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Abstract
With the rapid growth of event-based social networks
(EBSNs) like Meetup, the demand for event recommen-
dation becomes increasingly urgent. In EBSNs, event
recommendation plays a central role in recommending
the most relevant events to users who are likely to par-
ticipate in. Different from traditional recommendation
problems, event recommendation encounters three new
types of information, i.e., heterogenous online+offline
social relationships, geographical features of events and
implicit rating data from users. Yet combining the three
types of data for offline event recommendation has not
been considered. Therefore, we present a Bayesian la-
tent factor model that can unify these data for event rec-
ommendation. Experimental results on real-world data
sets show the performance of our method.

Introduction
Recent years have witnessed increased development and
popularity of event-based social networks (EBSNs), such
as Meetup, Plancast and Douban Event. The services al-
low users to organize, participate, comment and share events
such as cocktail parties, seminars and concerts. To enhance
user experience on these services, event recommendation
systems are studied lately that aims to recommend the most
relevant events to users who are likely to participate. The
recommendation provides convenience to both event orga-
nizers and participants. For the participants, they can easily
find the events they are interested in. For the organizers, their
events can attract potential users who share similar interests.
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Figure 1: An illustration of user-event ratings.

Different from existing recommendation problems, event
recommendation in EBSNs meets new characteristics.
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ABSTRACT
Newly emerged event-based online social services, such as
Meetup and Plancast, have experienced increased popularity
and rapid growth. From these services, we observed a new
type of social network – event-based social network (EBSN).
An EBSN does not only contain online social interactions
as in other conventional online social networks, but also in-
cludes valuable o✏ine social interactions captured in o✏ine
activities. By analyzing real data collected from Meetup, we
investigated EBSN properties and discovered many unique
and interesting characteristics, such as heavy-tailed degree
distributions and strong locality of social interactions.
We subsequently studied the heterogeneous nature (co-

existence of both online and o✏ine social interactions) of
EBSNs on two challenging problems: community detection
and information flow. We found that communities detected
in EBSNs are more cohesive than those in other types of
social networks (e.g. location-based social networks). In the
context of information flow, we studied the event recom-
mendation problem. By experimenting various information
di↵usion patterns, we found that a community-based di↵u-
sion model that takes into account of both online and o✏ine
interactions provides the best prediction power.
This paper is the first research to study EBSNs at scale

and paves the way for future studies on this new type of
social network. A sample dataset of this study can be down-
loaded from http://www.largenetwork.org/ebsn.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software - Information networks

General Terms
Algorithms, Experimentation.

Keywords
Event based Social Networks, Social Network Analysis, So-
cial Event Recommendation, Online and O✏ine Social Be-
haviors, Heterogeneous Network
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1. INTRODUCTION
Newly emerged event-based online social services, such as

Meetup (www.meetup.com), Plancast (www.plancast.com),
Yahoo! Upcoming (upcoming.yahoo.com) and Eventbrite
(www.eventbrite.com) have provided convenient online plat-
forms for people to create, distribute and organize social
events. On these web services, people may propose so-
cial events, ranging from informal get-togethers (e.g. movie
night and dining out) to formal activities (e.g. technical
conferences and business meetings). In addition to support-
ing typical online social networking facilities (e.g. sharing
comments and photos), these event-based services also pro-
mote face-to-face o✏ine social interactions. To date, many
of these services have attracted a huge number of users and
have been experiencing rapid business growth. For example,
Meetup has 9.5 million active users, creating 280, 000 social
events every month; Plancast has over 100, 000 registered
users and over 230, 000 visits per month.

Meetup Service

Users:

Events:

Social
Groups:

Users:

Events:

Following
links:

Plancast Service Plancast
Event-based Social Network

Meetup 
Event-based Social Network

Online Network:

Offline Network:

Offline Network:

Online Network:

Figure 1: Event-based Social Network Examples
As these event-based services continue to expand, we iden-

tify a new type of social network – event-based social net-
work (EBSN) – emerging from them. Like conventional on-
line social networks, EBSNs provide an online virtual world
where users exchange thoughts and share experiences. But
what distinguishes EBSNs from conventional social networks
is that EBSNs also capture the face-to-face social interac-
tions in participating events in the o✏ine physical world.
Fig. 1 depicts two example EBSNs from Meetup and Plan-
cast. In Meetup, users may share comments, photos and
event plans with members in the same online social groups
(e.g. “bay area photographers”, “Nevada county walkers”).
In Plancast, users may directly “follow” others’ event calen-
dars. Bi-directional co-memberships of online social groups
in Meetup or uni-directional subscriptions in Plancast ulti-
mately constitute an online social network represented as

Figure 2: An illustration of Event-based Social Networks
(Liu et al. 2012).

