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Abstract

Applications are increasingly expected to make smart deci-
sions based on what humans consider basic commonsense.
An often overlooked but essential form of commonsense in-
volves comparisons, e.g. the fact that bears are typically more
dangerous than dogs, that tables are heavier than chairs, or
that ice is colder than water. In this paper, we first rely on
open information extraction methods to obtain large amounts
of comparisons from the Web. We then develop a joint opti-
mization model for cleaning and disambiguating this knowl-
edge with respect to WordNet. This model relies on integer
linear programming and semantic coherence scores. Experi-
ments show that our model outperforms strong baselines and
allows us to obtain a large knowledge base of disambiguated
commonsense assertions.

Introduction

There is a growing conviction that the future of machine in-
telligence will crucially depend on our ability to exploit Big
Data for more advanced human-like reasoning. Over the last
decade, we have seen the rise of large knowledge collections
driven by Big Data on the Web, most notably Wikipedia
and online databases. Prominent examples include Freebase
(Bollacker et al. 2008), YAGO (Hoffart et al. 2011), and DB-
pedia (Auer et al. 2007). These collections have enabled im-
portant advances in areas like Web Search and Question An-
swering, with Freebase forming the core of Google’s Knowl-
edge Graph and DBpedia and YAGO being used in IBM’s
Jeopardy!-winning Watson system. They also play an im-
portant role in intelligent dialog systems like Apple’s Siri
and Nuance’s Nina, which are increasingly being adopted in
mobile devices, television sets, automobiles, and automated
customer service systems. Such systems however call for
more than just typical factual knowledge like who starred
in what movie or what the capital of Brazil is.

Increasingly, systems are expected to make smart com-
monsense choices. If the system suggests a pizza place and
the user wants something “healthier”, the computer should
know that a seafood restaurant is probably a better sug-
gestion than a burger joint. Rather than hard-coding vari-
ous types of information into each relevant reasoning en-
gine, genuine machine intelligence will require automati-
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cally drawing commonsense inferences from large amounts
of data. Liu and Singh (2004) list a number of projects
and applications that make use of common-sense knowledge
bases.

In this paper, we focus on a novel aspect of this greater
endeavor of making computer systems more intelligent. Our
goal is to extract and infer large amounts of compara-
tive knowledge about things in the world, e.g. that juice
is sweeter than water, or that gold is more expensive than
silver. This is an important part of human commonsense
knowledge that has not been addressed by previous re-
sources — neither by modern knowledge bases like Freebase
nor by commonsense knowledge collections like Cyc (Ma-
tuszek et al. 2005), ConceptNet (Havasi, Speer, and Alonso
2007) or our own prior work WebChild (Tandon et al. 2014).

Our approach involves first using open information
extraction (Open IE) techniques to harvest large amount
of initial comparative data from the Web, e.g. the fact
that seafood, on average, is perceived as healthier than a
hamburger. Open IE leads to triples of surface phrases, e.g.
(steel, sharper than, wood). Our method goes much further
by computing triples of disambiguated word senses, e.g.
(steelfnouan7 sharper-than-adj-2, woodfnounfl)

or (photofnounfl, sharper-than-adj-1, sketchfnounfl),

where the numbers are the WordNet sense numbers for the
ambiguous words.

Our method uses clustering and linear optimization meth-
ods to clean and consolidate this knowledge, while also
inferring new information. In the end, we obtain sense-
disambiguated knowledge that properly distinguishes, for
example, the temperature sense of “cool” from the hipness
sense of “cool”.

Contributions. We make the following contributions.

1. We present the first open information extraction system
for harvesting large amounts of comparative knowledge
from Web contents.

2. We introduce a novel algorithm to organize such compar-
ative knowledge with proper semantic rigor such that ar-
guments are sense-disambiguated, by linking them to the
lexical knowledge base WordNet (Fellbaum 1998)).

