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Abstract 
Agents with incomplete environment models are likely to be 
surprised, and this represents an opportunity to learn. We 
investigate approaches for situated agents to detect 
surprises, discriminate among different forms of surprise, 
and hypothesize new models for the unknown events that 
surprised them. We instantiate these approaches in a new 
goal reasoning agent (named FOOLMETWICE), investigate its 
performance in simulation studies, and report that it 
produces plans with significantly reduced execution cost in 
comparison to not learning models for surprising events. 

1. Introduction   
Most studies on planning and reasoning assume the 
availability of a complete and correct domain model, 
which describes how the environment changes. We relax 
the completeness assumption; events occur in our 
environments that the agent cannot predict or recognize 
because its model does not describe them. For example, 
surprises can occur due to incomplete knowledge of events 
and their locations. In the fictional Princess Bride 
(Goldman, 1973), the main characters entered a fire swamp 
with three types of threats (i.e., flame spurts, lightning 
sand, and rodents of unusual size) for which they had no 
prior model. They learned models of each from experience, 
which they used to predict and defeat future examples. 
Surprising realistic events can also occur while an agent 
monitors an environment’s changing dynamics: consider 
an autonomous underwater vehicle (AUV) that detects an 
unexpected underwater oil plume for which it has no 
model. A default response might be to immediately surface 
(requiring hours) and report it. However, if the AUV first 
learns a model of the spreading plume, it could react to the 
projected effects (e.g., by identifying the plume’s source). 

Surprises occur frequently in real-world environments 
and cause failures in robots. Autonomous response to 
failures would allow them to act for longer periods without 
oversight. Some surprises can be avoided by increased 
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knowledge engineering, but it is often impractical due to 
high environment variance, or unknown events. Therefore, 
we instead focus on the task of learning from surprises. In 
particular, we employ a variant of FOIL (Quinlan, 1990) to 
learn models of unknown exogenous events in partially 
observable, deterministic environments and demonstrate 
how they can be used by a goal reasoning agent (Klenk, 
Molineaux, & Aha, 2013). Surprise detection and response 
are critical to these agents, which dynamically determine 
what goals to pursue in response to notable situations. We 
implement this learning method in FOOLMETWICE, an 
extension of ARTUE (Molineaux, Klenk, & Aha, 2010a). 
Both agents implement a Goal-Driven Autonomy (GDA) 
model for goal reasoning, which entails planning, 
monitoring a partially observable environment for 
surprises, explaining their cause, and resolving them 
through dynamic selection of goals.  

We discuss related work in §2, review the GDA model 
in §3, and present a formal description of explanations. In 
§4, we review GDA’s implementation in ARTUE and 
FOOLMETWICE. §5 describes its empirical evaluation; our 
results support our hypothesis that, by learning event 
models, FOOLMETWICE can outperform ablations that do 
not learn (as measured by the time required to perform 
navigation tasks). Finally, we conclude in §6. 

2. Related Work 
We focus on deriving explanations for surprises as detected 
by a GDA agent. This extends work on DISCOVERHISTORY 
(Molineaux, Aha, and Kuter, 2011), which discovers an 
explanation given a series of observations. It outputs an 
event history and a set of assumptions about the initial 
state. DISCOVERHISTORY enumerates which predicates are 
observable (when true) and assumes initial state values for 
unobservable literals (as needed). We earlier showed that, 
given knowledge of event models, DISCOVERHISTORY can 
improve an agent’s prediction of future states. In this 
paper, we instead focus on learning these event models.  

Related work on learning environment models focuses 
on models of an agent’s action. Pasula et al. (2007) 
describe how an agent can learn models of a world with 
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realistic physics, modelled stochastically and with noise, 
but fully observable. Zhuo et al. (2010) describe LAMP, 
which infers a sophisticated deterministic action model 
representation including conditionals and universal 
quantifiers, from executed plan traces, to reduce software 
engineering effort. They report it was accurate with ablated 
information. Mourao et al. (2012) employ a two-step 
learning process to boost the accuracy of models learned 
from noisy plan traces. Our work differs from these prior 
studies in its focus on exogenous events. 

