((d C s) # true) do
11: if (m(s) — ¢ € C) & avail(s, c) then execute(s, ¢)
12: else
13: if search(s,d, C,7) = false then child-query(t)
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terminated when the desired state is reached (Algorithm 1:
line 10).

Learning a new task On being asked to execute a novel
task, the agent first extracts the lexical structure used in de-
scribing the task. From the command store the red cylinder,
it extracts the general syntactical knowledge verb:store
direct-object:[o]. This is stored in the semantic mem-
ory (subgraph at [! in Figure 1). This declarative represen-
tation is incrementally augmented as the agent learns about
the concepts relevant to the store task. The learning process
is described below.

Termination conditions: If the agent is unsuccessful in
retrieving a goal definition while executing a task, it asks
a goal question (Figure 1:line 2, Algorithm 1: line 5). The
instructor replies with a description of the goal state (Fig-
ure 1: line 3). The declarative definition of the goal is stored
in the agent’s semantic memory with the appropriate con-
straints to the lexical structure of task description. To op-
erationalize the declarative definition, the agent performs a
hypothetical explanation. The agent imagines the state sp
that will result on executing the task in the current state by
appending the grounded goal predicates to the current state
description. The agent then uses a set of domain-general
rules to verify that every predicate in the goal g(o1, 02, ...)
is true in s, and that s; is a valid instance of the task’s
desired state. Chunking complies this verification into a
termination rule that is of the form - if g(o01,09,...) C
s then achieved-goal(s). The termination rule for the
store task (£(0)) is - if (in(o, pantry) A closed(pantry)A
executing(t(0))) C s then achieved-goal(s). Note that
this rule is general and can match several states even though
it is learned from a specific hypothesized state. This is be-
cause the rule only tests for a subset of predicates that are
required to describe the complete environment state.

Policy: The task policy is learned during two different
stages. A part of the policy is learned during execution of
a task through immediate explanation. If the policy does
not suggest any child task/action at state s (Algorithm 1:
line 12), the agent performs a recursive iterative-deepening
search for the desired state to depth /K (Algorithm 2). For
exploratory search in state s, the agent iterates through all
available actions by applying their models and analyzing the
resulting states (Algorithm 2: line 8). During this search, if
an action is found to be useful in making progress towards
the desired state, chunking compiles a policy rule. It collects
all the predicates that were tested to apply the models and the



Algorithm 2 Exploring the action space

Algorithm 3 Explaining instructions retrospectively

1: procedure search(state s, desired d, actions C, policy )
2 for(k=0,k < K, k++)do

3 a < explore(s,d, k)

4 if a # false then return true

5:  return false

6: procedure explore(state s, desired d, depth n = k)

7 if n = O then return false

8:  foreach (ala € C A avail(s,a)) do

9 s« M%(s)

10 while (7(s’) = ¢ € C) & avail(s’,c) do s’ + M°(s’)
11 if (d C s’) then

12: F + collect-predicates

13 add(7(s|F C s) — a) return true

14 else

15 if (explore(s’,d,n — 1) # false) then goto 10

16:  return false

termination rule (Algorithm 2: line 8). The left-hand side of
the policy rule contains these predicates and the right-hand
side contains the action. This rule is added to the task policy.

If the desired state is not found at depth K or earlier, the
agent abandons exploration and asks the instructor for an
action that it should take. The instructor replies with a child
task/action command (Figure 1: line 5) which is grounded
and executed in the environment. Such exploration and in-
teractions continue until the agent achieves the goal state
in the environment. The agent’s episodic memory automati-
cally stores the state (environmental and interaction) of the
agent for each step. This history is available for later inspec-
tion and learning the remainder of the policy.

