

Learning Unknown Event Models

Matthew Molineaux1 and David W. Aha2
1Knexus Research Corporation, Springfield, VA; 2Naval Research Laboratory, Code 5514; Washington, DC

1matthew.molineaux@knexusresearch.com; 2david.aha@nrl.navy.mil

Abstract
Agents with incomplete environment models are likely to be
surprised, and this represents an opportunity to learn. We
investigate approaches for situated agents to detect
surprises, discriminate among different forms of surprise,
and hypothesize new models for the unknown events that
surprised them. We instantiate these approaches in a new
goal reasoning agent (named FOOLMETWICE), investigate its
performance in simulation studies, and report that it
produces plans with significantly reduced execution cost in
comparison to not learning models for surprising events.

1. Introduction
Most studies on planning and reasoning assume the
availability of a complete and correct domain model,
which describes how the environment changes. We relax
the completeness assumption; events occur in our
environments that the agent cannot predict or recognize
because its model does not describe them. For example,
surprises can occur due to incomplete knowledge of events
and their locations. In the fictional Princess Bride
(Goldman, 1973), the main characters entered a fire swamp
with three types of threats (i.e., flame spurts, lightning
sand, and rodents of unusual size) for which they had no
prior model. They learned models of each from experience,
which they used to predict and defeat future examples.
Surprising realistic events can also occur while an agent
monitors an environment’s changing dynamics: consider
an autonomous underwater vehicle (AUV) that detects an
unexpected underwater oil plume for which it has no
model. A default response might be to immediately surface
(requiring hours) and report it. However, if the AUV first
learns a model of the spreading plume, it could react to the
projected effects (e.g., by identifying the plume’s source).

Surprises occur frequently in real-world environments
and cause failures in robots. Autonomous response to
failures would allow them to act for longer periods without
oversight. Some surprises can be avoided by increased

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

knowledge engineering, but it is often impractical due to
high environment variance, or unknown events. Therefore,
we instead focus on the task of learning from surprises. In
particular, we employ a variant of FOIL (Quinlan, 1990) to
learn models of unknown exogenous events in partially
observable, deterministic environments and demonstrate
how they can be used by a goal reasoning agent (Klenk,
Molineaux, & Aha, 2013). Surprise detection and response
are critical to these agents, which dynamically determine
what goals to pursue in response to notable situations. We
implement this learning method in FOOLMETWICE, an
extension of ARTUE (Molineaux, Klenk, & Aha, 2010a).
Both agents implement a Goal-Driven Autonomy (GDA)
model for goal reasoning, which entails planning,
monitoring a partially observable environment for
surprises, explaining their cause, and resolving them
through dynamic selection of goals.

We discuss related work in §2, review the GDA model
in §3, and present a formal description of explanations. In
§4, we review GDA’s implementation in ARTUE and
FOOLMETWICE. §5 describes its empirical evaluation; our
results support our hypothesis that, by learning event
models, FOOLMETWICE can outperform ablations that do
not learn (as measured by the time required to perform
navigation tasks). Finally, we conclude in §6.

2. Related Work
We focus on deriving explanations for surprises as detected
by a GDA agent. This extends work on DISCOVERHISTORY
(Molineaux, Aha, and Kuter, 2011), which discovers an
explanation given a series of observations. It outputs an
event history and a set of assumptions about the initial
state. DISCOVERHISTORY enumerates which predicates are
observable (when true) and assumes initial state values for
unobservable literals (as needed). We earlier showed that,
given knowledge of event models, DISCOVERHISTORY can
improve an agent’s prediction of future states. In this
paper, we instead focus on learning these event models.

Related work on learning environment models focuses
on models of an agent’s action. Pasula et al. (2007)
describe how an agent can learn models of a world with

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

395

realistic physics, modelled stochastically and with noise,
but fully observable. Zhuo et al. (2010) describe LAMP,
which infers a sophisticated deterministic action model
representation including conditionals and universal
quantifiers, from executed plan traces, to reduce software
engineering effort. They report it was accurate with ablated
information. Mourao et al. (2012) employ a two-step
learning process to boost the accuracy of models learned
from noisy plan traces. Our work differs from these prior
studies in its focus on exogenous events.