• Heterogenous social relationships. The event-based social
networks (EBSNs) are proposed in a recent work (Liu et
al. 2012), as shown in Fig. 2. There are both online and
offline data in EBSNs. The online social service data re-
flect online social relationships, while the offline social
interaction data are represented by event-based services.

• Geographical information. According to our observation,
a user tend to participate in nearby events, and the possi-
bility of the user participating in an event decreases with
the distance increasing. Moreover, most events locate at
areas with dense entertainment facilities, such as shop-
ping malls, gymnasiums, theaters and bars.

• Implicit Rating. User rating data reveal the pres-
ence/absence of an event. In Meetup, the rating data are
reflected by the RSVP choice (”yes”, ”no”). 1. As shown
in Fig. 1, the rating data are different from those in tradi-
tional recommendation systems where explicit ratings are
provided with values 0 ⇠ 5 or above.

The above new properties in EBSNs need to be carefully
considered for offline event recommendation. In this paper,
we present a Bayesian latent factor model that combines
Heterogenous Social Information and Geographical infor-
mation (HeSig for short) for event recommendation. Ex-
periments on real-world data verify the performance of the
method.

Related work
We briefly survey three aspects of work that are technically
related to this work.

1http://meetupblog.meetup.com/post/20064732882/no-more-
maybe-option-for-rsvps
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Table 1: Statistics of the Data sets.
NYC LA Houston Chicago SF

users 338144 124040 36199 89796 119569
events 108170 54538 16694 36009 45213

Recommender system with social information. How
to wisely utilize social network information for recommen-
dation has been extensively studied in recent years. There
are some pioneer work in the literature (Xin et al. 2009;
Ma et al. 2011; 2008; Liua and Lee 2010) which studied
the social recommendation problems. In order to predict re-
view quality, Lu et al. (Lu et al. 2010) proposed a generic
framework to incorporate social context information (author
identity and social networks) by adding regularization con-
straints. In the paper, we apply the social information to im-
prove the recommendation performance.

Location-aware Recommendation. Recommendation
with geographical information has been extensively stud-
ied in recent years (Cheng et al. 2012; Ye et al. 2011;
Zheng et al. 2010; Qiao et al. 2014). Several simple yet
practical methods were applied in location-aware recom-
mendation. For example, the KNN technique (Chaudhuri
and Gravano 1999; Bruno, Gravano, and Marian 2004) that
retrieve the top k objects nearest to a user, the prefer-
ence based method skylines (Takeuchi and Sugimoto 2005)
and location-based methods (Borzsonyil, Kossmann, and
Stocker 2011) that require explicit preference constraints.
However, the existing methods didn’t directly consider the
impacts and correlation between geographical information
and preference.

Latent Factor Models. The matrix factorization method
as a popular latent factor models is widely used in rec-
ommendation: (Salakhutdinov and Mnih 2008; Koren, Bell,
and Volinsky 2009; Somekh, Aizenberg, and Koren 2014;
Wang and Blei 2011; Zhang et al. 2014). Koren at al. (Ko-
ren, Bell, and Volinsky 2009) conducted a line of work on
matrix factorization by considering time factor, bias influ-
ence factor, etc. In (Somekh, Aizenberg, and Koren 2014),
Aizenberg et al. incorporated artist-enhanced latent factor
into matrix factorization to alleviate the sparsity problem in
recommending music. Due to its practicability and flexibil-
ity, we extend the latent factor model to combine geograph-
ical information in the paper.

In conclusion, the existing studies cover only a portion
of available information in event recommendation tasks. In
this paper, we propose a Bayesian model that can combine
geographical and heterogenous social impact data through
an extended latent matrix model.