Several studies address the task of explaining surprises 
in the current state. SWALE (Leake, 1991) uses surprises 
to guide story understanding and goal-based explanation to 
achieve understanding goals. Weber, Mateas, and Jhala’s 
(2012) GDA agent learns explanations from expert 
demonstrations when it detects a surprise, where an 
explanation predicts a future state obtained by executing an 
adversary’s expected actions. Hiatt, Khemlani, and Trafton 
(2012) describe an Explanatory Reasoning framework that 
identifies and explains surprises, where explanations are 
generated using a cognitively-plausible simulation process. 
In Ranasinghe and Shen’s (2008) Surprise-Based Learning 
process an agent learns and refines its action models, 
which can be used to predict state changes and identify 
when surprises occur. Nguyen and Leong’s (2009) 
Surprise Triggered Adaptive and Reactive (STAR) 
framework dynamically learns models of its opponents’ 
strategies in response to surprises. In contrast, we describe 
an algorithm for learning (and applying) environment 
models of unknown exogenous events.  

Several methods exist for learning environment models 
such as action policies, opponent models, or task 
decomposition methods for planning (e.g., Zhuo et al., 
2009). Techniques also exist for learning other types of 
models under different assumptions. Inductive Process 
Modeling (Bridewell et al., 2008) can learn process models 
from time series data, and predict the trajectories of 
observable variables. Qualitative Differential Equation 
Model Learning (Pang & Coghill, 2010) methods can be 
used to study real-world non-interactive dynamic systems. 
Reverse Plan Monitoring (Chernova, Crawford, & Veloso, 
2005) can automatically perform sensor calibration tasks 
by learning observation models during plan execution. In 

contrast, we address the problem of obtaining models for 
use by a deliberative agent in subsequent prediction and 
planning in an execution environment. 

In model-free reinforcement learning (Sutton & Barto, 
1998), agents learn environment models. Our work differs 
in that it is goal-oriented rather than reward-driven, and 
thus it allows frequent goal change without requiring 
substantial re-learning of a policy. 

3. Models 
Goal Reasoning is a model for online planning and 
execution in autonomous agents (Klenk et al., 2013). We 
focus on the GDA model of goal reasoning; it separates 
planning from processes for discrepancy detection, 
explanation, goal formulation, and management. In §3.1 
we summarize a GDA extension and in §3.2 describe a 
formalism for explanations. We describe GDA agent 
implementations in §4. 

3.1 Modeling Goal-Driven Autonomy 
GDA (Figure 1) extends Nau’s (2007) model of online 
planning. It details the Controller, which interacts with a 
Planner and a State Transition System ߑ, which is a tuple 
,ܱ,ܧ,ܣ,ܵ)  exogenous events ,ܣ with states ܵ, actions (߱,ߛ
ߛ observations ܱ, state transition function ,ܧ ׷ ܵ × ܣ) ׫
(ܧ ՜ ܵ, and observation function ߱ ׷ ܵ ՜ ܱ (i.e., it 
describes what observation an agent will receive in a given 
state). We will use “event” to refer to an exogenous event. 

The Planner receives as input a planning problem 
,ஊܯ) ௖ݏ ,݃௖), where ܯஊ is a model of ݏ ,ߑ௖  is the current 
state, and ݃௖ ك ܵ is the active goal, from the set of possible 
goals ܩ. The Planner outputs (1) a plan ߨc, which is an 
action sequence ܣ௖ = [ܽ௖ାଵ,ڮ , ܽ௖ା௡] and (2) a sequence 
of expectations ܺ௖ = ڮ,௖ାଵݔ] , ௜ݔ ௖ା௡], whereݔ  א ܺ஼ is 
the state expected after executing ܽ௜ in ܣ஼, and ݔ௖ା௡ א ݃௖ . 

The Controller takes as input initial state ݏ௢, initial goal 
݃଴, and ܯஊ, and sends them to the Planner to generate plan 
 ଴’s݌ ଴ and expectations ܺ଴. The Controller forwardsߨ
actions to ߑ for execution and processes the resulting 
observations. ߑ also processes exogenous events.  

During plan execution, the Controller performs the 
following knowledge-intensive GDA tasks:  

Discrepancy detection: GDA detects unexpected events 
by comparing observation obs௖ א ܱ (received after action 
ܽ௖ is executed) with expectation ݔ௖ א ܺ. Mismatches are 
collected in the set of discrepancies ܦ. If this set is non-
empty, explanation generation is performed.  

