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Abstract

Influence maximization problem is to find a set of seed
nodes in a social network such that their influence
spread is maximized under certain propagation models.
A few algorithms have been proposed for solving this
problem. However, they have not considered the impact
of novelty decay on influence propagation, i.e., repeated
exposures will have diminishing influence on users. In
this paper, we consider the problem of influence max-
imization with novelty decay (IMND). We investigate
the effect of novelty decay on influence propagation on
real-life datasets and formulate the IMND problem. We
further analyze the problem properties and propose an
influence estimation technique. We demonstrate the per-
formance of our algorithms on four social networks.

Introduction
As a fundamental research problem in social networks, in-

fluence maximization problem has attracted significant atten-
tion (Kempe, Kleinberg, and va Tardos 2003). It selects a set
of K nodes in order to maximize the propagation of ideas,
opinions, etc. in social networks. The influence maximiza-
tion problem has many real-world applications. For exam-
ple, a marketing campaign may target a small set of influ-
ential individuals and expect that the selected users would
generate the largest influence coverage in the market.

It has been observed that repeated exposures of an individ-
ual to an idea may have diminishing influence on the individ-
ual (Ver Steeg, Ghosh, and Lerman 2011). For example, in
Twitter, a user is more likely to retweet a tweet message for
the first time that the user reads the message than the sub-
sequent exposures to the message. The chance that a user
retweets a message usually diminishes with the number of
repeated exposures to the message. We call the phenomenon
novelty decay. Intuitively, people are less likely to become
spreaders of repeated information.

To the best of our knowledge, the novelty decay phe-
nomenon has not been considered by existing studies on the
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influence maximization problem. We show one example of
influence propagation with novelty decay in Figure 1.
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Figure 1: A social network with influence
probabilities (P ) and delays (T ) on the di-
rected edges.

Four users are
linked and the
directed edges in-
dicate the influence
of one user over
another. Each edge
is associated with
two values, namely
influence probabil-
ity P and expected
influence delay time
T . For example,
user V1 influences V3 with a probability of 0.7 in 2 time
units. Given the seed set {V1, V2}, the probability that V3 is
activated by the seed set can be computed regularly without
considering the novelty decay, e.g., 0.1 + (1 � 0.1) ⇥ 0.7,
where 0.1 (resp. (1 � 0.1) ⇥ 0.7) is the probability that
V3 gets activated by V2 (resp. V1). As V3 is influenced by
both V1 and V2 probably in a certain order, the novelty
decay shall be considered into the influence propagation.
Consequently, the probability of V3 being activated by V1

will diminish (less than (1� 0.1)⇥ 0.7) if V2 first attempts
to activate V3.

In this paper, we analyze the effect of novelty decay
on influence propagation based on two real-life datasets.
For a further examination, we develop a fitting function to
characterize the effect. By doing this, we are able to in-
tegrate the novelty decay factor into an influence propa-
gation model such as independent cascade (IC), which is
widely used in the literature (Chen, Wang, and Yang 2009;
Chen, Lu, and Zhang 2012; Liu et al. 2012).

Differing from conventional influence propagation mod-
els, the new influence function becomes neither monotone

nor submodular. This renders inapplicable the greedy algo-
rithm with the CELF optimization (Leskovec et al. 2007)
that is adopted by nearly all the existing influence maxi-
mization algorithms. We then improve the adapted version
of U-Greedy algorithm (Lu and Lakshmanan 2012) by prun-
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ing low-influential nodes in a dynamic way. As the influ-
ence propagates differently with the delay time between ev-
ery pair of nodes, computing influence spread becomes com-
plex. We develop a propagation path based algorithm to es-
timate the influence spread of seed nodes. Experimental re-
sults show that our algorithms can achieve large influence
spread efficiently.

Related Work
Novelty Decay

Steeg et al. (Ver Steeg, Ghosh, and Lerman 2011) observe
that multiple exposures to a story only marginally increase
the probability of voting for it in a social network, and thus
people are less likely to become spreaders of repeated infor-
mation. Moreover, they find that the real influence generated
by multiple exposures is much smaller than that computed
by the IC model. However, they do not consider any compu-
tational model for studying the novelty decay factor in the
context of influence maximization. Findings related to the
novelty decay are also reported in other work. For exam-
ple, the novelty within groups decays and attention to novel
items fades over time (Wu and Huberman 2007).

