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Abstract
We address the problem of transferring causal knowledge
learned in one environment to another, potentially differ-
ent environment, when only limited experiments may be
conducted at the source. This generalizes the treatment of
transportability introduced in [Pearl and Bareinboim, 2011;
Bareinboim and Pearl, 2012b], which deals with transferring
causal information when any experiment can be conducted
at the source. Given that it is not always feasible to conduct
certain controlled experiments, we consider the decision prob-
lem whether experiments on a selected subset Z of variables
together with qualitative assumptions encoded in a diagram
may render causal effects in the target environment com-
putable from the available data. This problem, which we call
z-transportability, reduces to ordinary transportability when
Z is all-inclusive, and, like the latter, can be given syntactic
characterization using the do-calculus [Pearl, 1995; 2000].
This paper establishes a necessary and sufficient condition
for causal effects in the target domain to be estimable from
both the non-experimental information available and the lim-
ited experimental information transferred from the source.
We further provides a complete algorithm for computing the
transport formula, that is, a way of fusing experimental and
observational information to synthesize an unbiased estimate
of the desired causal relation.

Introduction
The challenge of transporting experimental knowledge across
heterogeneous settings is pervasive in science. Conclusions
that are obtained in a laboratory setting are transported and
applied elsewhere, in an environment that differs in many
aspects from that of the laboratory [Pearl, 2012]. Similarly,
when a robot is trained in a simulated environment, the ques-
tion arises whether it could put the acquired knowledge into
use in a new environment where relationships among agents,
objects and features are different.

AI is in a unique position to tackle this challenge formally.
First, the distinction between statistical and causal knowl-
edge has received syntactic representation through causal
diagrams [Pearl, 1995; Spirtes, Glymour, and Scheines, 2000;
Pearl, 2000]. Second, graphical models provide a language
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for representing differences and commonalities among do-
mains, environments, and populations [Pearl and Barein-
boim, 2011] (henceforth, PB). Finally, the inferential ma-
chinery provided by the do-calculus [Pearl, 1995; 2000;
Koller and Friedman, 2009] is particularly suitable for com-
bining these two features into a coherent framework and
developing effective algorithms for knowledge transfer.

In this line of research, the transportability problem [PB,
2011] deals with transferring causal knowledge between two
environments Π and Π∗. In environment Π, (randomized) ex-
periments can be performed and causal knowledge gathered.
In Π∗, potentially different from Π, only passive observations
can be collected but no experiments conducted. The problem
is to infer a causal relationship R in Π∗ using the gathered
knowledge. Clearly, if nothing is known about the relation-
ship between Π and Π∗, the problem is unsolvable. 1 Using a
graphical representation called selection diagrams to encode
commonalities and differences between environments [PB,
2011], a complete graphical and algorithmic characterization
was provided in [Bareinboim and Pearl, 2012b] (henceforth,
BP), which decides if and how transportability is feasible.

In real world applications, however, it may happen that
certain controlled experiments cannot be conducted in the
source environment (for financial, ethical, or technical rea-
sons), so only a limited amount of experimental information
can be gathered. A natural question arises whether the inves-
tigator in possession of a limited set of experiments would
still be able to estimate the desired effects at the target.

This problem is called here “z-transportability” and gen-
eralizes ordinary transportability. Whenever any experiment
may be conducted in the source, the two problems coincide.
More formally, the z-transportability problem concerns the
transfer of causal knowledge from a source domain Π to a tar-
get domain Π∗. In Π, experiments over the elements of a set
Z ⊂ V may be conducted (where V represent all variables
in the system), so the set Iz contains the causal knowledge
derived from the experiments P (v|do(z′)) 2, for all Z ′ ⊆ Z.
In Π∗, potentially different from Π, only passive observations
can be collected but no experiments conducted.

1Unsolvable in the sense that for any estimation strategy, exam-
ples can be presented where the estimated value and the true effect
are divergent even when sample size goes to infinity.

2We use Px(y) interchangeably with P (y|do(x)).
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The goal of this paper is to provide a systematic anal-
ysis of the z-transportability problem, taking as input any
arbitrary selection diagram together with an arbitrary set of
experiments Z. Our contributions are summarized below:
• We provide a necessary and sufficient graphical condition

for solving the z-transportability problem when Z is a
set of variables under experimental control. We show that
z-transportability is feasible if and only if the selection di-
agram does not contain a subgraph with certain properties.

• We then construct a complete algorithm for deciding z-
transportability of causal effects, which returns a transport
formula whenever those effects are z-transportable.

• We further show that the do-calculus is complete for the
task of deciding z-transportability.

