Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

Huffman Coding for Storing Non-Uniformly Distributed
Messages in Networks of Neural Cliques

Bartosz Boguslawski!, Vincent Gripon?, Fabrice Seguin?, Frédéric Heitzmann'

1 Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France

2TELECOM Bretagne, Electronics Department, 29238 Brest, France
{bartosz.boguslawski, frederic.heitzmann} @cea.fr, {vincent.gripon, fabrice.seguin} @telecom-bretagne.eu

Abstract

Associative memories are data structures that allow retrieval
of previously stored messages given part of their content.
They thus behave similarly to human brain’s memory that
is capable for instance of retrieving the end of a song given
its beginning. Among different families of associative mem-
ories, sparse ones are known to provide the best efficiency
(ratio of the number of bits stored to that of bits used). Nev-
ertheless, it is well known that non-uniformity of the stored
messages can lead to dramatic decrease in performance. Re-
cently, a new family of sparse associative memories achieving
almost-optimal efficiency has been proposed. Their structure
induces a direct mapping between input messages and stored
patterns. In this work, we show the impact of non-uniformity
on the performance of this recent model and we exploit the
structure of the model to introduce several strategies to allow
for efficient storage of non-uniform messages. We show that
a technique based on Huffman coding is the most efficient.

1 Introduction

In traditional indexed memories, data is addressed by us-
ing a known pointer. The principle of associative memories
is different: data retrieval is accomplished by presenting a
part (possibly small) of it. Thanks to the partial input, the
rest of the information is recalled and consequently no ad-
dress is needed. As a toy example, retrieving the password
of a user given its name in a database is typically a request
of an associative memory. Associative memories are widely
used in practical applications, for instance databases (Lin,
Smith, and Smith 1976), intrusion detection (Papadogian-
nakis, Polychronakis, and Markatos 2010), processing units’
caches (Jouppi 1990) or routers (Lou and Chen 2001).

In order to assess the performance of associative mem-
ories, several parameters can be introduced. Probably the
most important one (Gripon and Rabbat 2013) is termed
memory efficiency and is defined as the best ratio of the total
number of bits stored to the total number of bits used to store
the memory itself, for a targeted performance. Note that this
ratio is trivially one for indexed memories. Because of most
applications, another important parameter is the computa-
tional complexity. Again, this parameter makes usually no

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

262

sense for traditional memories in which computational com-
plexity is often considered to be of O(1).

In practice one can distinguish two main families of as-
sociative memories, namely content-addressable memory
(CAM) (Pagiamtzis and Sheikholeslami 2006) and neuroin-
spired memories. A CAM compares the input search word
against the stored data, and returns a list of one or more
addresses where the matching data word is stored. CAMs
combine memory efficiency with zero error rate and are of-
ten used in electronics, for example in network routers (Pa-
giamtzis and Sheikholeslami 2006). However, since it is a
brute-force approach, the number of comparisons between
the input search word and the stored data results in high
complexity and energy consumption (Jarollahi et al. 2013).
Moreover, CAMs make the asumption that stored messages
are couples, where only the second item can be erased in
an input. Ternary CAM (TCAM) expands CAM functional-
ity allowing “don’t care” bits matching both 0 and 1 values,
thereby offering more flexibility. However, this comes at an
additional cost as the memory cells must encode three pos-
sible states instead of the two in case of binary CAM. Con-
sequently, the cost of parallel search within such a memory
becomes even greater (Agrawal and Sherwood 2006).

Neuroinspired associative memories combine lower com-
plexity with higher flexibility, at the cost of reduced effi-
ciency. In this category Hopfield Neural Networks (Hopfield
1982) is the most prominent model. In this model, stored
messages are projected onto the connection weights of a
complete graph. Nevertheless, when the size of this network
is increased the efficiency tends to zero. Sparse networks
originally proposed by Willshaw (Willshaw, Buneman, and
Higgins 1969) use a small subset of connections to store
each message, resulting in a much better efficiency (Palm
2013). Further, works from (Salavati and Karbasi 2012) are
also known to allow for storing large number of messages.