Influence Maximization

Influence maximization problem is formulated as a dis-
crete optimization problem and its NP-hardness is proved
by Kempe et al. (Kempe, Kleinberg, and va Tardos 2003).
They develop a greedy algorithm framework, which itera-
tively selects the node with the largest marginal influence
into the seed set until the number of seed nodes is reached.

Kempe et al. (Kempe, Kleinberg, and va Tardos 2003) in-
troduce the IC model for influence propagation. Recently,
time factor is incorporated into the IC model in the time
constrained influence maximization problem (Chen, Lu, and
Zhang 2012; Liu et al. 2012).

The problem of computing influence spread is #P-hard

(Chen, Wang, and Wang 2010). A widely used baseline
method for computing influence spread is based on Monte
Carlo (MC) simulation (Kempe, Kleinberg, and va Tardos
2003). However, the MC simulation based algorithm is time
consuming and not scalable in large social networks. Several
heuristic algorithms have appeared. For example, maximum
influence arborescence algorithm (Chen, Wang, and Wang
2010) employs the combination of the maximum influence
paths to estimate influence spread. The independent paths
based techniques (Liu et al. 2012; Kim, Kim, and Yu 2013)
sum up influence of a limited number of paths that can be
calculated independently from seed nodes to other nodes.

Novelty Decay in Influence Propagation
Inspired by the aforementioned findings on the novelty de-
cay , we formalize the computation of the novelty decay and
further confirm its effect on two publicly available datasets.
With the novelty decay function, we proceed to formulate
the influence maximization problem with the novelty decay.
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Figure 2: Novelty Decay on Digg.

Novelty Decay Function
For the sake of clarity, we assume that a user is exposed to an
event n times if n friends of the user have been influenced.
Formally, let TP

n

be the probability that a user is influenced
after n friends of the user get influenced, and p

n

be the prob-
ability that a user gets influenced after the nth friend of the
user is influenced. We model the relationship between TP

n

and TP
n�1 in Eq. 1.

TP
n

= TP
n�1 + (1� TP

n�1)⇥ p
n

(1)

Then we compute p
n

in Eq. 2
p
n

= (TP
n

� TP
n�1)/(1� TP

n�1) (2)

In order to formalize the novelty decay function, f(n),
we isolate the novelty decay factor from p

n

. Specifically,
we compute f(n) = p

n

/p1, where p1 = TP1 is the av-
erage probability to be influenced when users get influenced
at the first time. We further employ the exponential function,
f(n)=�n�1, as a general form of the novelty decay function
and apply least squares approach to estimate its parameter
�. We show the development of the novelty decay functions
in both Digg and Flickr datasets.
Digg Dataset contains information about stories promoted
to the front page of Digg (digg.com) in June 2009 (Ler-
man and Ghosh 2010). The network has 279,634 nodes and
1,731,658 edges. If user u lists user v as a friend, u can see
v’s activities. The dataset also lists the Digg-votes, each of
which records users’ voting on a particular story and the vot-
ing time. It contains 3,018,197 votes from 139,409 distinct
users on 3,553 popular stories.

Figure 2(a) demonstrates that the voting probability of
a user over a story, TP

n

, approaches a saturation point
when a sufficient number of her friends (n >25) have
voted for the story. In Figure 2(b), the actual novelty di-
minishes with repeated exposures. As illustrated by the blue
line in Figure 2(b), the best fitting function is f(n) =
0.2969n�1, which leads to the smallest sum of squared er-
rors (SSE=0.1941).
Flickr Dataset contains a friendship graph and a list of fa-
vorite marking records from Flickr (www.flickr.com) (Cha,
Mislove, and Gummadi 2009). If a user u lists v as its friend,
u can see the activity (marking photos as favorites) of v.
To study how influence propagates through the Flickr social
network, we consider active users (having at least 5 mark-
ings) and active photos (having been marked by at least
100 users). There are 222,038 active users connected by
14,727,116 links and 3,125 active photos.

In Figure 3(a), the marking probability, TP (n), increases
with n in the beginning and then becomes stable around

38



5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

M
ar

ki
ng

 P
ro

ba
bi

lit
y

n 

(a) The marking probability of a
user after n friends have voted.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

n 

N
ov

el
ty

 D
ec

ay
 V

al
ue

s 

 

 
Actual values
Fitting function

(b) Actual novelty decay values
and its fitting function.