Motivating Examples
Consider Fig. 1(a) in which the node S represents factors that
produce differences between source and target populations.
Assume that we conduct a randomized trial in Los Angeles
(LA) and estimate the causal effect of treatment X on out-
come Y for every age group Z = z, denoted P (y|do(x), z).
We now wish to generalize the results to the population of
New York City (NYC), but we find the distribution P (x, y, z)
in LA to be different from the one in the NYC (call the latter
P ∗(x, y, z)). In particular, the average age in NYC is signif-
icantly higher than that in LA. How are we to estimate the
causal effect ofX on Y in NYC, denotedR = P ∗(y|do(x))?
3 4

The selection diagram for this example (Fig. 1(a)) con-
veys the assumption that the only difference between the two
populations are factors determining age distributions, shown
as S → Z, while age-specific effects P ∗(y|do(x), Z = z)
are invariant across cities. Difference-generating factors are
represented by a special set of variables called selection vari-
ables S (or simply S-variables), which are graphically de-
picted as square nodes (�). From this assumption, the overall
causal effect in NYC can be derived as follows:

R =
∑
z

P ∗(y|do(x), z)P ∗(z)

=
∑
z

P (y|do(x), z)P ∗(z) (1)

The last line is the transport formula for R. It combines
experimental results obtained in LA, P (y|do(x), z), with
observational aspects of NYC population, P ∗(z), to obtain
an experimental claim P ∗(y|do(x)) about NYC. In this triv-
ial example, the transport formula amounts to a simple re-
calibration (or re-weighting) of the age-specific effects to
account for the new age distribution. In general, however,
a more involved mixture of experimental and observational
findings would be necessary to obtain a bias-free estimate of
the target relation R, a full characterization of which is given
in [BP, 2012b]. Interestingly, Fig. 1(b) is an example where
bias-free transport of P ∗(y|do(x)) is not feasible.

3We use the structural interpretation of causal diagrams as de-
scribed in [Pearl, 2000, pp. 205–208]; see also Appendix 1.

4Following standard notation [Pearl, 2000], the dashed bidi-
rected arrows in a graph stands for latent variables.

X Y X Y

Z

(a) (b)

S

S

Figure 1: (a) Selection diagram illustrating when transporta-
bility among two domains is trivially solved through a sim-
ple recalibration. (b) Smallest selection diagram in which a
causal relation is not transportable.

To illustrate a z-transportability problem, consider Fig.
2(a) and assume we wish, again, to estimate P ∗(y|do(x))
but, now, X cannot be randomized. Instead, variable Z can
be randomized, and we ask whether we can still estimate
P ∗(y|do(x)) despite this constraint and despite the fact that
the two populations differ in the prior probabilities of Z (as
shown by the variable S). 5

Fortunately, in this case, the problem has a positive solution
as can be seen from the following derivation. First apply Rule
3 of the do-calculus to add do(z) to the expression,

P ∗(y|do(x)) = P ∗(y|do(x), do(z)) since (Y ⊥⊥ Z|X)G
XZ

Then apply Rule 2 to exchange do(x) with x:

P ∗(y|do(x), do(z)) = P ∗(y|x, do(z)) since (Y ⊥⊥ X|Z)G
XZ

This last expression can be rewritten as,

P ∗(y|x, do(z)) = P (y|x, do(z), s) =
P (y, x|do(z))
P (x|do(z))

, (2)

where the first equality follows from the definition of selec-
tion diagram and the second using the separation of S from
{X,Y } after intervening on Z. Therefore, performing an
experiment on Z in Π suffices to estimate the causal effect of
X on Y in Π∗ (without resorting to experimentation on X .)

There are subtle features of this problem that are worth
illustrating. Whereas the graph in Fig. 2(a) permits the effect
to be z-transportable, the graph in Fig. 2(b) does not. One
is tempted to explain this difference by noting that in the
mutilated graph from which the edges incoming to Z are
cut (to simulate intervention), the causal effect of X on Y
is identifiable in Fig. 2(a) but not in (b). That this is not
the case is shown in the graph in Fig. 2(c). The resulting
mutilated graph in this case entails both the identifiability
and transportability of P ∗(y|do(x)), but this effect is neither
identifiable, nor transportable, nor z-transportable (shown
later).