Preliminary
We select for analysis the data from New York City(NYC),
Los Angeles(LA), Houston, Chicago and San Fran-
cisco(SF), as these cities have a large number of group/event
pairs. The data sets are extracted from the work (Liu et al.
2012). The details of the data sets are shown in Table 1.

Geographical characteristics Regional concentration of
events. Based on the data statistics, we found that most

events were located around centers and concentration ar-
eas. Commonly, these concentration areas have more enter-
tainment facilities that are essential to supply comfortable
spaces for participants. For example, we use the Houston
data and set k to 20. The results in Fig. 3 show the phe-
nomena of regional concentration of events, where we use
k-Means clustering to find these concentration areas. Note
that different k leads to different cluster granularity. Similar
results have been observed in other four data sets.

�

Figure 3: Geographical analysis for social events. Each node
represents an event’s location, a node set with the same color
represents a geographical cluster.

Regional preference of users. We also observe that the per-
sonal preference of a user may vary from one area to another.
Take Houston data for example and let number of areas is
20. In Fig. 4 over 80% users visit less than 6 areas in the
whole 20 candidate areas. Fig. 5 shows the statistical results
on average visit number of area for each user, where the av-
erage visit number of area is higher than 1 for most of users
on each data sets. From Figs.4 and 5, we can observe that
users are likely to participate in the events that will happen
in their favorite regions.

Heterogeneous social relationships Online social rela-
tionship. In event-based social services, social group reflects
social relationship. In Meetup, users in the same social group
often share comments, photos and event plans. We use the
edge weight won

ij , as in Eq. (1), to represent online social
relationship between users i and j.

w

on
ij :=

|G(ui) \G(uj)|
|G(ui) [G(uj)|

(1)

where G(ui) represents all social groups that contain user
i, |G(ui) \ G(uj)| denotes the number of nodes in the set
G(ui)\G(uj), and |G(ui)[G(uj)| denotes the number of
nodes in the set |G(ui) [G(uj)|.

Offline social relationship. The offline network is con-
structed based on the co-participation of social events. If
users ui and uj co-participate in a social event, they share
a connection. Let woff

ij represent offline social relation be-
tween users i and j, the offline social relation can be de-
scribed as in Eq. (2),

w

off
ij :=

|E(ui) \ E(uj)|
|E(ui) [ E(uj)|

, (2)
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Figure 4: The Cumulative Probability Distribution of num-
ber of areas visited by users.

�

Figure 5: Distribution of average visit number of area.

where E(ui) represents the set of events user i has partici-
pated, |E(ui) \ E(uj)| denotes the number of nodes in the
set E(ui)\E(uj), and |E(ui)[E(uj)| denotes the number
of nodes in the set |E(ui) [ E(uj)|.

Problem Description
For the task of event recommendation, we have four types of
entities: S(user), LS(user location), E(event) and LE(event
location), and two additional social networks: GOn(online
social networks) and GOff (offline social networks).

Let S = {u1, u2, ..., un} denote the set of users. For
each user ui 2 S, we use a unique location Lu

i to indi-
cate the geographical information. Let the set of events be
V = {v1, v2, ..., vn}. For each event ej 2 V , it has a lo-
cation LV

j . The Online social network GOn represents so-
cial relationship among users and the offline social network
GOff represents offline relationship among users.

Formally, the problem is defined as ranking all events
for each user, according to the dyadic rating score r(u, v),
which indicates user u’s preference to event v. Hence, pre-
dicting r(u, v) plays the central in event recommendation.

While, there exists geographical preference on the events
by analysing data. Additionally, latent factor model is prac-
tical and flexible. Hence, we propose a mixture rating based
latent factor model which can combine personal and geo-
graphical preference. In order to tackle with the implicit rat-
ing characteristic, a Bayesian personal ranking framework
is introduced to learn the mixture rating. Heterogeneous so-
cial relations are applied into improve the performance by
popular social regularization method.

Mixture Rating
In order to model the geographical preference and improve
model performance, we use the regional preference-aware
geographical rating to extend the personal rating,

r(ui, vj) = ↵ṙ(ui, vj) + (1� ↵)r̈(ui, vj) (3)

where the relative weight ↵ is the fusion parameter that con-
trols the contribution of the two parts.