After the instructor indicates or the agent deduces that
the instructed task execution is over and the goal state is
achieved, the agent attempts to learn the remainder of the
policy. It is learned through simulating task execution and
retrospectively explaining the instructions (in Algorithm 3).
To simulate the task execution, the agent queries its episodic
memory for the environmental state s when it asked for in-
struction. It begins by instantiating the task goal definitions
in state s to generate the desired state d. Next, it retrieves
and instantiates all the child task representations that were
used in the instructed execution and exploration of the task.
The agent then recursively analyzes why the next instructed
action a (obtained by looking up episodic memory) is use-
ful in approaching the desired goal state. In each recursion,
the agent applies the model of the instructed action M on
the state s to generate the subsequent state s’ (Algorithm 3:
line 8). If the agent has learned policy for s’ through its ex-
ploration, it is applied (Algorithm 3: line 9). If the goal is
achieved in any subsequent state s’ desired, a policy rule is
learned (Algorithm 3: line 11,12). If not, it recurses further
(Algorithm 3: lines 14, 15) by looking up episodic mem-
ory for the next instructed action. A policy rule of the task
store (t(ol)) compiled through chunking is of the form -
if (in(o, pantry) A open(pantry) A executing(t(o))) C
s then select(close(pantry)). Similar to the termination
rule, the policy rules are general in that they apply to a set of
states because they test only a subset of predicates necessary
to describe an environmental state.

Availability Conditions: The availability conditions for
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1: procedure explain-instructions(time n, task ¢)

2: s+ query(n)

3: d « instantiate(retrieve(goal,t), {01, 02, ...})

4:  C < instantiate(retrieve(children,t), {o1, 02, ...})
5. m <+ instantiate(retrieve(policy,t),{01,02,...})
6: a <+ first-action
7 procedure exploit(s, a)
8

: s« M%(s)
9: while (7(s') — c € C) & avail(s’,c) do s’ + M(s')
10: if (d C s’) then
11: F < collect-predicates
12: add(r(s|F' C s) — a) return
13: else
14: if a’ < next-action then
15: if (exploit(s’,a’) # false) then goto: 8
16: return false

a task t; (e.g. place) are learned while learning a pol-
icy of a parent task t; (e.g. store). When the explana-
tion/exploration of ¢; is successful, an availability rule
for ¢; is compiled through chunking along with a policy
rule for ¢;. The rules take the form - if (Ft C s A
executing(t;) then available(s, t;). For example the place
task (¢1 (o, in, pantry)) is available during the execution of
the task store (t(0)): if (—in(o, pantry) A open(pantry) A
executing(t(o))) C s then avail(s, place(o, in, pantry)).

Model: The model for a task ¢ is a critical component of
the domain theory for learning a parent task. In our formula-
tion, an explicit representation of the model is not essential.
The effects of task ¢ in a state s can be predicted by simu-
lating the execution of ¢ in s by applying its policy. This is
sufficient for learning a novel parent task.

Evaluation

We are interested in four desiderata of intelligent, interac-
tive, taskable agents: comprehensiveness - the agent is ca-
pable of learning a diverse variety of tasks; generality - the
agent should exploit its reasoning capabilities to generalize
quickly to the complete space of task variation; transfer: the
knowledge acquired in one task can be reused in a different
but structurally similar task; and mixed-initiative: the onus
of learning should be distributed between the learner and
the instructor. Below we qualitatively and empirically an-
alyze the proposed learning paradigm along these desider-
ata. The experiments were conducted on a simulated envi-
ronment that is faithful to the continuous sensor data and
control policies the robot works with. We used the simula-
tor to generate the reported results because the evaluation
space is large and generating results with the real robot is
extremely time consuming. A representative sample of the
scenarios described in the paper were successfully run on the
real robotic arm, achieving results that are consistent with
those reported in the paper.

Comprehensiveness The agent can learn achievement
tasks, where the agent acts to achieve a composition of goal
predicates in the environment. A summary of the seven tasks
taught to the agent is in Table 1. The goals are composed of
state and spatial predicates that eventually ground out to the



[ Primitive policy space|Goal description ]
pick-up, put-down rel(obj,loc)
pick-up, put-down on(obj,loc)
pick-up, put-down in(obj,garbage)

[Explicit parameters
place (obj,rel,loc)
move (obj, loc)
discard (obj)

store (obj) open, pick-up, put-|in(obj,pantry)
down, close closed(pantry)

cook (obj) activate, pick-up, put-|in(obj, stove)
down, stop, wait-until | cooked(ob3j)

stack (obj1,
obj3)
serve (obj)

obj2,|pick-up, put-down on(objl,0bj2)
on(obj2,0bj3)
in(obj,stove)

cooked(obj)