Figure 3: Novelty Decay on Flickr.

n >23. Figure 3(b) confirms the effect of novelty decay and
shows the best fitting function f(n) = 0.8918n�1 with the
smallest SSE (SSE=2.7570).

IC Model with Novelty Decay
In the IC model with time delay, every node has two states:
active and inactive. It is allowed to switch from inactive
to active states, but not vice versa. Each edge is associated
with two parameters, namely influence probability P

uv

and
expected influencing delay time T

uv

. We augment the IC
model with the novelty decay, denoted as ICND, for each
node in a social network.

Given a directed graph G = (V, E), a seed set S ✓ V and
a novelty decay function f(n), the ICND model works as
follows. Let A

t

be the set of nodes activated at time t � 0,
and A0 = S. Every node u 2 A

t

has a single chance to
activate its out-neighbors that are inactive at time t + T

uv

.
Node u activates v with the probability P

uv

⇥ f(n), where
n is the number of exposures v has received. An exposure
represents a chance that an active node intends to activate an
inactive node. The influence propagation process terminates
if and only if there is no any exposure. The number of all
active nodes is denoted as �(S) =

P1
t=0 |At

|.

Problem Definition and Properties
Based on the proposed ICND model, we formulate the prob-
lem of influence maximization with novelty decay (IMND).
Definition 1. (Influence Maximization with Novelty De-

cay) Given a social network G = (V, E), a novelty decay

function f(n) and a positive integer K, find a seed set

S ✓ V that maximizes the expected number of nodes in-

fluenced by S under the ICND model.

S = argmax
S✓V,|S|K

{�(S)|f(n)}

The conventional influence maximization (IM) problem
has been proved to be NP-hard (Kempe, Kleinberg, and va
Tardos 2003). As it is a special case of IMND with f(n) = 1
for all n (i.e. there is no novelty decay), we get the hardness
of IMND as follows.
Proposition 1. The Influence Maximization Problem with

Novelty Decay is NP-hard for the ICND model.

Unlike the conventional IM problem, the influence func-
tion �(S) is non-monotone and non-submodular in IMND.
For the proof purpose, we list the special cases when the
novelty decay factor is considered in the example of social
network (given f(n) = 0.3n�1) in Figure 1.

Case 1: Non-monotonicity suppose that S1 = {V1}, S2 =
{V1, V2} and S3 = {V1, V2, V3}, then �(S1) = 2.7204,
�(S2) = 2.3757 and �(S3) = 3.3. Because �(S3) >
�(S1) > �(S2), thus �(S) is non-monotone.
Case 2: Non-submodularity suppose that S1 = {V1},
S2 = {V1, V2}, then �(S1 [ {V3}) � �(S1) = 0.3796,
and �(S2 [ {V3}) � �(S2) = 0.9243. As S1 ✓ S2 and
�(S1 [ {V3}) � �(S1) < �(S2 [ {V3}) � �(S2), �(S) is
non-submodular.
Proposition 2 summarizes the properties.
Proposition 2. The influence function under ICND model is

neither submodular nor monotone.

Greedy Algorithm and Optimization
Due to the non-monotonicity and non-submodularity of the
influence spread function under ICND, the traditional greedy
algorithm (Kempe, Kleinberg, and va Tardos 2003) becomes
inapplicable. We resort to the U-Greedy algorithm (Lu and
Lakshmanan 2012) that is developed for solving profit maxi-
mization problems (with the non-monotonicity and submod-
ularity properties) in social networks. We further improve
the algorithmic efficiency with an optimization.

R-Greedy Algorithm
The U-Greedy algorithm repeatedly adds nodes of the max-
imal positive marginal profit, and returns a seed set of any
size that results in the maximum profit. Note that the IMND
problem seeks for a seed set having not larger than K
nodes (|S|  K). We choose the first K nodes each of
which has the maximal marginal influence, and then pick
the set of seed nodes with the largest influence spread. The
adapted algorithm is called the plain restricted greedy al-
gorithm (R-Greedy). Although the size of returned seed set
could be smaller than K in a general case, the situation will
seldom occur in practice due to the limited budget (where K
is relatively small compared to the network size).