Several studies address the task of explaining surprises
in the current state. SWALE (Leake, 1991) uses surprises
to guide story understanding and goal-based explanation to
achieve understanding goals. Weber, Mateas, and Jhala’s
(2012) GDA agent learns explanations from expert
demonstrations when it detects a surprise, where an
explanation predicts a future state obtained by executing an
adversary’s expected actions. Hiatt, Khemlani, and Trafton
(2012) describe an Explanatory Reasoning framework that
identifies and explains surprises, where explanations are
generated using a cognitively-plausible simulation process.
In Ranasinghe and Shen’s (2008) Surprise-Based Learning
process an agent learns and refines its action models,
which can be used to predict state changes and identify
when surprises occur. Nguyen and Leong’s (2009)
Surprise Triggered Adaptive and Reactive (STAR)
framework dynamically learns models of its opponents’
strategies in response to surprises. In contrast, we describe
an algorithm for learning (and applying) environment
models of unknown exogenous events.

Several methods exist for learning environment models
such as action policies, opponent models, or task
decomposition methods for planning (e.g., Zhuo et al.,
2009). Techniques also exist for learning other types of
models under different assumptions. Inductive Process
Modeling (Bridewell et al., 2008) can learn process models
from time series data, and predict the trajectories of
observable variables. Qualitative Differential Equation
Model Learning (Pang & Coghill, 2010) methods can be
used to study real-world non-interactive dynamic systems.
Reverse Plan Monitoring (Chernova, Crawford, & Veloso,
2005) can automatically perform sensor calibration tasks
by learning observation models during plan execution. In

contrast, we address the problem of obtaining models for
use by a deliberative agent in subsequent prediction and
planning in an execution environment.

In model-free reinforcement learning (Sutton & Barto,
1998), agents learn environment models. Our work differs
in that it is goal-oriented rather than reward-driven, and
thus it allows frequent goal change without requiring
substantial re-learning of a policy.

3. Models
Goal Reasoning is a model for online planning and
execution in autonomous agents (Klenk et al., 2013). We
focus on the GDA model of goal reasoning; it separates
planning from processes for discrepancy detection,
explanation, goal formulation, and management. In §3.1
we summarize a GDA extension and in §3.2 describe a
formalism for explanations. We describe GDA agent
implementations in §4.

3.1 Modeling Goal-Driven Autonomy
GDA (Figure 1) extends Nau’s (2007) model of online
planning. It details the Controller, which interacts with a
Planner and a State Transition System ߑ, which is a tuple
,ܱ,ܧ,ܣ,ܵ) exogenous events ,ܣ with states ܵ, actions (߱,ߛ
ߛ observations ܱ, state transition function ,ܧ ׷ ܵ × ܣ) ׫
(ܧ ՜ ܵ, and observation function ߱ ׷ ܵ ՜ ܱ (i.e., it
describes what observation an agent will receive in a given
state). We will use “event” to refer to an exogenous event.

The Planner receives as input a planning problem
,ஊܯ) ௖ݏ ,݃௖), where ܯஊ is a model of ݏ ,ߑ௖ is the current
state, and ݃௖ ك ܵ is the active goal, from the set of possible
goals ܩ. The Planner outputs (1) a plan ߨc, which is an
action sequence ܣ௖ = [ܽ௖ାଵ,ڮ , ܽ௖ା௡] and (2) a sequence
of expectations ܺ௖ = ڮ,௖ାଵݔ] , ௜ݔ ௖ା௡], whereݔ א ܺ஼ is
the state expected after executing ܽ௜ in ܣ஼, and ݔ௖ା௡ א ݃௖ .

The Controller takes as input initial state ݏ௢, initial goal
݃଴, and ܯஊ, and sends them to the Planner to generate plan
 ଴’s݌ ଴ and expectations ܺ଴. The Controller forwardsߨ
actions to ߑ for execution and processes the resulting
observations. ߑ also processes exogenous events.

During plan execution, the Controller performs the
following knowledge-intensive GDA tasks:

Discrepancy detection: GDA detects unexpected events
by comparing observation obs௖ א ܱ (received after action
ܽ௖ is executed) with expectation ݔ௖ א ܺ. Mismatches are
collected in the set of discrepancies ܦ. If this set is non-
empty, explanation generation is performed.