Recently Gripon and Berrou proposed a new model
(Gripon and Berrou 2011b) that can actually be seen as
a particular Willshaw network with cluster structure. This
modification allows for efficient retrieval algorithm without
diminishing performance. This model is able to store a large
number of messages and recall them, even when a signifi-
cant part of the input is erased. The simulations of the net-

work working as a data structure or an associative memory
proved a huge gain in performance compared to Hopfield
network (Hopfield 1982) and Boltzmann machine (Ackley,
Hinton, and Stejnowski 1985) (when using comparable ma-
terial) (Gripon and Berrou 2011b). The fact that the net-
work is able to retrieve messages with erasures on any po-
sition or in the presence of noise, gives it an advantage over
CAMs. These interesting properties originate in error cor-
recting codes that underlie this network principles (Gripon
and Berrou 2011a).

The network as presented in (Gripon and Berrou 2011b)
is analyzed only for uniform i.i.d. (independent identically
distributed) values among all the messages. By the network
construction this means that the number of connections go-
ing out from each node is uniformly distributed across the
whole network. It is well known that non-uniformity of mes-
sages to store can lead to dramatic decrease in performance
(Knoblauch, Palm, and Sommer 2010). On the other hand, it
is expected that real world applications may contain highly
correlated data. In this work the situation where non-uniform
data is stored is analyzed and its influence on the network
performance is explained. Further, we exploit the structures
of these networks to introduce several techniques in order to
efficiently store non-uniform data.

The paper is organized as follows. Section II outlines the
theory of the network. The problem of storing non-uniform
data is explained in Section III. Section IV proposes several
new strategies to store non-uniform data. In Section V per-
formance of the proposed strategies is evaluated. Section VI
discusses the introduced techniques and gives an insight in
the future work.

2 Sparse neural networks with large learning
diversity

In this section, we introduce the family of sparse associative
memories described in (Gripon and Berrou 2011b).

2.1 Message definition

Throughout this work, we consider that associative mem-
ories store messages that they are later capable of retriev-
ing given a sufficiently large part of their content. In order
to ease the readability of this document, and without loss
of generality, we consider that a message consists of ¢ sub-
messages or segments. Each segment can be seen as a binary
vector whose values range from 0 to ¢ — 1. An exemplary
message, for c = 4 and ¢ = 4, is m = {10 00 01 11} (to be
read 201 3).

2.2 Network structure

In order to store messages, we use a network that con-
sists of binary neurons and binary connections. The authors
of (Gripon and Berrou 2011b), use the term fanal (which
means lantern or beacon) instead of neuron for two reasons:
a) at a given moment, in normal conditions, only one fanal
within a group of them can be active and b) for biological in-
spirations, fanals do not represent neurons but microcolumns
(Aliabadi et al. 2013). Figure 1 represents the general struc-
ture of the network and the notation. All the n fanals are

263

Ry Wi i T
P Qi) (1 f)
l .q \ / .0 ‘:}
"o/
S ™ cluster - fanial
(-)
c clusters

Figure 1: The network general structure and notation. Dif-
ferent shapes (circles, squares) represent fanals belonging to
different clusters.

organized in c disjoint groups called clusters. Fanals belong-
ing to specific clusters are represented with different shapes.
Each cluster groups ¢ = n/c fanals. A node in the network is
identified by its index (3, j), where ¢ corresponds to the clus-
ter number and j to the number of the fanal inside the cluster.
The connections are allowed only between fanals belonging
to different clusters, i.e. the graph is multipartite. The con-
nection between two fanals is denoted by a binary weight
w (4,) (z",j /). Contrary to classical neural networks the con-

nections do not possess different weights, the connection ex-
ists or not. Hence, the weight (or adjacency) matrix of such a
network consists of values {0, 1} where 1 indicates the con-
nection between two fanals, and O the lack of a connection.

2.3

To store a message m in the network, each of its ¢ segments
is associated with a distinct cluster, and more precisely with
aunique fanal in its cluster (the one which index corresponds
to the value of the segment). Then, this subset of fanals is
fully interconnected forming a clique representing the mes-
sage in the network. This term is also used in neurobiol-
ogy to describe such groupings of neurons (Lin, Osan, and
Tsien 2006). When a new message shares the same connec-
tion than an already stored message, this connection remains
unchanged. Therefore, the result of the storage procedure is
independent of the order in which messages are presented to
the network. For more details about this storing procedure,
refer to (Gripon and Berrou 2011b).