Personal rating. The personal rating is similar to the ma-
trix factorization latent factor model, which is proved effi-
cient in recommendations. The basic idea is to embody user
i and event j with the low-dimensional latent factor vectors
Ui 2 Rk and Vj 2 Rk. Then, the dyadic rating ṙ(ui, vj) of
user i to item j is approximated as follows,

ṙ(ui, vj) = UT
i Vj . (4)

Regional preference-aware geographical rating. In the
last section, we have observed the reality of regional con-
centration for events. Hence, we consider the regional
preference-aware geographical rating, r̈(ui, vj). The re-
gional preference-aware geographical rating is derived by
integrating the weighted user rating w.r.t. each region. Dur-
ing the integrating, the weight value is the probability of
event vj belonging to a specific region. Consider a region
space of k elements where all events are located, i.e., D =
d1, d2, ..., dk. Then, the rating can be derived by using the
equation as follows,

r̈(ui, vj) =
kX

t=1

⇧iMtCjt (5)

where ⇧i 2 Rl is a low-dimensional latent row vector as-
sociated with the user ui, Mt 2 Rl is a low-dimensional
latent column vector associated with the region dt, and Cjt

represents the probability of event vj belonging to region dt.
We first use the K-Means algorithm to cluster all events to

obtain the k regions, where the geographical feature of each
event is denoted as the binary variant (latitude, longitude).
We use Gaussian distribution to model the relationship be-
tween the events and the regions. Thus, each region di has
a parameter pair (µi, ⌃i) where µi is the expected value of
events in the region di and ⌃i is the variance matrix of lati-
tude and longitude. The parameter pairs can be obtained by
computing the events located in di. Then, we can compute
the probability of a event belonging to a region, given the
region set D. Here, for each event vi, we denote a vector
Ci which is used to represent the probability of an event be-
longing to each region,

Cij :=
N(Li|µj ,⌃j)Pk
t=1 N(Li|µt,⌃t)

(6)

MODEL TRAINING
The feedback of an event is often implicit, with pres-
ence/absence represented by a binary value 1/0. Bayesian
Personalized Ranking (BPR)(Rendle et al. 2009) emphases
on predicting the dyadic rating r(u, v) and top-ranking items
with high scores, which can be used to solve the implicit

147



feedback recommendation problem. Based on the BPR op-
timization criterion, we regard events involving user u as
a positive event set (denoted by P I

u ), while the remaining
events as the negative set (denoted by N I

u). Then, we expect
to maximize the objective function that ranks P I

u higher than
N I

u , as in Eq. (7),

max
⇥

Y

(ui,vj ,vk)2(U,P I
u ,NI

u)

P (r(ui, vj) > r(ui, vk)|⇥) (7)

where ⇥ = (U, V ) is the parameter set in the model.
Heterogenous social regularization. It has been widely

admitted that social relationship can improve the recommen-
dation performance. In the paper, we use social regulariza-
tion term, which is based on the assumption that the pref-
erence of a user is close to the weighted average preference
of his friends. We also add a Gaussian prior in the model as
follows,

P (Ui �
nX

j=1

wijPn
k=1 wik

Uj |W on) /

N(Ui �
nX

j=1

wijPn
k=1 wik

Uj |0,�2
I)

(8)

In the problem, there are two different social relation-
ships. Event-based social services usually publish events
in some related social groups in order to attract attentions.
Hence, there will be hidden relationships between groups
and events. Generally, a social group may organize many
events. Such a group/event pair can be defined by the con-
fidence weight in heterogenous social relationships as fol-
lows,

f

H
ij :=

|{G(ui) \G(uj)}� {E(ui) \ E(uj)}|
|{G(ui) \G(uj)}⌦ {E(ui) \ E(uj)}|

(9)

where |{G(ui) \ G(uj)} � {E(ui) \ E(uj)}| denotes the
size of the shared groups/events between user i and j, and
{G(ui) \ G(uj)} ⌦ {E(ui) \ E(uj)}| denotes the size
of all possible group/event pairs. Combining heterogenous
social relationships and auxiliary heterogenous confidence
weights, we extend former single social regularization term
into multiple social regularization terms as follows,

g(Ui|W on
,W

off
, F

H)

/ N(Ui �
nX

j=1

f

H
ij (w

on
ij + w

off
ij )

Pn
k=1[f

H
ik (w

on
ik + w

off
ik )]

Uj |0,�2
I)

(10)

Here, we denote ⌥ij =
fH
ij (w

on
ij +woff

ij )
Pn

k=1[f
H
ik(w

on
ik +woff

ik )]
for short.