3. We publish a large, semantically refined knowledge base
of comparative commonsense knowledge.



Overview

The goal of this paper is to establish a large machine-
readable repository of comparative commonsense knowl-
edge. In particular, we consider relationships that can be ex-
pressed using the comparative forms of adjectives, e.g. “is
bigger than”, “is more reliable than”. As we are aiming at
commonsense, most knowledge we would expect to capture
will not hold as absolute universal truths, but rather be a re-
flection of overall tendencies. For example, although chee-
tahs are generally known to be faster than lions, an individ-
ual cheetah might be too young, unhealthy, etc. to be faster
than a given lion.

Our input will be a large collection of text. Our output will
be a set of annotated subject-predicate-object triples of the
form (X, ADJ, Y). Here, X and Y are noun concepts, and ADJ
is an adjective concept, interpreted as a comparative, e.g.
(car, faster, bike), (melon, bigger, apple), (lemon,
more-sour, apple)

The arguments we expect to obtain at the end are not
ambiguous words but sense-specific identifiers for noun
and adjective concepts. For this, we assume the existence
of a repository of noun and adjective concept identifiers.
Specifically, we rely on WordNet (Fellbaum 1998), a well-
known lexical knowledge base that distinguishes the differ-
ent senses of ambiguous words like “bass” (music instru-
ment or fish) or “green(er)” (color or environmental friend-
liness), while also grouping together near-synonyms like
“fast(er)” and “quick(er)”.

In an effort to cover a wider range of commonsense phe-
nomena, we do not limit ourselves to arguments X and Y that
directly correspond to nominal concepts in WordNet. Addi-
tionally, we also aim at obtaining large amounts of informa-
tion about more specific concepts as given by disambiguated
adjective-noun or noun-noun combinations, e.g. young li-
ons, cold water, vegetable dumpling, etc. We refer to these
as ad hoc concepts.

Comparative Knowledge Base Construction

In order to arrive at such a knowledge base given just a large
text collection, we (1) use information extraction to obtain
observed textual facts, and then (2) develop a model to dis-
ambiguate and semantically organize this extracted data.

Open Information Extraction

In the extraction phase, we run through the input corpus and
collect all triples matching the template (noun phrase) +
(comparative predicate) + (noun phrase).

As noun phrases, we consider nouns listed in WordNet
(“water”, “dark chocolate’), adjective-noun pairs (“cold wa-
ter”) and noun-noun expressions (‘“football manager”) that
are not in WordNet. These nouns phrases are stemmed after
dropping any leading stop words (“the”, “a”, “our”, etc.).
We heuristically identify the head noun of a noun phrase
containing an adjective or a noun word (ignoring proper
nouns) as the right-most stemmed noun (water in cold wa-
ter).

As comparative phrases, we allow inflections of the word
“to be” followed by comparative forms of adjectives (e.g.
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“bigger than”, “more educated than”, etc.). We also al-
low them to contain modifying adverbs/negations, as e.g.
in “are typically bigger than”, “are never bigger than”, or
“is not only faster than”. We manually encode a list of
negation phrases like “not”, “never” and some exceptions
(“not only”). As a heuristic, we capture negations by assum-
ing negations imply the opposite, in common-sense terms.
Thus, “bikes are not faster than cars” is stored as a triple
(car, faster, bike). Comparative forms of adjectives are de-
tected using WordNet. An exhaustive list of potential com-
parative forms of adjectives is generated by adding the suffix
“er” and prefixes “more ”, “less ” to each WordNet adjective
(“colder”, “more cold (than)”). WordNet additionally pro-
vides a list of irregular forms that cannot be generated in
this way (e.g. “better”).

Using all of this information, we developed a fast pattern
matcher to detect instances of this template. Our implemen-
tation is based on Hadoop MapReduce in order to quickly
process large Web corpora in a distributed hardware cluster.
The output of the extraction phase consists of i) left noun
phrase (and its head noun), ii) relation (and its embedded
adjective), iii) right noun phrase (and its head noun), iv) fre-
quency, v) direction.