Message storing procedure

24

We call retrieval the process of recalling a previously stored
message when only part of its corresponding fanals is
known. After the storing of all messages, the retrieval pro-
cess is organized as follows. First, the known segments of
the input message are used to stimulate appropriate fanals,
i.e. the value on the given segment indicates which fanal
should be chosen. These fanals are said to be active. After
the initial stimulation, message passing phase comes next.
The activated fanals send unitary signals to other clusters
through all of their connections. Then, each of the fanals cal-
culates the sum of the signals it received. Within each clus-
ter the fanal having the largest sum is chosen and its state
becomes 1, i.e. it is active. The other fanals inside the clus-
ter present the state equal to 0. The rule according to which
the active fanal inside the cluster is elected is called Winner

Message retrieval procedure

Takes AIl (WTA). The whole process may be iterative, allow-
ing the fanals to exchange information with each other, such
that ambiguous clusters (those containing more than one ac-
tive fanal) will hopefully be correctly retrieved. When more
than one iteration is needed (input with significant noise or
erasures resulting in non-unique fanal with the largest sum)
an extra value is added to the score of the last winners in the
next iteration. More details on adjusting this memory effect
are given in (Gripon and Berrou 2011b). Hopefully, thanks
to this iterative retrieval procedure the network converges
step-by-step to the targeted previously stored message. In
some cases though, it may happen that the output message
is not correct, leading to nonzero error probability in the re-
trieval process.

As a result of the strong correlation brought by the con-
nections of the clique embodying a message in the network,
it is possible to retrieve the stored message based on partial
or noisy information put into the network. In order to tar-
get first applications (Larras et al. 2013a), the network was
implemented in hardware (Larras et al. 2013b).

3 Non-uniformly distributed messages
3.1 Density and error probability definition

As previously stated storing messages in the network corre-
sponds to creating subgraphs of interconnected fanals. When
the number of stored messages increases, these subgraphs
share an increasing number of connections. Consequently,
distinguishing between messages is more difficult. As a log-
ical consequence, there is an upperbound for the number of
distinct messages one can store then retrieve for a targeted
maximum error probability. The network density d is defined
as a ratio of the established connections to all the possible
ones. Therefore, the density is a parameter of first impor-
tance to assess the network performance. A density close to
1 corresponds to an overloaded network. In this case the net-
work will not be able to retrieve stored messages correctly.
For a network that stored M uniformly distributed messages
expected density d is expressed by the following formula or
its first-order approximation:

M
1 M 9
dzl—(l—ﬂ) ~—£2whenM<<€. €))

The probability of correctly retrieving a message with ce po-
sitions erased in a network constructed of c¢ clusters is given
by:

@

This equation is valid for a single iteration. The probability
of error increases with d, which is expressed by (1). Note
that in case of a larger density, iterations improve the abil-
ity of the network for retrieving messages correctly, what is
confirmed by the evaluated simulations.

However, these equations only hold when input messages
are drawn uniformly at random. Correlation between stored
messages can lead to dramatic decrease in the performance
of such memories.

Pe = (1 - dcfce)(f_l)ce .

264

" cluster
v

Figure 2: Network with non-uniformly distributed messages.
Different shapes (filled or empty circles or squares) repre-
sent fanals belonging to different clusters, different types
of lines represent connections belonging to distinct cliques.
Clusters are numbered - they represent segments of mes-
sages.

3.2 Non-uniform distribution example

Figure 2 represents a case of a network made of four clus-
ters. Fanals belonging to specific clusters are represented
with different shapes. There are four fanals per cluster. The
number of segments in the messages is four, each cluster
corresponding to a given segment, and on each segment one
of the four values is chosen. Cliques are formed by lines
connecting fanals. Figure 2 depicts a situation where four
messages are stored, each type of the line representing a dif-
ferent clique.

For a set of messages stored in the network, some fanals
can have much more connections than the others. One can
observe that in all of the clusters except cluster I, each node
has the same number of connections. This means that on the
segments I, III, IV of the messages each of the four possible
values occured. However, in the cluster I, only one of the
fanals is always used, i.e. the value on the first segment is
constant. This simple example depicts how the distribution
of data stored in the network maps to the interconnection
structure.