Explanation generation: Given the history of past
actions [ܽଵ,ڮ , ܽ௡] and observations [ݏܾ݋଴,ڮ , ௖] and aݏܾ݋
discrepancy ݀ א this task hypothesizes one or more ,ܦ
possible explanations of ݀’s cause ߯ א ॿ.

Most GDA models also perform goal formulation and
goal management tasks. However, they are not central to
our focus in this paper, and we do not discuss them here.

Figure 1: Conceptual Model for Goal-Driven Autonomy (GDA)

396

3.2 Modeling Explanations
FOOLMETWICE generates explanations to (1) infer that
specific, known events have occurred, and (2) recognize
when unknown events have occurred (through explanation
failure). We briefly present a model of the explanations as
used by DISCOVERHISTORY, where explanations express
statements about the occurrence and temporal ordering of a
sequence of observations, actions, and exogenous events.

Events
We use standard classical planning definitions (Ghallab,
Nau, & Traverso, 2004) for our model. Let P be the finite
set of all propositions describing a planning environment,
where a state assigns a value to each ݌ א P. A planning
environment is partially observable if an agent ߙ can
access it only through observations that do not reveal the
complete state. Let P௢௕௦ � P be the set of all propositions
that ߙ will observe when true. Let P௛௜ௗௗ௘௡ ك P be a set of
hidden propositions that ߙ does not observe (e.g., the exact
location of a robot that does not have a GPS contact).

An event model is a tuple (name; preconds; effects)
denoting the event’s name and sets of preconditions and
effects (sets of literals). An event is a ground instance of
an event model. Events occur immediately when all their
preconditions are met. After each action, any events it
triggers occur, followed by events they trigger, etc.

Explanations
We formalize the agent’s knowledge about the changes in
its environment as an explanation of the environment's
history. We define a finite set of occurrence points
T={ݐ଴, ,ଵݐ ڮ,ଶݐ , ௡} and an ordering relation between twoݐ
such points, denoted as ݐଵ ط ,ଵݐ ଶ, whereݐ ଶݐ א T .

Three types of occurrences exist. An observation
occurrence is a pair (obs, is an observation ݏܾ݋ where ,(ݐ
and ݐ is an occurrence point. An action occurrence is a
pair (ܽ, where ܽ is an action. Finally, an event ,(ݐ
occurrence is a pair (݁, where ݁ is an event. Given an ,(ݐ
occurrence ݋, we define occ() such that occ(݋) հ .ݐ

An execution history is a finite sequence of
observations and actions obs଴; ܽଵ; obsଵ; ܽଶ;ڮ ; ܽ௞; obs௞ାଵ.
An explanation of a state given an execution history is a
tuple ߯ = is a finite set of occurrences that ܥ where ,(ܴ,ܥ)
includes each obs௜ (݅ ,0]א ݇ െ 1]) and each action ௝ܽ (݆ א
[1, ݇]) in the history, as well as 0 or more event
occurrences. ܴ is a partial ordering over a subset of ܥ,
described by ordering relations occ(݋௜) ط occ(݋௝) where
௜݋ , ௝݋ א ௜݋ which we will sometimes write as ,ܥ ط .௝݋

We use knownbefore(݌, to (݋,݌)and knownafter (݋
refer to the value of literal ݌ א P immediately before or
after occurrence ݋ א ,For action and event occurrences .ܥ
knownbefore(݌, ݌ holds iff (݋ א preconds(݋) and

knownafter(݌, ݌ holds iff (݋ א effects(݋). If ݋ is an
observation occurrence and ݌ א obs, then

knownbefore(݌, ,݌)and knownafter (݋ hold, and (݋
otherwise are false.