Disambiguation and Organization

The next step is to disambiguate and organize the knowl-
edge. The original extractions are often ambiguous. For ex-
ample, “hotter than” can refer to heat or to attractiveness,
and “richer than” can refer to money or to calories. The
left and right arguments are also often ambiguous. At the
same time, our extractions do not group together equivalent
forms. Given an original observed triple (n},a*,n}) from
the information extraction step, our principal goal will be to
choose relevant grounded triples (n1,a,n2), where n1, a,
and ng are no longer simple strings from the text, but disam-
biguated word sense IDs with respect to a lexical knowledge
base like WordNet.

We first present a simple local baseline model, which as-
sumes independence across the triples. Then we describe a
more advanced model, which makes use of integer linear
programming problems (ILPs) and does not assume inde-
pendence across triples.

Local Model. Similar to state-of-the-art methods for word
sense disambiguation on text (Navigli 2009), the local model
assumes that the most likely disambiguation is the one that
has the highest internal coherence, while simultaneously
also preferring more frequent senses. A grounded triple ex-
hibits high internal coherence when the word senses within
it are similar to each other. Thus, for every grounding
(n1,a,n2) of an observation (n},a*,n}), a score is com-
puted as follows:

score(ny, a,n2) = TnN(n1,N2)
+ ™na(n1,a) + Tna (2, a)
+ ¢(nT» nl) + d)(n;a n2)
+ ¢(a”, a) (D

This score combines three different kinds of components:



e nn(m1,72): A taxonomic relatedness score between two
noun senses nq and no, computed using a WordNet path
similarity measure (Pedersen, Patwardhan, and Miche-
lizzi 2004). If one of the two arguments is an ad hoc con-
cept like “ripe fruit”, we have separate senses for the first
word and for the second word, so we compute two scores
and take the average. If both n; and ny are ad hoc con-
cepts, we compute all four pairwise scores between in-
volved senses for n; and senses for no, again taking the
average. While doing this, any scores between two noun
senses are computed as above using the WordNet path
similarity measure, while any scores involving an adjec-
tive sense are computed as for 7y (n, a) below.

e 7na (7, a): A taxonomic relatedness score between a noun
sense and an adjective sense, computed by determining
the overlap between their extended WordNet glosses. The
extended glosses are constructed by concatenating the
original sense’s gloss with the glosses of related senses
in the taxonomic neighborhood. The taxonomic neighbor-
hood of a sense includes its directly related senses (e.g.
similar-to, antonym senses in WordNet). For nouns, the
hypernyms and hyponyms of a given sense are also con-
sidered. We then create bag-of-words feature vectors and
compute the cosine similarity.

When 7 is an ad hoc concept, the relatedness is the aver-
age over the two scores between its respective component
senses and the adjective a.

e ¢(w,s): A prior for the sense s of a word w, computed
as ﬁ given the WordNet sense rank r. Thus, the first

sense obtains % the second sense % and so on. For ad
hoc concepts, the sense score is the average sense score
of its components.

Joint Model. Although all of its components are well-
motivated, the local model ultimately still only has a lim-
ited amount of information at its disposition. Two or more
groundings can easily end up obtaining very similar scores,
without a clear winner. In particular, the local model does
not consider any form of dependency across grounded
triples. In reality, however, the disambiguation of a triple like
(car, faster, bike) is highly correlated with the disambigua-
tion of related triples, e.g. (bicycle, slower, automobile).
We thus designed a more sophisticated joint model based
on the following desiderata.

a) Encourage high coherence within a triple and prefer fre-
quent senses.

b) Encourage high coherence across chosen grounded
triples.

¢) Prefer same senses of a word across observations.
d) Properly handle ad hoc concepts.