activate, pick-up, put-
down, stop, wait-until

Table 1: Learned tasks, parameters, policy space, and goals

functional and continuous state of the environment. The pol-
icy space for all tasks eventually grounds out to a set of prim-
itive actions (including closed loop motor-control for object
manipulation) that can be executed in the environment and
an internal wait-until action that polls the environment for
a state change (such as cooked(0)). The policy learned for
task execution is flat if the instructions consist only of primi-
tive actions or hierarchical if the instructions decompose the
task into child tasks. For example, serve(o) can be decom-
posed into cook(o) and place(o, on, table). cook(o) can be
further decomposed into its constituent tasks and actions. If
the agent does not know the child task, it attempts to learn
it before learning the parent task. The agent can learn tasks
with explicit and implicit parameters. The learned place task
is represented such that it can be used to achieve any known
arbitrary spatial relationship between two objects and takes
three arguments. These arguments explicitly identify all the
information required to perform this task. A similar task
move is defined for a specific spatial relationship ON between
two object arguments. The relationship ON is an implicit pa-
rameter and is inherent to the move task. Similarly, other
tasks such store, discard, cook have implicit location and re-
lationship parameters. The hierarchical task representation
and the proposed learning paradigm allow for the acquisi-
tion of achievement tasks that vary in their goal description,
policy structure, and parameters.

Generality There are three reasons for generalization in
our approach. The first reason is that the positional informa-
tion in the training instances is abstracted away in the rela-
tional representations used for reasoning and learning. Prior
work (Mohan et al. 2012) provides an empirical analysis of
this. The second reason - predicate selection - is typical of
EBL methods. The causal inference identifies the minimal
and sufficient set of predicates from the complete state de-
scription that are required to apply the domain theory during
learning. Consequently, the rules representing the availabil-
ity and termination conditions and the policy apply in multi-
ple states even though they have been learned from specific
examples. The final reason is variablization of objects and
relations in task representations. We use the structure of in-
teractions to inform which objects can be variablized away.
The objects and relations that are used in the task command
are variablized and the objects and relations that do not oc-
cur in the task command but are used to describe the goal
and to guide execution are stored with the task representa-
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Figure 2: Generalization in learning flat execution for cook.

tion as constants. A more aggressive strategy suggests that
all objects can be variablized. This strategy is over-general
and tasks that have implicit parameters cannot be learned
correctly and therefore, it was not considered.

Our experiment scenario consisted of four objects, four
known spatial relations, and four locations. We conducted
separate trials for learning flat execution for five tasks place,
move, discard, store and cook. A task trial consists of a series
of episodes in each of which the agent is asked to execute the
task with randomly generated parameters. Each episode be-
gins in an initial state obtained by assigning random states to
locations open/close(pantry), the arm (hold/ — holds(0)),
and arbitrarily placed objects on the workspace. The envi-
ronment can be in 16 initial states and the objects can be in
infinitely many locations. If the agent asked a child query
during a training episode, it is given the relevant primitive
action. An episode terminates when the agent successfully
executes the task in the environment. The exploration depth
was set to 0 of this experiment.

A sample of the results generated from the experiment
is shown in Figure 2. The graph shows the median number
of interactions that occurred in every episode for executing
cook over five trials for two variations of the learning al-
gorithm. The first variation (red) only generalized through
predicate selection. The second variation (blue) also vari-
ablized objects based on the structure of interactions. As ex-
pected, the majority of interactions occur during first few
episodes during which the agent is trying to learn the task
from interactions. The interactions drop as the trial pro-
gresses and the agent learns the task can execute it without
any instructions. The number of interactions for the second
variation (blue) drop sharply after only a few episodes. This
establishes that even though it has been trained on only a
very small sample of the possible initial states (16) and task-
command instantiations (4 for cook), it is able to learn repre-
sentations that generalize to the complete space of command
instantiations and initial states. The first variation (red) can-
not generalize to the complete space of command instantia-
tions as quickly but does generalize to the complete space of
initial states (the curve at episodes 11-14 is an artifact of ran-
domization). Both variations are insensitive to the specific
positional information of the objects in the training instances
as both use relational representations and both learn the cor-
rect policy. The performance on other tasks was similar to
what is shown in Figure 2. Even for place, which can have
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128 different instantiations, the second variation tapered to
1 interaction per episode after 6 episodes. The data demon-
strates that both predicate selection and variablization con-
tribute towards general learning.