Explanation generation: Given the history of past 
actions [ܽଵ,ڮ , ܽ௡] and observations [ݏܾ݋଴,ڮ ,  ௖] and aݏܾ݋
discrepancy ݀ א  this task hypothesizes one or more ,ܦ
possible explanations of ݀’s cause ߯ א ॿ. 

Most GDA models also perform goal formulation and 
goal management tasks. However, they are not central to 
our focus in this paper, and we do not discuss them here. 

Figure 1: Conceptual Model for Goal-Driven Autonomy (GDA) 
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3.2 Modeling Explanations 
FOOLMETWICE generates explanations to (1) infer that 
specific, known events have occurred, and (2) recognize 
when unknown events have occurred (through explanation 
failure). We briefly present a model of the explanations as 
used by DISCOVERHISTORY, where explanations express 
statements about the occurrence and temporal ordering of a 
sequence of observations, actions, and exogenous events. 

Events 
We use standard classical planning definitions (Ghallab, 
Nau, & Traverso, 2004) for our model. Let P be the finite 
set of all propositions describing a planning environment, 
where a state assigns a value to each ݌ א P. A planning 
environment is partially observable if an agent ߙ can 
access it only through observations that do not reveal the 
complete state. Let P௢௕௦ � P be the set of all propositions 
that ߙ will observe when true. Let P௛௜ௗௗ௘௡ ك P  be a set of 
hidden propositions that ߙ does not observe (e.g., the exact 
location of a robot that does not have a GPS contact). 

An event model is a tuple (name; preconds; effects) 
denoting the event’s name and sets of preconditions and 
effects (sets of literals). An event is a ground instance of 
an event model. Events occur immediately when all their 
preconditions are met. After each action, any events it 
triggers occur, followed by events they trigger, etc.  

Explanations 
We formalize the agent’s knowledge about the changes in 
its environment as an explanation of the environment's 
history. We define a finite set of occurrence points 
T={ݐ଴, ,ଵݐ ڮ,ଶݐ ,  ௡} and an ordering relation between twoݐ
such points, denoted as ݐଵ ط ,ଵݐ ଶ, whereݐ ଶݐ א T . 

Three types of occurrences exist. An observation 
occurrence is a pair (obs,  is an observation ݏܾ݋ where ,(ݐ
and ݐ is an occurrence point. An action occurrence is a 
pair (ܽ,  where ܽ is an action. Finally, an event ,(ݐ
occurrence is a pair (݁,  where ݁ is an event. Given an ,(ݐ
occurrence ݋, we define occ() such that occ(݋) հ  .ݐ

An execution history is a finite sequence of 
observations and actions obs଴; ܽଵ; obsଵ; ܽଶ;ڮ ; ܽ௞; obs௞ାଵ. 
An explanation of a state given an execution history is a 
tuple ߯ =  is a finite set of occurrences that ܥ where ,(ܴ,ܥ)
includes each obs௜  (݅ ,0]א ݇ െ 1]) and each action ௝ܽ  (݆ א
[1, ݇]) in the history, as well as 0 or more event 
occurrences. ܴ is a partial ordering over a subset of ܥ, 
described by ordering relations occ(݋௜) ط occ(݋௝) where 
௜݋ , ௝݋ א ௜݋ which we will sometimes write as ,ܥ ط  .௝݋

We use knownbefore(݌,  to (݋,݌)and knownafter (݋
refer to the value of literal ݌ א P immediately before or 
after occurrence ݋ א  ,For action and event occurrences .ܥ
knownbefore(݌, ݌ holds iff (݋ א preconds(݋) and 

knownafter(݌, ݌ holds iff (݋ א effects(݋). If ݋ is an 
observation occurrence and ݌ א obs, then 

knownbefore(݌, ,݌)and knownafter (݋  hold, and (݋
otherwise are false. 