Occurrence ݋ is relevant to a proposition ݌ iff:

relevant(݌, (݋ ؠ knownafter(݌, (݋ ש knownafter(¬݌, (݋ ש
knownbefore(݌, (݋ ש knownbefore(¬݌, .(݋

Plausible Explanations
The proximate cause of an event occurrence (݁, is an (ݐ
occurrence ݋ that satisfies three conditions with respect to
some proposition ݌ :݌ א preconds(݁), knownafter(݌, ,(݋
and there is no other occurrence ݋ƍ s.t. ݋ ط ƍ݋ ط (݁, .(ݐ
Event occurrences must have at least one proximate cause,
so by condition 3, they must occur immediately after their
preconditions are satisfied. An inconsistency is a tuple
,݌) ,݋ ƍ are two occurrences in ߯ such that݋ and ݋ ƍ) where݋
knownafter(¬݌, ,݌)knownbefore ,(݋ ƍ), and there is no݋
other occurrence ݋ƍƍ such that ݋ ط ƍƍ݋ ط ƍ݋ א ܴ and ݌ is
relevant to ݋ƍƍ. Discrepancies can be interpreted as
inconsistencies between the most recent observation and a
prior occurrence in the current explanation.

An explanation ߯ = :is plausible iff (ܴ,ܥ)
1. There are no inconsistencies in ߯.
2. Every event occurrence (݁, (ݐ א ߯ has a proximate

cause in ߯.
3. Simultaneous events are not contradictory: For every

pair of simultaneous occurrences such that ݋, ƍ݋ א ܥ
and occ(݋) = occ(݋ƍ), no conflicts can occur before
or after. That is, for all ݌, knownafter(݌, (݋ ฺ
¬knownafter(¬݌, ,݌)ƍ), and knownbefore݋ (݋ ฺ
¬knownbefore(¬݌, .(ƍ݋

4. If preconds(݁) of an event ݁ are all satisfied at an
occurrence point ݐ, ݁ is in ߯ at ݐ.

Projected States
A projected state proj(t) for occurrence point t is given by:

proj(ݐ) = ቐ݌ቮ݋׌ ቌ
 knownafter(݌, (݋ ר

,݌¬Ԣ knownafter൫݋׍ Ԣ൯݋ ר
occ(݋) ط occ(݋ᇱ) ط ݐ

ቍቑ.

A projected state gives all facts that would be true in the
environment, given that all assumptions in ߯ are correct
and ߯ is consistent.

4. Learning Event Models
We investigate our method for learning explanations in
response to surprising exogeneous events by comparing the
performance of FOOLMETWICE with ARTUE (Molineaux
et al., 2010a). FOOLMETWICE learns these models by
detecting unknown events, generalizing event
preconditions, and hypothesizing an event model.

4.1 ARTUE
ARTUE performs the four GDA tasks as follows: (1) it
detects discrepancies by checking for mismatches between

397

its observations and expectations, (2) generates
explanations by searching for consistent explanations with
DISCOVERHISTORY, (3) formulates goals using a rule-based
system that associates priorities with goals, and (4)
manages goals by enacting a goal with the highest current
priority. ARTUE uses a SHOP2 (Nau et al., 2003) variant
to generate plans; to predict future events, Molineaux,
Klenk, and Aha (2010b) extended SHOP2 to reason about
planning models that include events in PDDL+. To work
with this variant, ARTUE uses a pre-defined mapping from
each possible goal to a task that accomplishes it.

DISCOVERHISTORY searches the space of possible
explanations by recursively refining an inconsistent
explanation (Molineaux et al., 2012). Refinements include
event removal, event addition, and hypothesis of different
initial conditions. Each recursion may cause new
inconsistencies. Search ends when an explanation is
consistent or a search depth bound is reached.

4.2 Recognizing Unknown Events
FOOLMETWICE tries to find inaccuracies in environment
model ܯஊ by attempting to explain all observations
received. When a consistent explanation cannot be found,
it infers that some unknown event ݁௨ happened that is not
represented in ܯஊ. However, it operates in a partially
observable environment; events and their effects are not
always immediately observed. Before inferring a model for
݁௨, it must determine when ݁௨ most likely occurred. It does
this by finding a minimally inconsistent explanation ߯௠௜
that is more plausible than any other such explanation that
can be described based on the current model and
observations. ߯௠௜ does not include any specific unknown
event, but does help to pinpoint when it occurred.