Figure 3 shows the evolution of the error retrieval rate for
a larger network with ¢ = 8 and ¢ = 256. In that spe-
cific case, half the clusters are not provided with informa-
tion. This means that only four randomly chosen segments
of a message are known, the remaining are erased. Hence,
only four fanals are initially stimulated in four clusters. Fig-
ure 3 shows also the theoretical curve for a single iteration
and the network density. Note the interest of the iterative
character of the decoding process. The simulation shows
that the network of n = 2048 fanals can store up to 15000
uniform messages of 64 bits each and retrieve them with a
very high probability (error rate 0.029 for four iterations al-
lowed) even when half the clusters are not provided with in-
formation. However, when the messages are generated from
the Gaussian distribution (mean p = 135, standard devia-

1 — g . R
o % . +
08 ’ - . :
' +
]
= * +
20.6- 1
© +
a; *
@ +
504 © A
= *
LIJ +
0.2 . ' 1
N +
* +
o . * Lt *
IR . I L
10000 20000 30000

Number of stored messages (M)
— Network density o Nonuniform (4-iterations simulated)

Uniform (1-iteration simulated) . Odc_j or even values allowed
« Uniform (4-iterations simulated) ~(4-iterations simulated)

Figure 3: Evolution of the error rate as a function of the
number of stored messages. The network composed of eight
clusters of size 256, four randomly erased positions.

tion o = 25), only 2000 messages can be stored (error rate
0.047). The Gaussian distribution, contrary to the uniform
one, implies that on a given segment of messages some val-
ues occur much more often than the others. Figure 3 presents
also a curve (indicated with asterisk) for a data with a spe-
cific correlation between the values within each message.
Within each message either odd or even values are only al-
lowed. This means that if on the first segment there is an
odd value, one knows that all the other values are odd (e.g.
m = {1357911 13 15} in decimal). For this dataset the
network can store 8000 messages and retrieve them with the
same error probability as in the uniform case. One can see
that the correlation in the stored data clearly shifts the curve
toward lowest number of stored messages. In this example,
the same network filled with normally distributed data, can
store only 13% of the number of uniformly distributed mes-
sages.

As in most applications, data cannot be considered uni-
form, it is of first importance to introduce techniques to
counterbalance the effects of correlation on performance.

4 Huffman coding and other strategies to
store non-uniform data

In the following section several strategies to store non-
uniform data are described. They essentially all consist in
adding spatial diversity to the networks.

4.1 Adding random clusters

The first of the strategies relies on adding to the existing
network, clusters filled with random values drawn from a
uniform distribution. These random values stored in ran-
dom clusters play a role of a so-called stamp, providing the
existing clique with additional information and supporting
the message retrieval process. This way the influence of lo-
cal high density areas caused by non-uniform data is neu-
tralised. Figure 4 illustrates the network from Figure 2 with

265

| o
Figure 4: Network with one random cluster (represented by
triangles) added.

one random cluster added and one message stored. When us-
ing this technique, each message comes with an additional
segment (or several segments) which holds a value randomly
generated from an arbitrary chosen range. Then, during the
retrieval, only a subset of known non-random segments is
used to initially stimulate the network. Through the estab-
lished connections they stimulate all the other clusters, ran-
dom clusters as well. Then, the latter stimulate the others
and give additional support to the retrieval process.

The main advantage of this technique is the fact that no
additional processing on the stored data is needed, the values
that are stored in the network are directly used for the initial
stimulation. Thanks to the additional clusters, the necessary
treatment is done by the network itself.

Similar technique is introduced in (Knoblauch, Palm, and
Sommer 2010). The authors propose adding to a feedfor-
ward neural network an additional intermediary layer filled
with random patterns, in order to improve the performance
of a single-layer model in case of non-random data. Since
the two models have much in common, this technique is
treated as a reference for the rest of the introduced strate-
gies.

After explaining other techniques, the following section
presents how they improve the performance compared to
adding random clusters.

4.2 Adding random bits

Another category of the proposed strategies relies on adding
random uniformly generated bits to the existing data rather
than whole random values stored in separate clusters. As a
consequence, the structure of the network remains the same,
only the size of clusters is modified since the range of val-
ues is expanded by a number of random bits. In other words,
single fanal is no more associated with a given value. For
instance, adding one random bit to a segment implies ran-
domly choosing between two fanals associated with a given
value.