Dynamic Pruning Optimization
Let S

k

(s
k

) denote the set of selected seeds (the single node)
at round k. The R-Greedy algorithm needs to compute the
marginal influence increase for each node u 2 V\S

k�1 and
is invoked at each iteration of the algorithm to retrieve the
kth node s

k

. To achieve better efficiency, we develop an op-
timization approach, namely dynamic pruning method (DP),
that exploits the previous computation of influence spread to
select potential seed nodes in the R-Greedy algorithm. The
complete algorithm is shown in Algorithm 1.

Let Q
k

store the checked nodes in round k, and ele-
ments in Q

k

are in the form of tuple (u, Infu

k

), where
Infu

k

= �((S
k�1 [ {u}) denotes the influence after adding

u into selected seed set S
k�1. In each round, DP checks

all the candidate nodes in decreasing order of their influ-
ence. It terminates once the influence of individual nodes
is below a dynamically maintained threshold, maxMarInf ,
which records the maximum marginal influence increase in
round k (Line 5). Another key optimization technique is
that if u has been checked in round (k � 1), we derive
an upper bound of its marginal influence, i.e., (Infu

k�1 +
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Algorithm 1: R-Greedy Algorithm with DP
Input: G = (V, E), T

uv

, P
uv

, f(.) and K
Output: S

1 S  ;, S0  ;, �(S) 0, �(S0) 0, s NULL;
2 For every v 2 V , calculate �({v}) and insert (v,�({v})) into
Q0 ;

3 for k  1 to K do
4 maxMarInf  �1;
5 for node u 2 V \ S

k�1, �({u}) � maxMarInf do
6 if u 2 Q

k�1, and

(Infu

k�1 + �({s
k�1}))� �(S

k�1) < maxMarInf

then
7 Continue
8 else
9 Calculate Infu

k

and insert (u, Infu

k

) into Q
k

;
10 if Infu

k

� �(S
k�1) > maxMarInf then

11 maxMarInf  Infu

k

� �(S
k�1);

12 s
k

 u;

13 S
k

 S
k�1 [ {s

k

};
14 �(S

k

) �(S
k�1) +maxMarInf

15 S  the S
k

with maximum �(S
k

) from k = 1 to k = K;
16 return S;

�({s
k�1})) � �(S

k�1) (Line 6 and the correctness will be
given in Proposition 3). If the upper bound is not larger than
maxMarInf , the node is ignored (Line 7). Then the algo-
rithm calculates the influence of (S

k�1 [ {u}), and stores
the result into Q

k

(Line 9). If the marginal influence is
larger than maxMarInf , it updates maxMarInf as well as
s
k

(Lines 10-12). Finally, we obtain the seed set S
k

and its
influence spread �(S

k

) (Lines 13-14).
As the DP operation prunes nodes whose influence is

smaller than maxMarInf , the algorithm still maintains the
solution quality of the plain R-Greedy algorithm. We for-
mally prove the property.

Proposition 3. The DP optimization preserves the solution

quality of the R-Greedy algorithm.

PROOF. The influence function of the ICND model satisfies
�(S1 [ S2)  �(S1) + �(S2), S1, S2 ✓ V . For a node u,
its marginal influence MarInfk(u) = �(S

k�1 [ {u}) �
�(S

k�1)  �(S
k�1) + �({u}) � �(S

k�1) = �({u}). If
node u has been checked in prior round, MarInfk(u) =
�(S

k�1 [ {u})� �(S
k�1) = �((S

k�2 [ {s
k�1})[ {u})�

�(S
k�1) = �((S

k�2 [ {u}) [ {s
k�1}) � �(S

k�1) 
Infu

k�1 + �({s
k�1}) � �(S

k�1). Therefore, if the upper
bound of a node u (�({u}) or Infu

k�1 + �({s
k�1}) �

�(S
k�1)) is smaller than maxMarInf , it’s safe for DP to

prune this node.
As we need to check all of the nodes in every

round, the time complexity of the R-Greedy algorithm is
O(K|V|T (�(S))), where T (�(S)) is the time for comput-
ing �(S). With the DP optimization, the number of checked
nodes in every round is much smaller than |V|.