To search for minimally inconsistent explanations, we
extended DISCOVERHISTORY to ignore an inconsistency by
creating an inconsistency patch. For an explanation with
inconsistency (݋,݌, ௣݋ ƍ), it adds a patch occurrence݋ =

(݁௣, ƍ), where patch event ݁௣ satisfies effects(݁௣)ݐ = {݌}
and precond(݁௣) = ƍ is an occurrence pointݐ and ,{݌¬}
such that occ(݋) ط ƍݐ ط occ(݋ƍ). This will not change any
other literal, so it will never cause an inconsistency.
However, the resulting explanation is always inconsistent
because the patched inconsistency is not removed.

The extended DISCOVERHISTORY conducts a breadth-
first search, stopping when all inconsistencies are resolved
or patched. We define the minimally inconsistent
explanation ߯௠௜ as the lowest cost explanation, where cost
is a measure of plausibility. That is, we set the cost for
patching an inconsistency (10) to be much greater than
other refinements (1). We define lower cost explanations
as more plausible than higher cost explanations; a known
and modeled event is considered more plausible than an
unknown event, if considered independently from other
events. Thus, search favors explanations with fewer
patches. If an explanation describes all correct events,

unknown events correspond to inconsistency patches; the
unknown effects are the same as those of the patch events.

DISCOVERHISTORY’s highest computational cost is its
breadth-first search for explanations. We bound its depth to
a constant (50) to ensure manageable execution times,
yielding a worst-case complexity of ܱ(݊ହ଴) for branching
factor n, which is the number of possible refinements
available per node (typically in [2,10]). Each search in our
experiments took less than 600 seconds to perform.

4.3 Generalizing Event Preconditions
After determining when unknown events occur, creating a
model of their preconditions requires generalizing over the
states that trigger them. We adapted FOIL (Quinlan, 1990)
to perform this task. Instead of inferring rules from a
relational database, our adaptation must infer rules from a
set of projected states, each of which contains all facts
believed to be true at a specific prior time. States are found
by projecting the effects at each occurrence point of a
minimally inconsistent explanation ߯௠௜ . The extension,
FOIL-PS (Projected States), infers conditions by separating
negative states, known not to trigger an unknown event ݁௨,
from bags of positive states that may trigger it.
 FOIL-PS maintains a set of minimally inconsistent
explanations ॿ, one for each completed training scenario.
To infer events that cause p, where effects(݁௣) = for at {݌}
least one event patch, it finds a set of bags of events that
occur during each such ݁௣, because each of those states
may have triggered ݁௨. Formally, a positive example bag
for an inconsistency (݌, ,݋ Ԣ) is the set of states݋
peb(݌, ,݋ (ᇱ݋ = {proj(ݐ) | occ(݋) ط ݐ ط occ(݋ᇱ)}.

To learn a model for events that cause p, we give FOIL-
PS a set of positive example bags corresponding to each
inconsistency relating to p in all explanations in ॿ. The
negative examples are all the remaining projected states.
Thus the positive example bags for some set of training
explanations ॿ and surprising literal p are:

peb(݌,ॿ) = ൜peb(݌, ,݋ ,݌) ᇱ) ฬ݋ ,݋ ᇱ) is an݋

inconsistency for ߯ א ॿൠ.
The corresponding negative examples are:

ne(݌,ॿ) = ൜proj(ݐ) ฬ proj(ݐ) ב peb(݌, ,݋ ᇱ) for any݋

inconsistency for any ߯ א ॿ ൠ.
 To find the triggering conditions for an event causing p,
FOIL-PS searches the space of possible clauses that satisfy
zero states in ne(݌, ॿ) and at least one in each bag from
peb(݌, ॿ). The initial clause used is {¬݌}, and each node
in the search tree adds one literal from its parent node.
 As this search is costly, FOIL-PS does not consider
literals that produce negative information gain according to
FOIL’s definition. Also, we restrict the number of zero
information-gain literals to be added to a clause: FOIL-PS
defines the search cost of a clause as the number of zero
information gain additions made in the nodes leading to it,
and conducts an iterative deepening search to find only

398

clauses with the minimal search cost. The first clause
returned by each level of the search is one that covers the
maximum number of positive example bags of any clause
found within the search cost. Search repeats with the same
cost until sufficient clauses are found to cover all positive
example bags. If sufficient clauses cannot be found, search
is repeated with an incremented cost.