Hence, g(Ui|W on,W off , FH ,�) ⇠ N(Ui�
Pn

j=1 ⌥ijUj :

0,�2I).
Objective posterior probability. Let � = (�,�u,�v) be

the prior parameters. In order to avoid over-fitting in the
learning process, we also enforce Gaussian priors on the la-
tent factor vectors Ui, Vj ,⇧i,Mt. Then, given the user/event
feedback matrix R, online social relation W on, offline social

relationship W off and heterogenous weight matrix FH , we
can obtain that the probability P (⇥|R,W on,W off , FH ,�)
is proportional to Eq. (10),

Y

(ui,vj ,vk)2(U,P I
u ,NI

u)

P (r(u, vj) > r(u, vk)|⇥)

·
Y

i

g(Ui|W on
,W

off
, F

H
,�) ·

Y

i

P (Ui|�u)P (⇧i|�⇡)

·
Y

j

P (Vj |�v) ·
Y

t

P (Mt|�m)

(11)

where P (r(u, vj) > r(u, vk)|⇥) := l(r(u, vj) � r(u, vk)),
and function l represents the logistic function. Then, we can
get the target optimization function, commonly represented
as a log-likelihood function.

Parameter Learning
The parameters can be learned by maximizing the above
objective function by using the stochastic gradient descent
(SGD) algorithm (Pan, Xiang, and Yang 2012). SGD has
fast speed to convergence and high scalability to large-scale
data sets. The main process of SGD is to randomly scan all
training instances and iteratively update parameters.

We firstly use the function I(vj 2 P I
ui
, vk 2 N I

ui
)

(I(i, j, k) for shorten) as an indicator function. The function
equals to 1 if both vj 2 P I

ui
and vk 2 N I

ui
stand, otherwise

0. Then, based on the objective function in Eq. (11), we have
the gradients as follows,

@F

@Ui
= �

X

vj2P I
ui

X

vk2NI
ui

↵

e

r(ui,vk)�r(ui,vj)

1 + e

r(ui,vk)�r(ui,vj)
I(i, j, k)(Vk �

Vj)�
1
�

2
u

(2Ui �
|U|X

j=1

⌥ijUj) +
⌥ti

�

2
u

|U|X

t=1^t 6=i

(Ut �
nX

j=1

⌥tjUj)

(12)

@F

@Vj
=

|U|X

i=1

|V |X

k=1

↵{[ e

r(ui,vk)�r(ui,vj)

1 + e

r(ui,vk)�r(ui,vj)
· Ui]I(i, j, k)

�[
e

r(ui,vj)�r(ui,vk)

1 + e

r(ui,vj)�r(ui,vk)
· Ui]I(i, k, j)}

(13)

@F

@⇧i
= �

|V |X

j=1

|V |X

k=1

(1� ↵){I(i, j, k) e

r(ui,vk)�r(ui,vj)

1 + e

r(ui,vk)�r(ui,vj)

· [
KX

t=1

Mt(Ckt � Cjt)]}

(14)

@F

@Mt
= �

|U|X

i=1

|V |X

j=1

|V |X

k=1

(1� ↵){I(i, j, k) e

r(ui,vk)�r(ui,vj)

1 + e

r(ui,vk)�r(ui,vj)

· [⇧i(Ckt � Cjt)]}
(15)
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We thus have the update rules used in the SGD algorithm
framework,

Ui = Ui + �

@F

@Ui
; Vj = Vj + �

@F

@Vj
;

⇧i = ⇧i + �

@F

@⇧i
; Mt = Mt + �

@F

@Mt

(16)

where � is the predefined step size.
Algorithm 1 gives the algorithm of parameter learning.