Algorithms for Computing Influence Spread
With the improved R-Greedy algorithm, the remaining issue
is to compute influence spread of seed nodes. For this pur-
pose, we propose a propagation path based algorithm that
overcomes the inefficiency of simulation-based techniques.

Simulation Based Algorithm
Monte Carlo simulatation-based algorithms are widely used
as baselines in the study of influence maximization (Kempe,
Kleinberg, and va Tardos 2003). We adapt the algorithm to
simulate the spreading process of ICND model by consider-
ing both the spread delay time and the novelty decay effect
in the model. To obtain the average influence spread value,
we need to conduct a large number of simulations. Overall
the time complexity of the simulation-based approach (MC),
together with Algorithm 1, is O(K|V|R(|V| + |E|)), where
R is the number of simulations generally set at 20,000.

Propagation Path Based Algorithm
The simulation-based algorithm is time-consuming and not
suitable for large social networks. We develop a propagation
path based algorithm to efficiently estimate influence spread.

Propagation Path with Novelty Decay Given a seed
set S ✓ V , the expected influence spread �(S) =P

u2V AP
S

(u), where AP
S

(u) is the probability of u be-
ing activated by S. To estimate AP

S

(u), we define a propa-
gation path with novelty decay (PPND) below.
Definition 2. (Propagation Path with Novelty Decay)

Given a seed set S and a directed graph G = {V, E}, a

path h = (u1
e1�! u2

e2�! u3 . . .
ek�1���! u

k

) in graph G is a

propagation path with novelty decay (PPND), if and only if

u1 2 S and u
i

/2 S for i 6= 1, where k > 1.

As a node cannot be activated more than once, a
PPND path does not contain duplicate nodes. Its length is
Len(h) =

P
i=k�1
i=1 T

ei while the probability can be com-
puted as

Q
i=k�1
i=1 P(e

i

)⇥Ê(⌧h(u
i+1)), where Ê(⌧h(u

i+1))
is the expected novelty decay value for h on u

i+1. Note that
Ê(⌧h(u)) depends on the order of all paths ending at u.

Computing Ê(⌧h(u)) A PPND path has two states, con-

nected and blocked. The path is connected if it success-
fully activates u1, ..., u

k�1; otherwise it is blocked. The
path has a chance to activate its ending node iff it is con-
nected. We denote the connected probability as P

con

=Q
i=k�2
i=1 P(e

i

)⇥ ⌧h(u
i+1), and the blocked probability be-

comes P
blo

= 1 � P
con

. If the activation from h is the ith

exposure for u
k

, h is ranked as ith among all the paths end-
ing at u

k

. We next propose an expected novelty method to
compute Ê(⌧h(u)).

Suppose that h
c

is the cth shortest PPND path of u, i.e.,
there are c� 1 paths shorter than h

c

. The shorter a path, the
earlier it activates its ending node. To compute Ê(⌧hc(u)),
we need to consider all possible combinations of states (con-
nected or blocked) of c � 1 paths. For example, if h1 and
h2 are the first two shortest paths to activate u, the compu-
tation of Ê(⌧h3(u)) needs to consider 4 cases: Ê(⌧h3(u))
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= P
blo

(h1)⇥P
blo

(h2)⇥f(1)+P
blo

(h1)⇥P
con

(h2)⇥f(2)+
P
con

(h1)⇥P
blo

(h2)⇥f(2)+P
con

(h1)⇥P
con

(h2)⇥f(3).

Finding PPND For a given seed set S, we use PPND(u, S)
to denote all PPND paths from S to node u. It is obvious that
each path provides a chance for S to activate u. Since the
number of paths, |PPND(u, S)|, grows exponentially with
the number of seed nodes, finding PPND(u, S) is computa-
tionally expensive for a large S. We apply two restrictions to
eliminate the PPND paths that have small influence contri-
bution. First, we prune the paths with probabilities smaller
than a specified threshold ✓ > 0. Second, we retain at most
C shortest paths in PPND(u, S), because a user is unlikely to
be influenced after many exposures due to the novelty decay
effect. The resulting PPND s are denoted by PPND

✓,C

(u, S).
Finding PPND

✓,C

(S) aims to search at most C shortest
paths for each destination node from multi-source nodes
with a threshold restriction. This differs from the state-of-
the-art algorithms (Yen 1971; Eppstein 1998) for K shortest

path routing because the algorithms focus on single source
and the ✓ constraint cannot be easily incorporated. To fill
this gap, we develop an adapted Dijkstra (AD) algorithm for
finding PPND

✓,C

(S). Like Dijkstra algorithm, AD adopts a
greedy search strategy to select the shortest path for the ex-
tension. To satisfy the ✓ constraint, AD only extends the path
meeting the constraint in each iteration. Furthermore, we in-
tegrate the computation of path probabilities into AD.