Some projected states from a Princess Bride explanation
are as follows:

proj(ݐ଴) =
[(friend Westley Buttercup) (friend Buttercup Westley)
 (location Buttercup house) (location Westley stable)]

proj(ݐԢ) = [(friend Westley Buttercup)
(friend Buttercup Westley) (location Buttercup under-tree)
(location Westley on-path) (sandy-location under-tree)].

4.4 Modifying the Environment Model
Each clause output by FOIL-PS is used to construct a
learned event model whose condition is the clause output,
and whose effect is the single ground literal believed to be
inconsistent. If FOIL-PS then outputs the clause:

(and (not (sinking-rapidly Buttercup))
 (location Buttercup ?݈ܿ݋)
 (sandy-location ?݈ܿ݋)),

then FOOLMETWICE would construct the event:
(:event new-event51
:conditions (and (not (sinking-rapidly Buttercup))
 (location Buttercup ?݈ܿ݋)

 (sandy-location ?݈ܿ݋))
:effect (sinking-rapidly Buttercup))

FOOLMETWICE adds constructed events to its
environment model, which can be used for planning and
explanation in future scenarios. Ideally, the set of events
that are inferred to cause a literal p will match the actual
events that cause the condition modeled by p. However,
FOIL-PS will not always initially find a correct set of
models, so FOOLMETWICE updates the model periodically,
after each scenario is completed.

If the learned event models fail to cover all environment
events causing p, then p may be found to be inconsistent in
a future ߯௠௜ . When an inconsistent literal is found in the
߯௠௜ of the most recent scenario, all previously learned
events that cause it are removed from the model and new
models are learned from scratch. Conversely, if the learned
event models cover situations that do not trigger any event
causing p, an event will be erroneously predicted, likely
resulting in an inconsistent explanation. Thus, we designed
DISCOVERHISTORY to resolve an inconsistency by
abandoning a previously learned event model, removing it
from the inconsistent explanation and marking it as invalid.
This incurs less cost (5) than an inconsistency patch,
preventing FOOLMETWICE from adding a second event that
cancels the effects of the first, but costs more than other
refinements, so that event models will not be abandoned

often. After an event model is abandoned, the causes of
that model’s effect are re-learned.

In each of these situations, peb(p, ॿ) or ne(p, ॿ)
contains a counterexample for the conditions of a prior
learned event with incorrect conditions. The new models
learned will therefore likely improve over time.

FOOLMETWICE cannot acquire exogenous event models
with continuous conditions and effects, and cannot model
inequalities or numeric relationships between cause and
effect, which we will address as future work. Also, PDDL+
processes, which model continuous change over time,
cannot be acquired.

5. Empirical Study
The learning task is to construct accurate event models, but
multiple models may accurately predict the same
phenomena. Thus, we evaluate FOOLMETWICE for its
ability to achieve goals at lower execution cost.

5.1 Environments and Hypothesis
We tested FOOLMETWICE in two new deterministic,
partially observable, single actor domains. While we intend
to use it in more complex domains (e.g., where events can
be triggered by other actor’s actions or the environment),
these suffice to test our agent. Each domain contains one
event that is not part of the agent's model, and is based on a
world state that is not directly observed. While no explicit
learning goals exist, execution cost in each domain is lower
when planning with knowledge of the unknown event.
 The first domain, Satellites, is based on an IPC 2003
competition domain in which a set of satellites have
instruments that can obtain images in many spectra, and
goals consist of taking various images. Performance is
judged based on the time required to achieve all goals. 1
time unit is used to turn a satellite to a new position, and 10
to repair a satellite lens. The unknown event causes a
satellite’s lens to break when taking an image of an
excessively bright object. The fact that the object is too
bright for the camera lens is hidden to the agent, but bright
objects cause an observable lens flare during calibration.
 The second domain, MudWorld, employs a discrete grid
on which a simulated robot moves in the four cardinal
directions. The robot observes its location and destination,
and its only obstacle is mud. Each location can be muddy
or not; the robot cannot observe mud directly, but it
deterministically receives a related observation when
entering a location adjacent to one that is muddy. If it
enters mud, its movement speed is halved until it leaves.
However, its initial model does not describe this decrease
in speed, so it is surprised when its speed decreases.
 In both domains, execution cost is based on time taken
to achieve a goal. We hypothesize that, after learning
models of unknown events, FOOLMETWICE will create
plans that require less time.