Besides adding bits simply drawn from the uniform ran-
dom distribution another approach to generate additional
bits is proposed. To each value always the least used com-
bination of bits (or one of the least used) is added. The rule
is illustrated with Figure 5. For each of the values coded on

00000000000000

(M) Z
A
%\ §, 00000000111111
S\ " 00001111000011

®
/g‘ 00110011001100

%\ 01010101010101
000/01111111111111

001/00101010111100
010 .

011
100
101
110
111

Figure 5: Adding least used combination of bits. The addi-
tional bits that are marked can be added to the initial values.

8 bits a table is created where the number of occurrences of
each additional bits combination is stored. For instance, for
the first value consisting of only zeros either 000 or 001 can
be chosen. However, for value 00000001 only 001 can be
added since 000 is already used once. This procedure con-
tinues for all the positions in all the messages.

As it is shown in the following section, this technique
offers much better performance compared to random clus-
ters strategy when using comparable material. However, it
requires changing the data by adding random bits before
storing it in the network. This does not imply higher com-
putational complexity compared to adding random clusters,
since both methods require only random numbers genera-
tion. Nevertheless, manipulating the data before storing it,
may be constraining in some applications.

4.3 Using compression codes

The last proposed strategy is to apply algebraic compression
codes. In this work Huffman lossless compression coding
is proposed. This technique allows to minimize the average
number of coding symbols per message (Huffman 1952).
Note that for some datasets arithmetic coding may perform
better than Huffman code, see (Bookstein and Klein 1993)
for comparison.

Huffman coding produces variable length codewords -
the values that occur most frequently are coded on a small
number of bits, whereas less frequent values occupy more
space. One dictionary is constructed for each segment of
all the messages. Such procedure results in variable length
segments, the most often occuring values being the short-
est. Therefore, the sizes of the frequent values that break the
uniformity are minimized. The free space obtained within
each segment is filled with random uniformly generated bits.
Now, the most often appearing values are associated with the
largest number of randomly chosen fanals. Decoding is pos-
sible thanks to the prefix-free property, that is a set of bits
representing a symbol is never a prefix of another codeword.
Strictly speaking, in order to decode the retrieved encoded
message, each segment is compared bit-by-bit with its dic-

266

1 o &0 A e
OOO w7
° +
R
0.8+]
o +
+ go"”
DDDD
0.6 1
[*
S ECT
W4 o e . i
DDD +
Lo
o +
0.2 . . 1
.
=] +
o Lt
Oleosov+rvvorr T + -
10000 20000 30000

Number of stored messages (M)

+ Uniform (4-iterations simulated) v Nonuniform, random bits
o Nonuniform (4-iterations simulated) = Nonuniform, least used bits
= Nonuniform, random clusters * Nonuniform, Huffman coding

Figure 6: Evolution of the error rate when using proposed
strategies as a function of the number of stored messages
compared to the uniform and non-uniform cases. Four posi-
tions are randomly erased. The material used for each strat-
egy is comparable.

tionary. When a codeword is met, one knows that these bits
are useful, the remaining being the random ones.

The simulations prove that using compression codes is the
most effective from the presented techniques. Thanks to the
properties of the used coding technique, the frequent values
are effectively redistributed across a group of fanals. Con-
sequently, the influence of local high density areas is mini-
mized. Compression codes, however, require additional op-
erations related to coding and decoding. In some applica-
tions the fact that in order to compute the Huffman code the
entire data set is required can also be a limitation. In this
case a variation of Huffman coding such as Adaptive Huff-
man coding (Vitter 1987) can be used. In this technique, the
code is built as the data is transmitted, with no initial knowl-
edge of the distribution.

5 Performance comparison

In this section performance of all the introduced strategies is
evaluated. The simulations are performed for the same net-
work as in section 3 and the same non-uniform distribution.

Figure 6 shows the improvement in performance when us-
ing the proposed techniques. To prove that adding a certain
material improves the network functioning, seven random
clusters of 5000 fanals each are added. Compared to non-
uniform case without using any technique the improvement
is clear. The function is non-monotonic since the significant
part of the network is filled with random values. To com-
pare the used techniques, each of them is classified by the
amount of material it uses. The used material is considered
to be the number of possible connections. In case of an im-
plementation, be it software or hardware, it implies the num-
ber of information (bits) that is needed to indicate whether
the connections between nodes are established or not. The
rest of the techniques (random bits, least used bits, Huff-

o © **§$gvvv
v
. L33
N
0.8- . |
+
o * g
N
0.6 T 1
S v *
E * v
Wo4- o ' 1
x v
.
% vV
0.2- g i
* v +
% v +
&V +
O'(j -ﬁwiﬁ??i$+++ & &
10000 20000 30000

Number of stored messages (M)
+ Uniform (4-iterations simulated) = Nonuniform, least used bits
o Nonuniform (4-iterations simulated)~ Nonuniform, Huffman coding
v Nonuniform, random bits

Figure 7: Evolution of the error rate when using proposed
strategies as a function of the number of stored messages
compared to the uniform and non-uniform cases. Four posi-
tions are randomly erased. The minimal material to obtain
close-to-uniform performance is used.