We define our Joint Model using integer-linear programs
(ILPs) to encode the intuition that similar grounded triples
collectively aid in disambiguation. The desired properties
are soft constraints and become part of the objective. We
assume we are given a series of observed triples, denoted
by index i. For each observed triple (nt*, a™*, ni*), we have
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a number of candidate groundings, denoted by index j. We

refer to such a grounded triple as (n?,a% n%). The ILP

requires precomputing the following coherence scores for
such grounded triples.

e coh;;: The coherence of an individual grounded triple,
computed just like 7N (11, 12)+7NA (R, @) +7na (N2, @)
in the local model.

e 7;;: The average sense score of a grounded triple, com-
puted as £ of ¢(n},n1) + ¢(n3,n2) + ¢(a*, a) from the
local model.

e sim,; r;: The taxonomic relatedness between a grounded
triple with index ¢j and another grounded triple with index
kl. This is computed as

Y. D mn(nng)

i e€{1,2} ire{1,2}

ij ki kL ij

+ E m™a(ng,a™) + Tna(ng), ")
i1e{1,2}

+ TAA(a”; akl)

where 74 (a¥, a*') is a semantic relatedness score be-

tween two adjectives, computed as an extended gloss

overlap just as for the 74 scores.

® i;; k1 Semantically equivalent triples are detected using
synonymy and antonymy information, as explained later
on in more detail. We set p;; r; = 1 if the two triples are
semantically equivalent, and O otherwise.

Given these scores, our joint model relies on the objective
and constraints provided in Table 1. In the objective func-
tion, the x;; variables capture whether a given grounding is
chosen and thus the first component encourages accepting
groundings with high coherence and frequent senses, just
like in the local model. The second component, in contrast,
allows this model to go beyond the local model by encourag-
ing that groundings are chosen that are similar to other cho-
sen groundings. This is a major part of what allows our joint
model to make joint decisions. We use B;; ; variables to re-
flect whether two groundings were both simultaneously cho-
sen. In practice, we prune the linear program significantly
by only instantiating such variables when they are neces-
sary. Finally, the third and fourth components encourage us
to prefer fewer of the senses s of an adjective m or noun m,
respectively, across the entire graph.

In order to ensure that all variables reflect their intended
semantics, we need to enforce linear constraints. Constraint
(1) specifies that a grounding can be either accepted or re-
jected. Constraint (2) ensures that at most one grounding of
an observed triple is accepted. Note that the model does not
require a grounding to be chosen for every observed triple.
Constraints (3) to (5) ensure that the B;; j; variables are 1 if
and only if both z;; and xy; are 1.

Constraints (6) to (9) enforce that at least one word sense
per word (adjective or noun, respectively) is accepted. Con-
straints (10) to (12) ensure that if a grounding is accepted,
its word senses are marked as accepted.



Table 1: Joint Model Integer-Linear Program

maximize
Z Z(Cohi]‘ + Tij)xij + E Z Zk: XZ: simij7leij7kl —
i i
subject to
45 S {0, 1} Vi, J
Zj Lij S 1 VZ,]
Bij,kl € {071} \V/i,j7]€,l
Bij ki <y Vi, g, k,l
Bijm < a Vi, j, k1
Gms e {0,1} VYm,s
Nuns e {0,1} Vm,s
Yoslms > 1 V adjectives m
Dosms > 1 ¥V nouns m
Tij < Gms Vm, s of all adjective senses for ¢,j
Tij < Nns ¥m, s of all ny senses for 7,5
Tij < Nms  VYm,sof all ny senses for 4,5
Tij = T Vi, gk U pje =1

Finally, constraint (13) ensures that semantically equiva-
lent triples are tied together. Thus if one grounding is cho-
sen, then all equivalents must be accepted as well. The
model must either choose all or none of them. The details
of how we determine i, 1; are explained below in the next
section.

Maximizing the objective subject to the constraints and
taking those groundings for which x;; = 1, we obtain a set
of disambiguated triples that are not only highly ranked on
their own but also coherent with the groundings chosen for
related observations.

Triple Organization

In an effort to obtain a more well-defined and
structured knowledge base, all semantically equiva-
lent groundings are grouped together. For example,
for appropriate chosen senses, the grounded triples
(car, faster,bike), (bicycle,slower,automobile),
(car, speedier, cycle) all express the fact that cars are
generally faster than bicycles. We refer to a set of equivalent
groundings as a csynset, similar to the notion of synsets
(synonym sets) in WordNet. We use this notion of semantic
equivalence for the ;5 scores in the ILP, to ensure
consistency and joint assignments, as well as to provide the
final output of our system in a more semantically organized
form.