399

5.2 Experiment Description
For each domain, we randomly generated 50 training and
25 test scenarios. In Satellites, the initial state of each
scenario has 3 satellites with 12 instruments randomly
apportioned among them. Each scenario has 5 goals
requiring that an image of a random target be obtained in a
random spectrum. MudWorld scenarios consist of a 6x6
grid with random start and destination locations, each of
which may contain mud with 40% probability. We selected
start and destination locations so that all routes between
them contain at least 4 steps, irrespective of mud.
 In each of 10 replications per domain, we measured
FOOLMETWICE’s performance on all test scenarios before
and after training on 5 scenarios.

5.3 Results
Figure 2 displays the average execution cost incurred in
each domain by FOOLMETWICE (blue with triangle
markers), an “optimal” version with a complete model
(green with circle markers), and a non-learning baseline
(red with square markers). The vertical axes depict the
simulated time required to complete the test scenarios,
while the horizontal axes depict the number of training
scenarios provided.
 In each domain, FOOLMETWICE achieved a performance
gain of more than 90% with respect to the optimal
performance within 5 trials. After training on only one
scenario in each domain, its average performance is
significantly higher than when using the initial
environment model (݌ < .05).

Similar results might be obtained for other domains in
which unknown events are deterministic and based only on
predicate literals. However, our results do not currently
generalize to nondeterministic events, willed actions, or
events dependent on values of function literals.

Table 3 shows average wall clock time spent during
execution and learning per domain, and the number of
explanation failures. The number of explanation failures
trends downward, and learning time appears to decrease in
MudWorld. However, execution time initially increases in
Satellites. Review of individual trials indicates that this is
caused by learning initial models that are inefficient to

compute. We conclude that while explanation and planning
clearly improve performance with learning, wall clock time
can suffer and is an interesting subject for future study.

6. Conclusions
We described FOOLMETWICE, a novel GDA agent that
uses a new technique to identify unknown events in a
model based on surprise and explanation generation, and a
relational learning method to update environment models.
We described its initial study on the task of learning from
surprises, and found that it rapidly learned better
environment models (i.e., reasoning with them results in
lower execution costs; even inaccurate models may help to
improve an agent’s plans).
 We did not compare FOOLMETWICE against other
agents, mainly because we focus on learning models of
exogenous events, which other agents do not target.
However, it is possible that algorithms which learn the
conditional effects of actions (e.g., LAMP (Zhuo et al.,
2010) may perform well on the tasks we used in our
experiments, which could be expressed using actions with
conditional effects rather than exogenous events.

FOOLMETWICE assumes that an explanation failure is
due to an unknown event(s); as a result, it may incorrectly
infer that its model is incomplete when explanation search
fails (e.g., due to computational constraints). Conversely,
search may sometimes find an incorrect explanation when
ambiguous observations are received, causing it to ignore
an opportunity for learning. Reducing these false positives
and false negatives is a future research topic.

We will also assess performance on more complex
domains, and in particular opportunistic domains, where
surprises provide affordances rather than represent
obstacles. We will also investigate the problem of learning
process models that represent continuous change, and
models of the actions and motivations of other agents.

Finally, we will apply FOOLMETWICE to active transfer
learning contexts, in which an agent acting in a similar
domain to one it understands may quickly learn in that
domain with minimal expert intervention. FOOLMETWICE
can theoretically transfer environment models among
similar domains by treating a source domain model as an
incomplete model of its new domain. This will require
further research on integrating expert feedback and
removing prior incorrect models.