In a more involved manner, one might surmise that the
solution for the z-identification problem [BP, 2012a] could
yield the solution for z-transportability – z-identification asks
for expressing the causal relation R = P (y|do(x)) in terms

5A typical example is whether we can estimate the effect of
cholesterol (X) on heart failure (Y ) by experiments on diet (Z)
given that cholesterol levels cannot be randomized [Pearl 2000, pp.
88–89].
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of experiments onZ (in a fixed domain Π) – however, this too
turns out to not be the case. To witness, consider the diagram
G in Fig. 3(a), and note that even though R is z-identifiable
in Π, it is not the case that R is z-transportable.

Furthermore, consider the same task in regard to Fig. 3(b),
a simple analysis for z-identification in the source would
yield expression similar to the one in Fig. 2(a),

P (y|do(x)) =
P (y, x|do(z))
P (x|do(z))

, (3)

but in this case, the availability of the ratio in eq. (3) is not
sufficient for estimating the target quantityR = P ∗(y|do(x))
in Π∗. Interestingly enough, the quantity R is z-transportable
through the transport formula

P ∗(y|do(x)) =
∑
w

P (y|x,w, do(z))P ∗(w|x, z), (4)

which combines experimental results over Z obtained in the
source Π, P (y|x,w, do(z)), with observational aspects of
the target domain, P ∗(w|x, z), to obtain an experimental
claim P ∗(y|do(x)) about the target. (The derivation of this
expression is shown more explicitly later on.)

We note that the z-transportability problem reduces nei-
ther to transportability nor to z-identifiability, which leaves
open the question of how to algorithmically characterize z-
transportability. Our goal next is to get a better understanding
of this problem and provide formal conditions for deciding
whether a given quantity is (or is not) z-transportable from
the available information at hand.

Preliminary Results
The basic semantical framework in our analysis rests on
probabilistic causal models as defined in [Pearl, 2000, pp.
205], which are also called structural causal models. In the
structural causal framework [Pearl, 2000, Ch. 7], actions are
modifications of functional relationships, and each atomic
action do(X = x) on a causal model M produces a new
model Mx = 〈U,V,Fx, P (U)〉, where Fx is obtained after
replacing fX ∈ F for every X ∈ X with a new function that
outputs a constant value x given by do(X = x).

We follow the conventions given in [Pearl, 2000]. We
denote variables by capital letters and their values by lower
case. Similarly, sets of variables are denoted by bold capital
letters, sets of values by bold letters. We will use graph-
theoretic terminology with the typical kinship relationships
(e.g., parents, ancestors). We usually omit the graph subscript
whenever the graph in question is unambiguous. A graph GY

will denote the induced subgraph G containing nodes in Y
and all arrows between such nodes. Finally, GXZ stands for
the edge subgraph of G where all incoming arrows into X
and all outgoing arrows from Z are removed.

Key to the analysis of z-transportability is the notion of
“identifiability”, defined in [Pearl, 2000, pp. 77], which ex-
presses the requirement that causal effects be computable
from a combination of passive data P and the assumptions
embodied in a causal graph G (no experimental information
is invoked). In identifiability problems, causal models and
their induced graphs are associated with one domain (also

ss s
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Figure 2: Selection diagrams illustrating z-transportability of
the causal effect R = P ∗(y|x̂).R can be z-transported with
experiments on Z in model (a), but not in(b) and (c).

called setting, study, population, environment). In transporta-
bility analysis, this representation was extended to capture
properties of two domains simultaneously, using selection
diagrams, to be defined next: 5

Definition 1 (Selection Diagram [BP, 2012b]). Let
〈M,M∗〉 be a pair of structural causal models [Pearl, 2000,
pp. 205] relative to domains 〈Π,Π∗〉, sharing a causal dia-
gram G. 〈M,M∗〉 is said to induce a selection diagram D if
D is constructed as follows:

1. Every edge in G is also an edge in D;
2. D contains an extra edge Si → Vi whenever there might

exist a discrepancy fi 6= f∗i or P (Ui) 6= P ∗(Ui) between
M and M∗.
In words, the S-variables locate the mechanisms where

structural discrepancies between the two domains are sus-
pected to take place.6 Alternatively, the absence of a selection
node pointing to a variable represents the assumption that the
mechanism responsible for assigning value to that variable is
identical in both domains.

Armed with the concepts of identifiability and selection
diagrams, the problem of z-transportability of causal effects
can be defined as follows:
Definition 2 (z-Transportability). Let X,Y,Z be disjoint
sets of variables, and let D be a selection diagram rel-
ative to domains 〈Π,Π∗〉. Let 〈P, Iz〉 be the pair of ob-
servational and interventional distributions available in Π,
where Iz =

⋃
Z′⊆Z P (v|do(z′)), and P ∗ be the observa-

tional distribution of Π∗. The causal effect R = P ∗x (y) is
z-transportable from Π to Π∗ in D if P ∗x (y) is uniquely
computable from 〈P, Iz, P ∗〉 in any model that induces D. 7

The requirement that R be uniquely computable from
〈P, Iz, P ∗〉 has a syntactic image in do-calculus, which is
captured by the following Theorem.