To determine equivalent triples, we make use of the fol-
lowing heuristics:

e Synonymy: Since groundings are disambiguated to
WordNet synsets, groundings with synonymous word
senses become identified, e.g. (car, faster,bike) and
(automobile, speedier,bicycle).

e Antonymy: WordNet marks pairs of word senses like
“fast” vs. “slow” as antonymous, i.e. as expressing seman-
tically opposite meanings. If two adjective senses have
opposite meanings, we can assume that their triples are
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equivalent if the arguments are in reverse order but oth-
erwise equivalent. Thus (car, faster,bike) is equiva-
lent to (bike, slower, car). Since WordNet’s coverage
of antonyms is limited, we also include indirect antonyms,
considering antonymy for up to two levels of indirection
(e.g. the synonym of an antonym of a synonym is also
considered an antonym).

e Negation: While negation does not necessarily explicitly
express the opposite, we have found that we obtain good
results by treating negated adjectives just like antonyms.
We use a small manually compiled list of negation mark-
ers for this.

Thus, our overall output is a large number of csynsets ex-
pressing comparative knowledge. Every csynset is itself a
small set of equivalent grounded triples chosen by our joint
model. To make our knowledge base more consistent, we fi-
nally check for any csynsets whose inverses are also present.
In such cases, we sum up the frequencies of all observed
triples belonging to the csynset, and keep only the direc-
tion with the higher frequency. This gives us our final output
knowledge base, disambiguated and connected to WordNet.

Experiments

Corpora. We ran our extraction system on the following two
very large Web corpora.

e ClueWeb09: The ClueWeb09 data set! is a large multilin-
gual set of Web pages crawled from the Web in 2009. We
used the 504 million Web pages in the English portion.

e ClueWeb12: The ClueWeb12 data set® consists of 27 TB
of data from 733 million English Web pages crawled from
the Web in 2012.

"http://lemurproject.org/clueweb09/
*http://lemurproject.org/clueweb12/



Table 2: Test Set Results (Precision)

Approach WN WN/ad hoc ad hoc all

MFS 0.42 + 0.09 0.43 +0.09 0.46 + 0.08 0.43 £ 0.05

Local Model  0.47 + 0.09 0.49 + 0.09 0.44 £ 0.08 0.47 £ 0.09

Joint Model 0.83 £+ 0.06 0.85 + 0.06 0.80 + 0.06 0.83 £ 0.04

Table 3: Example Disambiguated Assertions

Type Argument 1 Relation/Adjective Argument 2

WN snow-n-2 less dense-a-3 rain-n-2
marijuana-n-2 more dangerous-a-1 alcohol-n-1
diamond-n-1 sharper (sharp-a-3) steel-n-2

WN/ad hoc little child-n-1 happier (happy-a-1) adult-n-1
private_school-n-1 more expensive-a-1 public institute-n-1
pot soil-n-3 heavier (heavy-a-1) peat-n-1

ad hoc peaceful resistance-n-1 more effective-a-1 violent resistance-n-1

hot food-n-2
wet wood-n-1

more delicious-a-2
softer (soft-a-1)

cold dish-n-2
dry wood-n-1

Evaluation dataset. Our extraction procedure compiled
488,055 triples from ClueWeb09 and 781,216 triples from
ClueWebl12. To evaluate our system, we created three test
sets sampling three different kinds of triples from this raw,
ambiguous data:

i) WN: both left and right argument of the triple are surface
forms that appear as words in WordNet, e.g. steel, wood,
photo, sketch.

ii) Ad-hoc: both arguments are surface forms not contained
in WordNet, e.g. math professor, novice student, digital
image, brush sketch.

iii) WN/ad-hoc: one of the two arguments is in WordNet, the
other is not.