Table 3: Additional Performance Metrics for FOOLMETWICE

Figure 2: Average Execution Cost of FOOLMETWICE

400

References
Bridewell, W., Langley, P., Todorovski, L., & Džeroski, S.
(2008). Inductive process modeling. Machine learning, 71(1), 1-
32.
Ghallab, M., Nau, D., & Traverso, P. (2004). Automated
planning: Theory & practice. San Mateo, CA: Morgan
Kaufmann.
Goldman, W. (1973). The princess bride. San Diego, CA:
Harcourt Brace.
Hiatt, L.M., Khemlani, S.S., & Trafton, J.G. (2012). An
explanatory reasoning framework for embodied agents.
Biologically Inspired Cognitive Architectures, 1, 23-31.
Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-driven
autonomy for responding to unexpected events in strategy
simulations. Computational Intelligence, 29(2), 187-206.
Leake, D. B. (1991), Goal-based explanation evaluation.
Cognitive Science, 15, 509–545.
Molineaux, M., Aha, D.W., & Kuter, U. (2011). Learning event
models that explain anomalies. In T. Roth-Berghofer, N.
Tintarev, & D.B. Leake (Eds.) Explanation-Aware Computing:
Papers from the IJCAI Workshop. Barcelona, Spain.
Molineaux, M., Klenk, M., & Aha, D.W. (2010a). Goal-driven
autonomy in a Navy strategy simulation. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence.
Atlanta, GA: AAAI Press.
Molineaux, M., Klenk, M., & Aha, D.W. (2010b). Planning in
dynamic environments: Extending HTNs with nonlinear
continuous effects. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence. Atlanta, GA: AAAI Press.
Molineaux, M., Kuter, U., & Klenk, M. (2012). DiscoverHistory:
Understanding the past in planning and execution. Proceedings of
the Eleventh International Conference on Autonomous Agents
and Multiagent Systems (Volume 2) (pp. 989-996). Valencia,
Spain: International Foundation for Autonomous Agents and
Multiagent Systems.
Mourao, K., Zettlemoyer, L. S., Petrick, R., & Steedman, M.
(2012). Learning strips operators from noisy and incomplete
observations. arXiv preprint arXiv:1210.4889.
Nau, D.S. (2007). Current trends in automated planning. AI
Magazine, 28(4), 43–58.
Nau, D., Au, T.-C., Ilghami, O, Kuter, U, Murdock, J.W., Wu, D.,
& Yaman, F. (2003). SHOP2: An HTN planning system. Journal
of Artificial Intelligence Research, 20, 379-404.
Nguyen, T.H.D., & Leong, T.Y. (2009). A surprise triggered
adaptive and reactive (STAR) framework for online adaptation in
non-stationary environments. In Proceedings of the Fifth
Artificial Intelligence and Interactive Digital Entertainment
Conference. Stanford, CA: AAAI Press.
Pang, W., & Coghill, G.M. (2010). Learning qualitative
differential equation models: A survey of algorithms and
applications. Knowledge Engineering Review, 25(1), 69-107.
Pasula, H. M., Zettlemoyer, L. S., & Kaelbling, L. P. (2007).
Learning Symbolic Models of Stochastic Domains. J. Artif. Intell.
Res.(JAIR), 29, 309-352.
Quinlan, J. R. (1990). Learning logical definitions from relations.
Machine learning, 5(3), 239-266.

Ranasinghe, N., & Shen, W.-M. (2008). Surprised-based learning
for developmental robotics. Proceedings of the ECSIS Symposium
on Learning and Adaptive Behaviors for Robotic Systems (pp. 65-
70). Edinburgh, Scotland: IEEE Press.
Sutton, R.S., & Barto, A.G. (1998). Reinforcement learning: An
introduction. Cambridge, MA: MIT Press.
Weber, B., Mateas, M., & Jhala, A. (2012). Learning from
demonstration for goal-driven autonomy. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence.
Toronto, Canada: AAAI Press.
Zhuo, H.H., Hu, D.H., Hogg, C., Yang, Q., & Muñoz-Avila, H.
(2009). Learning HTN method preconditions and action models
from partial observations. Proceedings of the Twenty-First
International Joint Conference on Artificial Intelligence (pp.
1804-1810). Pasadena, CA: AAAI Press.
Zhuo, H. H., Yang, Q., Hu, D. H., & Li, L. (2010). Learning
complex action models with quantifiers and logical implications.
Artificial Intelligence, 174(18), 1540-1569.

401