Algorithm 1: The algorithm of HeSig
Input: user-event feedback matrix R, online social
relationship W

on, Offline social relationship W

off ,
confidence weight fH , users’ geographical data L

S , events’
geographical data L

E , parameter ⇠
Output: user’s personal latent factor Uu, user’s geographical
latent factor ⇧u, event’s latent factor Vv , region’s
geographical latent factor Mr

01 Initialize Uu, Vv,⇧randMr with randomly generated
vectors,
02 Cluster events based on L

E to obtain K regions by using
K-means,
03 Compute the parameter pair (µi,�i) for each region,
04 Compute Cij , for all event-region pairs,
05 Initialize parameter pQ = 0,
06 Compute AUC value Q for train data,
07 while Q� pQ > ⇠

08 pQ = Q,
09 Calculate the gradients as in Eqs.(13⇠16);
10 Update the parameters as in Eq.(17).
11 Compute AUC value Q for train data,
12 end while
13 return parameters

Experiments
We implement the proposed recommendation model and test
on several real-world data sets to demonstrate its effective-
ness. We later give experimental results with discussions.

Data
We target users in the same city. We select five cities as de-
scribed in section Preliminary, as they are the largest
cities in the USA and have more users and groups than
other cities. For all the five data sets, we use 5-fold cross-
validation for performance assessment, and we report the
average results. In order to verify our proposed model, we
transform the original test data sets into Pair test sets and
List test sets.

The pair test sets consist of pair events (participated, not
participated) of each user from the original test data. The test
sets are mainly used for comparing on pair-wise data.

In our problem, the central task is to predict a person-
alized list of the events the user wants to participate, which
can be seen as a ranking problem. In order to evaluate the ef-
fectiveness of event recommendation in a real scenario, we
generate the list test sets. Then for each user in the test data,
we regard the events participated by the user as the target

events, and expect to give them higher ratings than other re-
maining events in the test data. Finally, we get the test sets
for the five cities. We call them as list test sets because the
test results are evaluated on the event ranking lists.

Evaluation Measures
To evaluate the event recommendation results, we adopt
three standard evaluation metrics: AUC, P@k (Precision at
Position k), and MAP (Mean Average Precision).

AUC measures the overall results of classification. It is
suitable for highly imbalanced data set, as in our case where
the negative events take a high proportion. In this work, we
use AUC in the pair test sets to measure the results.

AUC =

P|U|
i=1

P
vi2P I

ui

P
vj2NI

ui

I(r(ui, vj) > r(ui, vk))
P|U|

i=1 |P I
ui
| · |NI

ui
|

(17)

where I(.) is also an indicator function that equals to 1 if
r(ui, vj) > r(ui, vk) is true, otherwise, 0.

P@k and MAP are mainly used in ranking problems. For
each user u, the average precision (AP) is defined as follows,

APu =

Pm
k=1 P@k · I(Lk(u) 2 P

I
u )

|P I
u |

(18)

where I(.) is given in Eq. (17), m is the number of events,
Lk(u) denotes the kth event in the ranking event list L(u)
and |P I

u | represents the number of events joined by u in the
test sets. Finally, we can obtain MAP by averaging APu for
all users. In this paper, we use P@k and MAP in the list test
sets.

Parameter Setup
Learning rate and regularization parameters. Learning rate
controls the speed of model training. However, it may not
be able to converge if it is set too large. In this work, the
learning rate is set to 0.001 for both matrix factorizations:
geographical and personal. On the other hand, regulariza-
tion parameters are also empirically set to 0.001 for all.
Relative weight ↵. ↵ is the fusion coefficient of Eq. (3). We
tune ↵ by evaluating how the AUC changes in pair-test sets.
As the results shown in Fig. 6(f), we get stable and better
performance when ↵ 2 [0.94, 0.99]. Taking the results of
P@k and MAP into consideration, we set ↵ = 0.97
Dimension of latent factors and the number of reginal clus-
ters. In addition to the above parameters, we also conducted
sensitivity analysis in terms of the dimensionality of the la-
tent factors. As we vary the number of dimensions, we found
that it is not very sensitive. Empirically, we set the number of
dimensions to be 10 for the latent factors in our model. Sim-
ilar situation occurs in setting the number of reginal clusters.
Empirically, we set the number to be 20 for each city’s data.