Occurrence ݋ is relevant to a proposition ݌ iff: 

relevant(݌, (݋ ؠ knownafter(݌, (݋ ש  knownafter(¬݌, (݋ ש
knownbefore(݌, (݋ ש knownbefore(¬݌, .(݋

 

Plausible Explanations 
The proximate cause of an event occurrence (݁,  is an (ݐ
occurrence ݋ that satisfies three conditions with respect to 
some proposition ݌ :݌ א preconds(݁), knownafter(݌,  ,(݋
and there is no other occurrence ݋ƍ s.t. ݋ ط ƍ݋ ط (݁,  .(ݐ
Event occurrences must have at least one proximate cause, 
so by condition 3, they must occur immediately after their 
preconditions are satisfied. An inconsistency is a tuple 
,݌) ,݋  ƍ are two occurrences in ߯ such that݋ and ݋ ƍ) where݋
knownafter(¬݌, ,݌)knownbefore ,(݋  ƍ), and there is no݋
other occurrence ݋ƍƍ such that ݋ ط ƍƍ݋ ط ƍ݋ א ܴ and ݌ is 
relevant to ݋ƍƍ. Discrepancies can be interpreted as 
inconsistencies between the most recent observation and a 
prior occurrence in the current explanation.  

An explanation  ߯ =  :is plausible iff (ܴ,ܥ)
1. There are no inconsistencies in ߯. 
2. Every event occurrence (݁, (ݐ א ߯ has a proximate 

cause in ߯. 
3. Simultaneous events are not contradictory: For every 

pair of simultaneous occurrences such that ݋, ƍ݋ א  ܥ
and occ(݋) = occ(݋ƍ), no conflicts can occur before 
or after. That is, for all ݌, knownafter(݌, (݋ ฺ
¬knownafter(¬݌, ,݌)ƍ), and knownbefore݋ (݋ ฺ
¬knownbefore(¬݌,  .(ƍ݋

4. If preconds(݁) of an event ݁ are all satisfied at an 
occurrence point ݐ, ݁ is in ߯ at ݐ. 

Projected States 
A projected state proj(t) for occurrence point t is given by:  

proj(ݐ) =  ቐ݌ቮ݋׌ ቌ
 knownafter(݌, (݋ ר

,݌¬Ԣ knownafter൫݋׍ Ԣ൯݋ ר 
occ(݋) ط occ(݋ᇱ) ط ݐ

ቍቑ. 

A projected state gives all facts that would be true in the 
environment, given that all assumptions in ߯ are correct 
and ߯ is consistent. 

4. Learning Event Models 
We investigate our method for learning explanations in 
response to surprising exogeneous events by comparing the 
performance of FOOLMETWICE with ARTUE (Molineaux 
et al., 2010a). FOOLMETWICE learns these models by 
detecting unknown events, generalizing event 
preconditions, and hypothesizing an event model. 

4.1 ARTUE 
ARTUE performs the four GDA tasks as follows: (1) it 
detects discrepancies by checking for mismatches between 
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its observations and expectations, (2) generates 
explanations by searching for consistent explanations with 
DISCOVERHISTORY, (3) formulates goals using a rule-based 
system that associates priorities with goals, and (4) 
manages goals by enacting a goal with the highest current 
priority. ARTUE uses a SHOP2 (Nau et al., 2003) variant 
to generate plans; to predict future events, Molineaux, 
Klenk, and Aha (2010b) extended SHOP2 to reason about 
planning models that include events in PDDL+. To work 
with this variant, ARTUE uses a pre-defined mapping from 
each possible goal to a task that accomplishes it. 

DISCOVERHISTORY searches the space of possible 
explanations by recursively refining an inconsistent 
explanation (Molineaux et al., 2012). Refinements include 
event removal, event addition, and hypothesis of different 
initial conditions. Each recursion may cause new 
inconsistencies. Search ends when an explanation is 
consistent or a search depth bound is reached. 

4.2 Recognizing Unknown Events 
FOOLMETWICE tries to find inaccuracies in environment 
model ܯஊ by attempting to explain all observations 
received. When a consistent explanation cannot be found, 
it infers that some unknown event ݁௨ happened that is not 
represented in ܯஊ. However, it operates in a partially 
observable environment; events and their effects are not 
always immediately observed. Before inferring a model for 
݁௨, it must determine when ݁௨ most likely occurred. It does 
this by finding a minimally inconsistent explanation ߯௠௜ 
that is more plausible than any other such explanation that 
can be described based on the current model and 
observations. ߯௠௜  does not include any specific unknown 
event, but does help to pinpoint when it occurred. 