Each of these three sample sets contained 100 randomly
chosen observations. For each observation triple, human an-
notators were asked to choose the best possible word senses,
not just surface forms. When an annotator found that none
of the senses yields a true statement, i.e. the extracted triple
is noise, then no senses were selected. In case of an ad hoc
concept, the annotators annotated only the head word, e.g.
(math professor (professor-noun-1), sharper than (sharp-adj-
3), novice student (student-noun-1)). Our algorithm treats ad
hoc concepts in the same way, disambiguating only the head-
word.

Finally, we additionally relied on a separate set of around
40 annotated observations used for development and tuning,
in order to avoid experimenting with different variants of our
model on the test set.

Baselines. We consider the following two baselines.

1. Most-frequent-sense heuristic (MFS): The standard
baseline for disambiguation tasks is MFS: use the Open
IE surface-form triples and map them to the most fre-
quent senses (using WordNet frequency information). In
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WordNet and many other lexical resources, sense en-
tries are ranked such that the most frequent or important
senses are listed first. For example, MFS disambiguates
(car,fast,bike) as (car-n-1,fast-a-1,bike-n-1). In
word sense disambiguation studies, the MFS heuristic has
often been mentioned as hard to beat.

2. Local model: Our second baseline is the local model de-

scribed earlier. For every observed triple, the top-ranked
grounding with respect to the score from Eq. 1 is selected.
This model thus not only uses the sense rankings but addi-
tionally incorporates the intra-grounding coherence. Un-
like our joint model, however, this baseline disregards any
coherence across triples.

Results. Having run our extraction code over the ClueWeb
corpora, we obtained 488,055 extractions from ClueWeb(9,
and, 781,216 from ClueWeb12. Together, these amount to
1,064,066 distinct extractions. This is mainly due to the fact
that the crawling strategies for the two ClueWeb corpora dif-
fered significantly. ClueWeb12 was created as a companion
for ClueWeb09 with very different content (highly popular
sites and Twitter links) and better spam detection. Thus there
is little overlap between the two corpora.

In order to evaluate our joint model, we added additional
related triples from the extractions to create a graph for every
observed triple to be assessed. We greedily chose the most
similar observed triples up to a maximal size of 10 observed
triples, and then for every observed triple, possible candidate
groundings were considered. We used these to instantiate the
ILP, but smartly pruned out unnecessary variables (remov-
ing B;; 11 variables when sim;; x; is zero or near-zero). For
optimization, we use the Gurobi Optimizer package (Opti-
mization 2014).

The evaluation is done separately for the three kinds of
triples. Table 2 provides accuracy scores (95% Wilson con-
fidence intervals) for the three different categories in the test



set, and for the overall test set aggregated over all the cate-
gories.

We see that the local model outperforms the most-
frequent-sense baseline by a small margin. Although the lo-
cal model makes use of valuable sense ranking and coher-
ence information, it does not deliver satisfactory results. For
example, the local model failed on (tiger, fast, auto) by incor-
rectly disambiguating it onto (tiger—-n-1(wrongsense :
strongperson), fast—-a—-1,auto-n-1).

Instead, our joint ILP model is the clear winner here, as
it is able to take into account additional information about
other related triples (e.g. car, slow, cheetah) when making
decisions. As another example, given the observed triple
(pork, more tender, beef), our model correctly infers that
the highly ambiguous adjective “fender”, with eight senses
in Wordnet, is not used in its initial senses (sentiment-
related) but in its fifth sense (easy to cut or chew). Our model
simultaneously also correctly infers that “pork” is used in its
first out of two listed senses, but that “beef” is not used in
its first sense (cattle reared for their meat), but in its second
out of three senses (meat from an adult domestic bovine).

Overall, our knowledge base provides around a million
disambiguated comparative assertions. Table 3 lists some
examples of the type of semantically refined knowledge one
can find among these assertions.

Use Case. As an example use case, we consider computa-
tional advertisement, following Xiao and Blat (2013). Ad-
vertising frequently relies on metaphors to convey attributes
of products and services. The salience of an attribute is typ-
ically manifested very well in comparative statements. For
example, with smartness as the target attribute, we can query
our knowledge base for triples with smarter as the rela-
tionship and obtain dog-n-1, dolphin-n-1, pundit-n-1
as the most frequent left or right arguments. Similarly, with
heavier as the relationship, the top three arguments are
iron-n-1, air-n-1, steel-n-1.