5The assumption of no structural changes can be easily relaxed
[BP, 2012b].

6Transportability assumes that enough structural knowledge
about both domains is known in order to substantiate the pro-
duction of their respective causal diagrams. In the absence of
such knowledge, causal discovery algorithms might be used to
infer the diagrams from data [Pearl and Verma, 1991; Pearl, 2000;
Spirtes, Glymour, and Scheines, 2000].

7Henceforth, “z-transportability” will assume a specified set Z.
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Theorem 1. Let D be the selection diagram characterizing
Π and Π∗, and S a set of selection variables in D. The
relation R = P ∗(y|do(x), z) is z-transportable from Π to
Π∗ inD if the expression P (y|do(x), z, s) is reducible, using
the rules of do-calculus, to an expression in which all do-
operators apply to subsets of Z, and the S-variables are
separated from these do-operators.
Proof. The result follows from the definition of z-
transportability and soundness of the do-calculus.

While it is not immediately obvious whether a sequence of
rules exist that achieves the reduction required by the theorem,
two elementary cases exist which are easily recognizable and
can help in answering this question in general:

Definition 3. (Trivial Transportability)
A causal relation R is said to be trivially transportable from
Π to Π∗, if R(Π∗) is identifiable from the data in Π∗.

Definition 4. (Direct z-Transportability)
A causal relation R = P ∗(y|do(z),w) is said to be directly
z-transportable from Π to Π∗ with do(Z), if experiments
do(Z) are available in Π and R(Π) = R(Π∗).

A graphical test for direct z-transportability of R =
P ∗(y|do(z),w) follows from the do-calculus and reads:
(S ⊥⊥ Y|Z,W)DZ

; in words, Z blocks all paths from S
to Y once we remove all arrows pointing to Z and condition
on {Z,W} in the selection diagram D. As an example, the
X-specific causal effects in Fig. 2(a), P ∗(y|x, do(z)), are
directly z-transportable from Π to Π∗. These two cases (i.e.,
trivial and direct) will act as a basis to decompose the prob-
lem of z-transportability into smaller and more manageable
subproblems.

We consider below conditions for when a quantity cannot
be z-transported even when reduced to one of the elementary
forms discussed above. The next lemma provides an auxiliary
tool to prove that a quantity is not z-transportable based on
the refutation of the uniqueness property required by Def. 2,
which will be instrumental for proving completeness.

Lemma 1. Let X,Y,Z be subsets of disjoint variables in
domains Π and Π∗, and let D be the respective selection
diagram. R = P ∗x (y) is not z-transportable from Π to Π∗

in D if there exist two structural causal models M1 and M2

compatible with D such that PM1
(v) = PM2

(v), P ∗M1
(v) =

P ∗M2
(v), PM1(v|do(z′)) = PM2(v|do(z′)), for all Z′ ⊆ Z,

and P ∗M1
(y|do(x)) 6= P ∗M2

(y|do(x)).

Proof. Let Iz =
⋃

Z′⊆Z P (v|do(z′)), the collection of all
interventional distributions in domain Π. The latter inequality
of the Lemma rules out the existence of a function from
〈P, Iz, P ∗〉 to P ∗x (y).

While Lemma 1 might appear convoluted, it is nothing
more than a formalization of the statement “R cannot be
computed from information set IS alone.” Naturally, when
IS has three components, 〈P, Iz, P ∗〉, it becomes lengthy. In
turn, we use this lemma to show the non-z-transportability
of P ∗(y|do(x)) in the graphs in Fig. 2(b) and (c).

Theorem 2. P ∗(y|do(x)) is not z-transportable in the selec-
tion diagrams in Fig. 2(b) and (c).
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Figure 3: Selection diagrams illustrating the non-trivial rela-
tionship among the problems of z-identifiability, transporta-
bility, and z-transportability.

Proof. Consider the diagram G in Fig. 2(b). The existence
of a hedge F ′,F for R = P ∗(y|do(x)) in GZ implies that
Z cannot help in the z-identifiability of R in Π [BP, 2012a].
Assume that R is z-transportable. Note that Z does not par-
ticipate in the hedge F ′,F since there is no bidirected edge
going towards any of its elements in GZ. Further, consider
a parametrization such that Z is a fair coin, so disconnected
from V\Z inG. We can use Lemma 1 and the witness F ′,F
for non-z-identifiability to show non-z-transportability in G.
The inequality of R between the two models is obvious, and
the agreement of the interventional distributions do(Z) fol-
lows since Z is disconnected from V \ Z by construction.
Contradiction. Since z-transportability has to be valid for any
parametrization compatible with G, our claim follows.