To search for minimally inconsistent explanations, we 
extended DISCOVERHISTORY to ignore an inconsistency by 
creating an inconsistency patch. For an explanation with 
inconsistency (݋,݌, ௣݋ ƍ), it adds a patch occurrence݋ =

(݁௣, ƍ), where patch event ݁௣  satisfies effects(݁௣)ݐ =  {݌}
and precond(݁௣) =  ƍ is an occurrence pointݐ and ,{݌¬}
such that occ(݋) ط ƍݐ  ط occ(݋ƍ ). This will not change any 
other literal, so it will never cause an inconsistency. 
However, the resulting explanation is always inconsistent 
because the patched inconsistency is not removed.  

The extended DISCOVERHISTORY conducts a breadth-
first search, stopping when all inconsistencies are resolved 
or patched. We define the minimally inconsistent 
explanation ߯௠௜  as the lowest cost explanation, where cost 
is a measure of plausibility. That is, we set the cost for 
patching an inconsistency (10) to be much greater than 
other refinements (1). We define lower cost explanations 
as more plausible than higher cost explanations; a known 
and modeled event is considered more plausible than an 
unknown event, if considered independently from other 
events. Thus, search favors explanations with fewer 
patches. If an explanation describes all correct events, 

unknown events correspond to inconsistency patches; the 
unknown effects are the same as those of the patch events. 

DISCOVERHISTORY’s highest computational cost is its 
breadth-first search for explanations. We bound its depth to 
a constant (50) to ensure manageable execution times, 
yielding a worst-case complexity of ܱ(݊ହ଴) for branching 
factor n, which is the number of possible refinements 
available per node (typically in [2,10]). Each search in our 
experiments took less than 600 seconds to perform.  

4.3 Generalizing Event Preconditions 
After determining when unknown events occur, creating a 
model of their preconditions requires generalizing over the 
states that trigger them. We adapted FOIL (Quinlan, 1990) 
to perform this task. Instead of inferring rules from a 
relational database, our adaptation must infer rules from a 
set of projected states, each of which contains all facts 
believed to be true at a specific prior time. States are found 
by projecting the effects at each occurrence point of a 
minimally inconsistent explanation ߯௠௜ . The extension, 
FOIL-PS (Projected States), infers conditions by separating 
negative states, known not to trigger an unknown event ݁௨, 
from bags of positive states that may trigger it.  
 FOIL-PS maintains a set of minimally inconsistent 
explanations ॿ, one for each completed training scenario. 
To infer events that cause p, where effects(݁௣) =  for at {݌}
least one event patch, it finds a set of bags of events that 
occur during each such ݁௣, because each of those states 
may have triggered ݁௨. Formally, a positive example bag 
for an inconsistency (݌, ,݋  Ԣ) is the set of states݋
peb(݌, ,݋ (ᇱ݋ = {proj(ݐ) | occ(݋) ط ݐ ط occ(݋ᇱ)}.  

To learn a model for events that cause p, we give FOIL-
PS a set of positive example bags corresponding to each 
inconsistency relating to p in all explanations in ॿ. The 
negative examples are all the remaining projected states. 
Thus the positive example bags for some set of training 
explanations ॿ and surprising literal p are: 

peb(݌,ॿ) = ൜peb(݌, ,݋ ,݌) ᇱ) ฬ݋ ,݋  ᇱ) is an݋

inconsistency for ߯ א ॿൠ. 
The corresponding negative examples are: 

ne(݌,ॿ) = ൜proj(ݐ) ฬ proj(ݐ) ב peb(݌, ,݋ ᇱ) for any݋

inconsistency for any ߯ א ॿ ൠ. 
 To find the triggering conditions for an event causing p, 
FOIL-PS searches the space of possible clauses that satisfy 
zero states in ne(݌, ॿ) and at least one in each bag from 
peb(݌, ॿ). The initial clause used is {¬݌}, and each node 
in the search tree adds one literal from its parent node.  
 As this search is costly, FOIL-PS does not consider 
literals that produce negative information gain according to 
FOIL’s definition. Also, we restrict the number of zero 
information-gain literals to be added to a clause: FOIL-PS 
defines the search cost of a clause as the number of zero 
information gain additions made in the nodes leading to it, 
and conducts an iterative deepening search to find only 
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clauses with the minimal search cost. The first clause 
returned by each level of the search is one that covers the 
maximum number of positive example bags of any clause 
found within the search cost. Search repeats with the same 
cost until sufficient clauses are found to cover all positive 
example bags. If sufficient clauses cannot be found, search 
is repeated with an incremented cost. 