Transfer Tasks in a domain may have similar structure,
common sub-goals, and overlapping policy. An ideal learner
should be able to exploit the inter-task similarities while
learning a new task. For an interactive learner, the struc-
ture of interactions can play an important role in transfer
of knowledge between tasks. Consider the tasks sfore and
cook in our domain. Both of these tasks involve establishing
a specific spatial relationship (in) between their parameters
which is established by a policy over pick-up and put-down.
This policy can be compiled in a place child task through
instructions and can be used to teach both store and cook,
resulting in savings in interactions. This compilation is also
useful in intra-task transfer in tasks such as stack that in-
volves multiple pick-up and put-down compositions.

Figure 3 shows how prior learning influences learning a
new task. The agent was taught seven tasks sequentially with
three variations of the learning algorithm. The tasks were
taught hierarchically by decomposing them into child tasks
through instructions. In hierarchical learning, if the child
tasks are known to the agent, they are executed. If not, the
agent learns the child task before learning the parent task. In
the first variation (red), the agent’s knowledge was reset after
teaching each task (no inter-task transfer) and the learning
of child tasks was turned off (no intra-task transfer). For the
second variation (blue), learning of child tasks was turned on
(intra-task transfer). Finally, for the third variation (green)
the knowledge acquired for each task was maintained allow-
ing for inter- and intra- task transfer.

The place task is a policy defined over pick-up and put-
down and has no child tasks. The move, discard, store tasks
require a single pick-up & put-down composition along with
other actions. If the place task is known before the agent be-
gins to learn these tasks, there are some savings in the num-
ber of interactions. There is no possibility of intra-task trans-
fer. The task stack requires multiple executions of pick-up &
put-down composition. Therefore, intra-task transfer is use-
ful and saves some interactions. If place task is known prior
to learning stack, further savings are achieved as the knowl-
edge transfers from place to stack. Similar savings are ob-
served in learning the cook and serve tasks when their child
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Figure 4: Learning store at different depths of exploration.

tasks are already known. The ability to transfer knowledge
across tasks results in efficient learning as it significantly re-
duces the number of interactions required to learn a task.

Mixed-initiative learning Often in human controlled in-
teractive learning such as learning by demonstration, the
complete onus of learning is on the human user. The hu-
man has to provide good demonstration traces that will re-
sult in learning at appropriate levels on generality. However,
an ideal interactive learner must be active and play a useful
role in knowledge acquisition. It should not completely rely
on the human instructor, but instead use its knowledge of
the domain to explore available options. Such active learn-
ing biases acquisition towards knowledge that is required
by the agent for task performance and reduces the load on
the instructor. In our approach, the agent uses its action/task
models to explore the space of available actions to depth K
to find a path to the desired state. Chunking complies delib-
erate exploration into a policy. If the agent is unable to dis-
cover a path to the desired state, it abandons exploration and
asks for guidance. During retrospection, the learning from
agent-driven exploration and instruction-driven execution is
integrated into a comprehensive policy.

Figure 4 shows the performance of the learning algorithm
at different exploration depths for learning the store task in
terms of the time spent in explorations (red bars as mea-
sured in Soar’s decision cycles), the time spent in retroac-
tive explanation (blue bars - decision cycles) and the num-
ber of interactions with the instructor (green bars). At depth
0 the agent does not perform any exploration and relies
completely on instructions. The entire time used for learn-
ing (blue bars) is spent on retrospectively explaining the in-
structions. As the exploration depth parameter increases, the
agent is more self-reliant, requiring fewer interactions, but
spending more time exploring. At depth 4, it discovers the
solution and does not ask any child-queries. Thus, the agent
can solve simple problems on its own, only asking for help
for difficult problems. In future, the approach will be ex-
tended so that the agent can explicitly reason about the ex-
pected cost of exploration and the cost of asking for help to
influence its decision about beginning an interaction.

Related Work

Although there has been substantial research on endow-
ing robotic agents with sophisticated multi-modal interac-



tion capabilities, few efforts have addressed the problem
of designing taskable agents that can learn complex tasks
via human-agent interaction. Most of the approaches frame
task learning as learning compositions of known primi-
tive actions. A few prior approaches have studied learning
tasks from demonstration. Bentivegna, Atkeson, and Gor-
don (2004) proposed a framework that learns subgoals from
segmented observed data. The system can use its experience
to optimize its policy of selecting subgoals. Grollman and
Jenkins (2010) formulate the problem of task acquisition as
inferring a finite-state machine from segmented observations
of a demonstrator performing the task. While the former is
a batch learning system, the latter focuses on learning in-
teractively during performance. In contrast to these efforts
that rely on observational data alone, our research focuses
on interactive linguistic input that naturally segments task
execution. Our approach allows the agent to ask questions
that are specific to its own knowledge state, resulting in fast
learning and generalization.