Experimental Results
Results on Pair Test Sets. We first report the results on
pair test sets. We use the AUC metric because it can re-
veal the overall results of all methods under the adopted
pairwise learning framework, i.e., BPR. We compare our

149



P@1 P@3 MAP
0

0.005

0.01

0.015

0.02

P@n and MAP of Chicago list test set

P
re

ci
si

on

BMF
BMFh
BgMF
HeSig

(a) Comparisons on the
Chicago’s list test sets

P@1 P@3 MAP
0

0.01

0.02

0.03

0.04

0.05

P@n and MAP of Houston list test set

P
re

ci
si

on

BMF
BMFh
BgMF
HeSig

(b) Comparisons on the Hous-
ton’s list test sets

P@1 P@3 MAP
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

P@n and MAP of LA list test set

P
re

ci
si

on

BMF
BMFh
BgMF
HeSig

(c) Comparisons on the Los
Angeles’s list test sets

P@1 P@3 MAP
0

1

2

3

4

5 x 10-3

P@n and MAP of SF list test set

P
re

ci
si

on

BMF
BMFh
BgMF
HeSig

(d) Comparisons on the San
Francisco’s list test sets

P@1 P@3 MAP
0

1

2

3

4

5

6 x 10-3

P@n and MAP of NYC list test set

P
re

ci
si

on

BMF
BMFh
BgMF
HeSig

(e) Comparisons on the
New York’s list test sets

1 2 3 4 5 6
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

parameter alpha

A
U

C

Houston
Chicago
LA
NYC
SanFrancisco

(f) Test on the parameter ↵ with
pair data sets

Figure 6: The subfigures(a)-(e) are experimental results on different list test sets, and the subfigure(f) shows the AUC testing
results on the parameter ↵.

method(HeSig) with Collaborative Filter based on Matrix
Factorization(MF), Baysian MF for Implicit Rating(BMF),
BMF with heterogenous social regularization(BMFh), and
Baysian Regional preference-aware geographical MF for
implicit rating(BgMF).

Table 2: AUC Results
Method MF BMF BMFh BgMF HeSig
Houston 0.535 0.701 0.715 0.516 0.729
Chicago 0.456 0.686 0.691 0.433 0.695

LA 0.505 0.703 0.712 0.511 0.724
NYC 0.510 0.601 0.616 0.577 0.622
SF 0.534 0.621 0.633 0.589 0.641

Table 2 shows the experimental results under the standard
evaluation metric AUC. From the results, we can observe
that: 1)Models are better under considering imbalanced im-
plicit rating characteristic; 2)The heterogenous social regu-
larization can improve performance of all models; 3)BgMF
can model users’ regional preference, but its performance is
not as good as BMF, that is due to what the regional pref-
erence just indirectly reflects a user’s interests to the events;
4)The proposed model, HeSig, by combining geographi-
cally regional preference and heterogenous social informa-
tion, achieves better performance than other methods.

Results on List Test Sets. We focus on the top-1 and top-3
recommendation results when all events in a city are con-

sidered. This is because, users tend to only focus on the top
recommendation results while ignoring the rest. We also use
MAP to measure the overall results of recommendation.

Since the methods considering implicit rating always per-
form better than the pure matrix factorization methods for
our offline event recommendation problem, we compare our
method HeSig with BMF, BMFh and BgMF w.r.t. P@1,
P@3 and MAP.

Figure 6.(a)-(e) show that HeSig achieves the best results
w.r.t. measures P@1, P@3 and MAP. For the top-1 and top-3
precision, it achieves significant improvements over the cor-
responding results in the five list test sets. It also achieves the
best MAP among all methods. Thus, we can conclude that
the proposed method can obtain better event recommenda-
tion results.

Conclusion
In this paper, we studied a new problem of event recom-
mendation in event-based social networks (EBSNs). The
technical challenge is to jointly model three sources of in-
formation, i.e., the geographical features, heterogenous on-
line+offline social relationships and user implicit rating
data. We presented a new Bayesian latent factor model to
integrate these information for accurate event recommenda-
tion. We tested the model on real-world data sets, and the
results demonstrated the performance of the method.
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