Some projected states from a Princess Bride explanation 
are as follows: 

proj(ݐ଴) = 
[(friend Westley Buttercup) (friend Buttercup Westley) 
 (location Buttercup house) (location Westley stable)] 

proj(ݐԢ) = [(friend Westley Buttercup)  
(friend Buttercup Westley) (location Buttercup under-tree) 
(location Westley on-path) (sandy-location under-tree)]. 

4.4 Modifying the Environment Model 
Each clause output by FOIL-PS is used to construct a 
learned event model whose condition is the clause output, 
and whose effect is the single ground literal believed to be 
inconsistent. If FOIL-PS then outputs the clause: 

(and (not (sinking-rapidly Buttercup))  
        (location Buttercup ?݈ܿ݋)  
        (sandy-location ?݈ܿ݋)),  

then FOOLMETWICE would construct the event: 
(:event new-event51 
:conditions (and (not (sinking-rapidly Buttercup)) 
                             (location Buttercup ?݈ܿ݋) 

                                  (sandy-location ?݈ܿ݋)) 
:effect (sinking-rapidly Buttercup)) 

FOOLMETWICE adds constructed events to its 
environment model, which can be used for planning and 
explanation in future scenarios. Ideally, the set of events 
that are inferred to cause a literal p will match the actual 
events that cause the condition modeled by p. However, 
FOIL-PS will not always initially find a correct set of 
models, so FOOLMETWICE updates the model periodically, 
after each scenario is completed. 

If the learned event models fail to cover all environment 
events causing p, then p may be found to be inconsistent in 
a future ߯௠௜ . When an inconsistent literal is found in the 
߯௠௜  of the most recent scenario, all previously learned 
events that cause it are removed from the model and new 
models are learned from scratch. Conversely, if the learned 
event models cover situations that do not trigger any event 
causing p, an event will be erroneously predicted, likely 
resulting in an inconsistent explanation. Thus, we designed 
DISCOVERHISTORY to resolve an inconsistency by 
abandoning a previously learned event model, removing it 
from the inconsistent explanation and marking it as invalid. 
This incurs less cost (5) than an inconsistency patch, 
preventing FOOLMETWICE from adding a second event that 
cancels the effects of the first, but costs more than other 
refinements, so that event models will not be abandoned 

often. After an event model is abandoned, the causes of 
that model’s effect are re-learned. 

In each of these situations, peb(p, ॿ) or ne(p, ॿ) 
contains a counterexample for the conditions of a prior 
learned event with incorrect conditions. The new models 
learned will therefore likely improve over time. 

FOOLMETWICE cannot acquire exogenous event models 
with continuous conditions and effects, and cannot model 
inequalities or numeric relationships between cause and 
effect, which we will address as future work. Also, PDDL+ 
processes, which model continuous change over time, 
cannot be acquired. 

5. Empirical Study 
The learning task is to construct accurate event models, but 
multiple models may accurately predict the same 
phenomena. Thus, we evaluate FOOLMETWICE for its 
ability to achieve goals at lower execution cost.  

5.1 Environments and Hypothesis 
We tested FOOLMETWICE in two new deterministic, 
partially observable, single actor domains. While we intend 
to use it in more complex domains (e.g., where events can 
be triggered by other actor’s actions or the environment), 
these suffice to test our agent. Each domain contains one 
event that is not part of the agent's model, and is based on a 
world state that is not directly observed. While no explicit 
learning goals exist, execution cost in each domain is lower 
when planning with knowledge of the unknown event. 
 The first domain, Satellites, is based on an IPC 2003 
competition domain in which a set of satellites have 
instruments that can obtain images in many spectra, and 
goals consist of taking various images. Performance is 
judged based on the time required to achieve all goals. 1 
time unit is used to turn a satellite to a new position, and 10 
to repair a satellite lens. The unknown event causes a 
satellite’s lens to break when taking an image of an 
excessively bright object. The fact that the object is too 
bright for the camera lens is hidden to the agent, but bright 
objects cause an observable lens flare during calibration. 
 The second domain, MudWorld, employs a discrete grid 
on which a simulated robot moves in the four cardinal 
directions. The robot observes its location and destination, 
and its only obstacle is mud. Each location can be muddy 
or not; the robot cannot observe mud directly, but it 
deterministically receives a related observation when 
entering a location adjacent to one that is muddy. If it 
enters mud, its movement speed is halved until it leaves. 
However, its initial model does not describe this decrease 
in speed, so it is surprised when its speed decreases.   
 In both domains, execution cost is based on time taken 
to achieve a goal. We hypothesize that, after learning 
models of unknown events, FOOLMETWICE will create 
plans that require less time. 
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5.2 Experiment Description 
For each domain, we randomly generated 50 training and 
25 test scenarios. In Satellites, the initial state of each 
scenario has 3 satellites with 12 instruments randomly 
apportioned among them. Each scenario has 5 goals 
requiring that an image of a random target be obtained in a 
random spectrum. MudWorld scenarios consist of a 6x6 
grid with random start and destination locations, each of 
which may contain mud with 40% probability. We selected 
start and destination locations so that all routes between 
them contain at least 4 steps, irrespective of mud.  
 In each of 10 replications per domain, we measured 
FOOLMETWICE’s performance on all test scenarios before 
and after training on 5 scenarios. 