Prior work on task learning from spoken dialog (Rybski et
al. 2007; Cantrell et al. 2012; Merigli et al. 2014) addresses
learning procedures. Through linguistic constructions (ob-
tained from imposing additional syntactic constraints), these
agents can be programmed to execute procedures defined
over their primitive, pre-encoded actions. An example in-
struction is - when I say deliver message, If Personl is
present, Give message to Personl.... (Rybski et al. 2007).
Using domain-general mechanisms, this instruction is trans-
lated into procedures that are added to the agents reper-
toire. A key departure of our work from these approaches
is the task representation. Whereas the prior work repre-
sents tasks as procedures, we employ a hierarchical action-
oriented representation that includes state-sensitive execu-
tion policies. Along with robust behavior, our representation
ensures easy composability of tasks and knowledge trans-
fer. Furthermore, in the prior approaches, the onus of learn-
ing is on the instructor who must explicitly identify the pre-
conditions, termination criterion, and the procedure of doing
a task. Our approach distributes the onus of learning between
the human instructor and the agent - the instructor presents
examples of correct behavior and the agent deduces the pre-
conditions, termination criterion, and the execution policy.

Allen et al. (2007) demonstrate a virtual learning agent
that learns executable task models from a single collabo-
rative session of demonstration, learning, and dialog. The
human teacher provides a set of tutorial instructions accom-
panied with related demonstrations in a shared environment,
from which the agent acquires task models. The initiative of
learning is on the human user. However, the agent controls
certain aspects of its learning by making generalizations
about certain tasks without requiring the human to provide
numerous examples. Although our research shares motiva-
tions with this work, our learning paradigm is novel in the
use of EBL methods to learn composable representations.
The prior work does not make any claims about generality
and transferability of their representations and learning.

The learning paradigm proposed in this paper makes sig-
nificant contributions beyond the earlier work by Huffman
and Laird(1995). The prior work lacked the capability of full
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retrospection and learned a task incrementally, needing n in-
structed executions for learning a task that requires n actions
for achieving the goal. Full retrospection allows the agent to
learn from fewer instructed executions. Our paradigm also
integrates learning from agent-driven exploration with in-
structed execution which the prior work was unable to do.
The earlier work neither identified the space in which tasks
vary (including implicit/explicit parameters) nor identified
the representations sufficient for representing a variety of
tasks. The analyses of the generality and transferability is
also novel to our work.

Discussion and Future Work

In this paper, we described an approach to interactively learn
new tasks that has several properties desirable in an intelli-
gent agent including comprehensiveness, generality, trans-
ferability, and mixed-initiative. However, it is limited in var-
ious ways. We have focused exclusively on learning achieve-
ment tasks. Although most tasks (Cakmak and Takayama
2013) can be characterized as such, maintenance (keep the
kitchen clean) and performance (patrol) tasks are common
in human environments. In future, we will investigate how
the representations and the learning paradigm proposed in
this paper can be extended to support learning of main-
tenance and performance tasks. Another limitation is that
goals can only be defined as a conjunction of state predi-
cates. Future efforts will address acquisition of wider variety
of tasks and goals.

Arguably, the adopted generalization strategy is aggres-
sive. Consider the variations, store the eggs and store the
rice. The location where the argument objects are placed
at is sensitive to their categorization. Our approach cannot
learn a useful representation for such task variation. Future
research will study the modifications required in the task
representation and the learning paradigm to support such
variation. Another issue is our assumption that the instructor
does not make any instruction errors. However, this may not
hold for instructions for complex tasks in partially observ-
able domains and novice instructors. We want to investigate
corrective instruction and associated learning strategies so
that the agent can recover from incorrectly acquired knowl-
edge. We also want to evaluate learning tasks from situated
instructions in human-robot interaction contexts and study
the mechanisms that make teaching tasks easier from the
humans’ perspective. Finally, we are interested in a compre-
hensive account of hierarchical task learning and will make
efforts to integrate of our approach with learning primitive
actions from demonstration.
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