Table 1: The limiting number of messages that can be stored
until the error rate reaches 0.1. Two additional bits used.

Technique No. messages
Least used bits 14000
Random bits 15000
Huffman coding 117000

| Uniform messages | 220000 |

man coding) use the closest additional material compared to
the random clusters strategy. This is obtained for eight clus-
ters of 4096 fanals which corresponds to four additional bits.
These strategies offer much better performance using com-
parable material, obtained error rate always remains near to
ZEero.

Figure 7 presents results when using minimum material to
approach the performance close to the uniform case. When
the random bits and the least used combination strategies
are applied, two additional bits are enough to get close to
the uniform data case. This means that the size ¢ of the clus-
ters equals 1024 and the material used accounts for 4.9% of
the material used for random clusters strategy. When three
bits are added (not shown on the plot) the performance gets
already much better than for the uniform messages, there-
fore two bits are the minimal necessary material needed.
The curve for Huffman coding technique also uses two ad-
ditional bits (two bits turned out to be the minimal material
for the random bits, least used bits and Huffman coding tech-
niques). In this case the gain in performance is significant,
the error rate always stays close to zero. For the used data
distribution the length of the messages sometimes exceeds
72 bits (8 clusters x (8 bits + 1 random bit)) and conse-
quently, adding less than two bits is not possible. However,

267

for different data sets minimizing the used material could
still be feasible.

Figure 7 does not show the limiting number of messages
for Huffman coding technique. Therefore, additional simu-
lations for larger numbers of stored messages were carried
out. Table 1 shows a comparison of the strategies when two
additional bits were used (corresponds to Figure 7) and the
error rate reaches 0.1. It also compares the results to the
case when uniform messages are stored in the network of
the same size (¢ = 8, £ = 1024).

6 Conclusion

In this work the performance of the network (Gripon and
Berrou 2011b) in case of non-uniformly distributed mes-
sages is evaluated. The analyses showed clearly the impor-
tance of adapting the network to such a kind of data. Several
strategies to avoid performance degradation are proposed
and evaluated. One of them relies on supporting the cliques
with additional signals coming from the added clusters. The
principle of the other techniques is to spread the same val-
ues across a group of fanals. In order to apply these recently
introduced memories in practical applications, adapting the
network to non-uniform messages is indispensable, as real-
world data is not necessarily uniformly distributed.

Compared to the technique used for the similar net-
work model, other proposed strategies offer performance
improvements. Especially the strategy that uses Huffman
coding offers great performance enhancements, since it min-
imizes the length of each message segment based on its dis-
tribution. Consequently, frequent values are coded on a few
bits which allows adding random bits determining which
fanal from a group of available is used. This way, often
appearing values are efficiently redistributed across larger
groups of fanals, limiting the negative influence of high den-
sity areas. However, Huffman coding requires constructing
the dictionaries in order to code and decode messages.

The application determines which technique should be
used. If one can afford transforming data before storing it
in the network either random bits or compression codes
should be used. Otherwise, one should use random clusters
technique where only initial data is used when stimulating
the network. Alternatively, when the used material is con-
straining, random bits and compression codes are more effi-
cient. Nevertheless, Huffman coding implies additional cost
of coding/decoding which means that in some cases random
bits offer better performance/cost trade off.

Future work may include exploring some self-adapting
techniques built in the network architecture. For instance,
one can envision limiting the density on fanal level and when
a specified value is reached using a new fanal instead. An-
other possibility to be considered is adapting the size of
cliques with respect to data distribution, giving more sup-
port to the cliques containing frequent values.

7 Acknowledgments

This work was supported in part by the European Research
Council (ERC-AdG2011 290901 NEUCOD).