In Algorithm 2, AD starts with initializing PPND
✓,C

(S),
Count(u) recording the number of paths on node u, and
PH

con

(u) recording P
con

of the found paths (Lines 1). To
implement the greedy search strategy, AD initializes a min
priority queue PH for storing the information of paths, each
of which has T as the length of time and path for the in-
formation of nodes and probabilities on edges (Line 2). At
each iteration, AD chooses the path that has the minimum T

in PH to extend (line 4). At lines 5–6, P
wu

⇥ ˆE(⌧
u

(P ))
is the probability u is activated by w on the PPND P ,
then the probability that u is activated by P is PP (u) =

P
con

⇥ P
wu

⇥ ˆE(⌧
u

(P )). If P satisfies the restrictions, we
insert it into PPND

✓,C

(S), update Count(u), PH
con

(u), get
new paths by extending it, and then insert the new paths into
PH (Lines 8–12).

Computing �(S) After getting PPND
✓,C

(u, S), we com-
pute the activation probability AP

S

(u) (Line 14). All the
paths ending at u are assumed to be independent following
the previous work (Liu et al. 2012; Kim, Kim, and Yu 2013).
Finally, the activating probabilities of all nodes are summed
into �(S).

Let N
✓,C

= max|S|K

|PPND
✓,C

(S)| be the maximum
number of paths starting from S. The time complexity of
finding PPND

✓,C

(S) is O(N
✓,C

logN
✓,C

). The calculation
of �(S) takes O(N

✓,C

). Hence the total time complexity of
Algorithm 2 is O(N

✓,C

logN
✓,C

). The combination of Al-
gorithms 1 and Algorithms 2 takes O(K|V|N

✓,C

logN
✓,C

).
Since N

✓,C

logN
✓,C

⌧ R(|V| + |E|) in practice, the PPND

based solution is much faster than the simulation approach.

Algorithm 2: Computing �(S) based on PPND

Input: G = (V, E), T
uv

, S, P
uv

, f(.), ✓ and C
Output: �(S)

1 Initialize PPND
✓,C

(u, S) ;, Count(u) 0 and
PH

con

(u) ; for u 2 V;
2 Initialize a min priority queue PH , and enqueue
P = (0, 1, path = {u}) for u 2 S;

3 while PH 6= ; do
4 P  dequeue (T,P

con

, path) from PH;
5 compute Ê(⌧P (u)) according to PH

con

(u);
6 PP (u) P

con

⇥ P
wu

⇥ Ê(⌧P (u));
7 if Count(u) < C and PP (u) > ✓ and P is loopless

then
8 Insert PP (u) into PPND

✓,C

(u, S);
9 Count(u) Count(u) + 1;

10 Insert P
con

into PH
con

(u);
11 P

con

 PP (u);
12 enqueue P = (T + T

uv

,P
con

, path [ {v}) into
PH for (u, v) 2 E ;

13 for every u with non-empty PPND
✓,C

(u, S) do
14 AP

S

(u) 1�
Q

P2PPND✓,C(S)(1� PP (u));
15 �(S) �(S) +AP

S

(u) ;
16 return �(S);
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Figure 4: Performance of RGA and RGA-DP based algorithms.

Experiments
Experimental Setup
Datasets Apart from Digg and Flickr, two other real-world
social networks are used in the experiments. Wiki is a voting
network containing all the Wikipedia voting data from the
inception of Wikipedia till January 2008. It has around 7,000
nodes and 103,000 edges. NetPHY is a collection network
of papers, extracted from ”Physics” sections in arXiv, and
contains around 37,000 nodes and 181,000 edges.