5.3 Results 
Figure 2 displays the average execution cost incurred in 
each domain by FOOLMETWICE (blue with triangle 
markers), an “optimal” version with a complete model 
(green with circle markers), and a non-learning baseline 
(red with square markers). The vertical axes depict the 
simulated time required to complete the test scenarios, 
while the horizontal axes depict the number of training 
scenarios provided.  
 In each domain, FOOLMETWICE achieved a performance 
gain of more than 90% with respect to the optimal 
performance within 5 trials. After training on only one 
scenario in each domain, its average performance is 
significantly higher than when using the initial 
environment model (݌ < .05). 

Similar results might be obtained for other domains in 
which unknown events are deterministic and based only on 
predicate literals. However, our results do not currently 
generalize to nondeterministic events, willed actions, or 
events dependent on values of function literals. 

Table 3 shows average wall clock time spent during 
execution and learning per domain, and the number of 
explanation failures. The number of explanation failures 
trends downward, and learning time appears to decrease in 
MudWorld. However, execution time initially increases in 
Satellites. Review of individual trials indicates that this is 
caused by learning initial models that are inefficient to 

compute. We conclude that while explanation and planning 
clearly improve performance with learning, wall clock time 
can suffer and is an interesting subject for future study. 

6. Conclusions 
We described FOOLMETWICE, a novel GDA agent that 
uses a new technique to identify unknown events in a 
model based on surprise and explanation generation, and a 
relational learning method to update environment models. 
We described its initial study on the task of learning from 
surprises, and found that it rapidly learned better 
environment models (i.e., reasoning with them results in 
lower execution costs; even inaccurate models may help to 
improve an agent’s plans). 
 We did not compare FOOLMETWICE against other 
agents, mainly because we focus on learning models of 
exogenous events, which other agents do not target. 
However, it is possible that algorithms which learn the 
conditional effects of actions (e.g., LAMP (Zhuo et al., 
2010) may perform well on the tasks we used in our 
experiments, which could be expressed using actions with 
conditional effects rather than exogenous events. 

FOOLMETWICE assumes that an explanation failure is 
due to an unknown event(s); as a result, it may incorrectly 
infer that its model is incomplete when explanation search 
fails  (e.g., due to computational constraints). Conversely, 
search may sometimes find an incorrect explanation when 
ambiguous observations are received, causing it to ignore 
an opportunity for learning. Reducing these false positives 
and false negatives is a future research topic. 

We will also assess performance on more complex 
domains, and in particular opportunistic domains, where 
surprises provide affordances rather than represent 
obstacles. We will also investigate the problem of learning 
process models that represent continuous change, and 
models of the actions and motivations of other agents. 

Finally, we will apply FOOLMETWICE to active transfer 
learning contexts, in which an agent acting in a similar 
domain to one it understands may quickly learn in that 
domain with minimal expert intervention. FOOLMETWICE 
can theoretically transfer environment models among 
similar domains by treating a source domain model as an 
incomplete model of its new domain. This will require 
further research on integrating expert feedback and 
removing prior incorrect models.  

Table 3: Additional Performance Metrics for FOOLMETWICE  

Figure 2: Average Execution Cost of FOOLMETWICE 
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