References

Ackley, D. H.; Hinton, G. E.; and Stejnowski, T. J. 1985.
A learning algorithm for Boltzmann machines. Cognit. Sci.
9(1):147-169.

Agrawal, B., and Sherwood, T. 2006. Modeling TCAM
power for next generation network devices. In Proc. of IEEE

International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), 120-129.

Aliabadi, B. K.; Berrou, C.; Gripon, V.; and Jiang, X. 2013.
Storing sparse messages in networks of neural cliques. IEEE
Transactions on Neural Networks and Learning Systems
PP(99):1 - 10.

Bookstein, A., and Klein, S. 1993. Is Huffman coding dead?
Computing 50:279-296.

Gripon, V., and Berrou, C. 201la. A simple and effi-
cient way to store many messages using neural cliques. In
Proceedings of IEEE Symposium on Computational Intelli-
gence, Cognitive Algorithms, Mind, and Brain, 54-58.

Gripon, V., and Berrou, C. 2011b. Sparse neural networks

with large learning diversity. IEEE Transactions on Neural
Networks 22(7):1087-1096.

Gripon, V., and Rabbat, M. 2013. Maximum likelihood
associative memories. In Proceedings of Information Theory
Workshop, 1-5.

Hopfield, J. J. 1982. Neural networks and physical systems
with emergent collective computational abilities. Proc. Nat.
Acad. Sci 79(8):2554-2558.

Huffman, D. A. 1952. A method for the construction of
minimum-redundancy codes. Proceedings of the Institute of
Radio Engineers 40(9):1098-1101.

Jarollahi, H.; Gripon, V.; Onizawa, N.; and Gross, W. J.
2013. A low-power content-addressable-memory based on
clustered-sparse-networks. In Proceedings of 24th IEEE In-
ternational Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP 2013).

Jouppi, N. P. 1990. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache and
prefetch buffers. In Proceedings of the 17th annual inter-
national symposium on Computer Architecture, ISCA 90,
364-373.

Knoblauch, A.; Palm, G.; and Sommer, F. T. 2010. Mem-
ory capacities for synaptic and structural plasticity. Neural
Comput. 22(2):289-341.

Larras, B.; Boguslawski, B.; Lahuec, C.; Arzel, M.; Seguin,
F; and Heitzmann, F. 2013a. Analog encoded neural net-
work for power management in MPSoC. In Proceedings of
the 11th International IEEE New Circuits and Systems Con-
ference, NEWCAS ’13, 1-4.

Larras, B.; Lahuec, C.; Arzel, M.; and Seguin, F. 2013b.
Analog implementation of encoded neural networks. In IS-
CAS 2013 : IEEE International Symposium on Circuits and
Systems, 1 — 4.

Lin, L.; Osan, R.; and Tsien, J. Z. 2006. Organizing prin-
ciples of real-time memory encoding: Neural clique assem-

blies and universal neural codes. Trends Neurosci. 29(1):48—
57.

268

Lin, C. S.; Smith, D. C. P.; and Smith, J. M. 1976. The de-
sign of a rotating associative memory for relational database
applications. ACM Trans. Database Syst. 1(1):53-65.

Lou, N. H. W. C. C,, and Chen, J. 2001. Design of multi-
field IPv6 packet classifiers using ternary cams. In Proc.
IEEE GLOBECOM, volume 3, 1877-1881.

Pagiamtzis, K., and Sheikholeslami, A. 2006. Content-
addressable memory (CAM) circuits and architectures: A
tutorial and survey. IEEE Journal of Solid-State Circuits
41(3):712-7217.

Palm, G. 2013. Neural associative memories and sparse
coding. Neural Netw. 37:165-171.

Papadogiannakis, A.; Polychronakis, M.; and Markatos,
E. P. 2010. Improving the accuracy of network intrusion
detection systems under load using selective packet discard-
ing. In Proceedings of the Third European Workshop on
System Security, EUROSEC ’10, 15-21.

Salavati, A. H., and Karbasi, A. 2012. Multi-level error-
resilient neural networks. In ISIT, 1064-1068. IEEE.

Vitter, J. S. 1987. Design and analysis of dynamic Huffman
codes. J. ACM 34(4):825-845.

Willshaw, D. J.; Buneman, O. P.; and Higgins, L. H. C. 1969.
Non-holographic associative memory. Nature 222:960-962.