Evaluated Methods We evaluate the plain R-Greedy al-
gorithm (RGA) and the improved R-Greedy algorithm with
DP (Algorithm 1) (RGA-DP). Both algorithms use either
the simulation based algorithm (MC) or the propagation
path based algorithm (Algorithm 2) (PPAN) to compute in-
fluence spread. We then compare them to two conventional
influence maximization algorithms: the classical MC based
technique CIM-MC (Leskovec et al. 2007) and the degree
based algorithm DE (choose K nodes with maximum de-
grees). The MC method is employed to compute the influ-
ence spread of the seed set returned by each method. All
methods are implemented in C++ and experiments are con-
ducted on a windows server with 6-core Intel(R) Xeon (R),
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Figure 5: The results of influence spread on four real world social networks.
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Figure 6: The results of running time on four real world social networks.

2.66 GHz CPU and 24 GB memory.

Parameter Setting We set the influence probability P
uv

of u on v by the weighted cascade policy (Chen, Lu, and
Zhang 2012; Liu et al. 2012), i.e., P

uv

= 1
indegree(v) , where

indegree(v) is indegree of node v. The expected influenc-
ing delay time T

uv

of edge uv follows the geometric delay

distribution (Chen, Lu, and Zhang 2012). The parameter for
geometric distribution is set at 5/(outdegree(v) + 5). For
simplicity, the maximum value of T

uv

is 15. If the gener-
ated delay time T

uv

> 15, T
uv

is reset as a random integer
from 1 to 15. We also try other distributions for T

uv

includ-
ing poisson distribution and uniform distribution, and the ex-
periment results exhibit similar trend for the evaluated tech-
niques. Empirically, threshold ✓ is set at ✓ = 0.001 and num-
ber of paths C is set at C = 5, which achieves a satisfying
tradeoff between influence spread and running time in our
experiment. For Digg and Flickr, we use their actual novelty
decay function f(n) aforementioned. For wiki and NetPHY,
we utilize the default exponential function f(n) = 0.3n�1

and further examine different �.

Selecting the R-Greedy Algorithms

We investigate the effect of DP optimization on the R-
Greedy algorithm. Both MC and PPAN are used to com-
pute influence spread. We terminate MC if it run over five
days. Figure 4 shows the results on both Wiki and NetPHY
since MC cannot finish for the large Digg and Flickr net-
works. Figure 4 demonstrates that RGA-DP is 1-2 orders of
magnitude faster than RGA on both datasets. Hence we use
RGA-DP for the rest of experiment if applicable. Note that
DP optimization does not affect the solution quality of the
RGA. Thus we do not compare their influence spread.

Performance of the Algorithms for Solving IMND
We evaluate all the algorithms in terms of influence spread
and running time over four datasets. Since MC and CIM-
MC are extremely computationally expensive, we cannot get
their results on Digg and Flickr.

Influence Spread The influence spread reflects the quality
of selected seed set. Figure 5 illustrates the influence spread
for various K values. PPAN obtains similar influence spread
as MC. It indicates that PPAN is an effective approximate
method. Both CIM-MC and DE achieve consistently lower
influence spread than do PPAN and MC. This demonstrates
that conventional influence maximization techniques are not
effective for solving the new IMND problem.

Running Time Figure 6 shows that the running time
grows when K increases for the studied methods. PPAN is
several orders of magnitude more efficient than MC. In sum-
mary, the combination of Algorithms 1 and 2 provides the
best solution to the IMND problem.

Effect of f(n) We further investigate the impact of � on
Wiki and NetPHY. Figure 7 shows the influence spread for
various � with K = 50. As expected, the influence spread
grows as � increases. This is due to the fact that if � is small,
the spread probability from one node to another is declined.
Hence, the expected number of activated nodes becomes
smaller. Additionally, the results of PPAN are consistently
similar to that of MC for different �. This verifies that PPAN
is an effective approximate method for different f(n).

Conclusion
We investigate the effect of novelty decay in social net-
works. With the augmented independent cascade propaga-
tion model, we formulate influence maximization problem
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Figure 7: The results of influence spread for different �.

with novelty decay. To solve the problem, we employ the R-
Greedy algorithm and improve its performance through the
dynamic pruning strategy. In addition, we propose an influ-
ence propagation path based algorithm to efficiently com-
pute influence spread of seed nodes. Performance of our al-
gorithms is demonstrated with extensive experiments.
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