Related Work

Knowledge Harvesting. Over the years, there have been nu-
merous approaches to extract relationships between words
from text, typically using string patterns or syntactic pat-
terns. While some approaches aimed at lexical and com-
monsense relationships like hyponymy (Hearst 1992), part-
whole relationships (Girju, Badulescu, and Moldovan 2006),
and so on (Tandon, de Melo, and Weikum 2011), others
focused more on encyclopedic facts like birth locations or
company acquisitions (Agichtein and Gravano 2000). In par-
ticular, most of the recent large-scale knowledge bases like
Freebase (Bollacker et al. 2008), DBpedia (Auer et al. 2007),
and YAGO (Hoffart et al. 2011) typically only cover ency-
clopedic facts.

Additionally, all of the aforementioned approaches focus
on a restricted manually pre-defined set of relationships. In
our work, we aim to capture arbitrary comparative relation-
ships expressed in text, in an open-ended manner. While
several open information extraction have been presented in
recent years (Etzioni et al. 2011; Carlson et al. 2010), ex-
isting systems simply deliver textual extractions rather than
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semantically disambiguated arguments. Thus, they might for
example conflate the animal and car senses of “Jaguar”. In
order to move from the original text strings to more seman-
tically coherent relationships, our approach relies on word
sense disambiguation and classification techniques to con-
solidate equivalent extractions as well as disambiguate the
arguments of each relation predicate.

Commonsense Knowledge. Among the efforts to build
larger commonsense knowledge collections, one of the most
well-known projects is the Cyc knowledge base (Matuszek
et al. 2005), which was built by a large team of humans
over the course of many years starting from 1984. How-
ever, Cyc focuses on general logical axioms rather than
more specific commonsense facts about objects in the world.
Another notable commonsense collection is ConceptNet
(Havasi, Speer, and Alonso 2007), which consists mainly of
crowdsourced information. However, ConceptNet’s triples
are not properly disambiguated and its limited set of rela-
tionship types (causes, hasProperty, madeOf, etc.) does
not cover any comparative knowledge. WebChild (Tandon
et al. 2014) is a recent large-scale commonsense knowledge
base of sense-disambiguated object properties, but again
lacks comparative knowledge. Thus our work fills an im-
portant gap.

There has been only little prior work on comparative
knowledge mining and comparative commonsense knowl-
edge mining in particular. Jain and Pantel (2011) used query
logs to identify entities that are comparable in some re-
spect, e.g. “Nikon D80 vs. Canon Rebel XT”. Jang, Park,
and Hwang (2012) proposed graph-based methods to predict
new comparable entity pairs that have not been observed in
the input data. Both of these approaches only produce sets of
related entities and do not aim at gathering assertions about
how they compare.

Jindal and Liu (2006) focused on the problem of iden-
tifying potential comparative sentences and their elements
using sequence mining techniques. Such techniques could
potentially be used to improve our extraction phase. In our
setup, the extraction phase is not a major focus and thus we
currently rely on simple heuristics that can easily be applied
to terabyte-scale Web corpora. In the realm of commonsense
knowledge, Cao et al. (2010) performed a small study on ex-
tracting commonsense comparative observations using man-
ually defined patterns. The focus of our paper, in contrast,
is to go beyond just a simple and small-scale extraction of
natural language comparisons. Instead, we i) target large-
scale ClueWeb data and ii) produce a large semantically dis-
ambiguated and consolidated knowledge base by recogniz-
ing semantically equivalent triples and using joint inference
techniques.

Conclusion

We have presented the first approach for mining and consol-
idating large amounts of comparative commonsense knowl-
edge from Big Data on the Web. Our algorithm successfully
exploits dependencies between triples to connect and disam-
biguate the data, outperforming strong baselines by a large
margin. The resulting knowledge base is freely available



from http://resources.mpi-inf.mpg.de/yago-naga/webchild/.
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