In the diagram G in Fig. 2(c), the result is direct. First
note that there exists a s-hedge F ′,F for R in G, and by
Theorem 5 in [BP, 2012b], R is not transportable. The equal-
ity of the interventional distributions do(Z) follows by con-
struction. Therefore, the same two models that witness non-
transportability based on the s-hedge F ′,F together with
Lemma 1 entail the result. �

Characterizing z-Transportable Relations
We have seen positive as well as negative special cases
of z-transportability. In the sequel, we build on the anal-
ysis of these cases to give a general characterization of
z-transportability for any arbitrary selection diagram. A
key concept in this characterization will be that of sC-
components [BP, 2012b], which is essentially Tian’s C-
components over selection diagrams [Tian and Pearl, 2002].

Definition 5 (sC-component). LetD be a selection diagram
such that a subset of its bidirected arcs forms a spanning tree
over all vertices in D. Then D is an sC-component (selection
confounded component).

If D is not an sC-component itself, it can be uniquely
partitioned into a set C(D) of sC-components. For instance,
in Fig. 3(b), there are sC-components C1 = {Z,X, Y } and
C2 = {W}, since those are the two clusters of variables
connected through bidirected edges. Each graph induces a
unique sC-component decomposition, which is important
since it will provide a way to re-express the target quantity
into smaller pieces so as to allow the test of z-transportability
in each of these pieces independently.
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A special subset of sC-components that embraces the an-
cestral set of Y turns out to play an important role in deciding
transportability (and first noted by Shpitser in the context of
the identifiability problem), which will also be useful to z-
transportability, as shown in turn.

Definition 6 (s∗-tree). Let D be a selection diagram where
Y is the maximal root set. Then D is a Y-rooted s∗-tree if D
is an sC-component and all observable nodes have at most
one child.

There exist two interesting structures that stem from s∗-
trees. When a pair of s∗-trees shares the same root set, and
one encompasses the nodes in X, and the other does not, this
structure witnesses non-identifiability and is called hedge
(i.e., identifiability is infeasible when a hedge is present as an
edge subgraph of the inputted causal diagram) [Shpitser and
Pearl, 2006]. If there exists a S-node pointing to the s∗-tree
that does not intersect with X, this structure witnesses non-
transportability and is called s-hedge (i.e., transportability
is infeasible when a s-hedge is present as an edge subgraph
of the inputted selection diagram) [BP, 2012b]. The latter
generalizes the former. 8

Unfortunately, it is not the case that the s-hedge structure
characterizes the set of z-transportable relations. To witness,
note that there is no s-hedge in Fig. 2(b) and 3(c), so the
effects R = P ∗(y|do(x)) are transportable, but they are
not z-transportable. For instance, in Fig. 2(b), there is no
s-hedge because, even though there are s∗-trees F ′ = {Y },
F = {X,Z} ∪ F ′, there is not a selection node pointing F ′.

Clearly, if a quantity R is not transportable, R is also not
z-transportable, since z-transportability requires more strin-
gent conditions to hold than transportability. The converse
does not hold, and we have seen examples in which R is
transportable but not z-transportable. In other words, when
R is transportable, it is the case that R might be either z-
transportable (e.g., Fig. 3(b)), or not z-transportable (e.g., Fig.
2(b) and 3(c)). Furthermore, the fact that any z-transportable
quantity is transportable also follows.

Based on these observations, there exists a structure that
generalizes s-hedges and will be shown to characterize z-
transportable relations, which is defined below.

Definition 7 (zs-hedge). Let X,Y,Z be subsets of variables
in the selection diagram D. Let F, F ′ be R-rooted s∗-trees
such that F ∩X 6= ∅, F ′∩X = ∅, F ′ ⊂ F , R ⊂ An(Y)DX

.
Then F and F ′ form a zs-hedge for P ∗x (y) in Π and Π∗

relative to Z if one of the following conditions hold:

1. There exists a S-node pointing to some node in F ′, or
2. For any Z′ ⊆ Z ∩ F : if all directed paths from Z′ to Y in
D are blocked by X, F \ Z′ is also a zs-hedge for P ∗x (y)
in Π and Π∗ relative to Z \ Z′; otherwise, F is also a
zs-hedge for P ∗x (y) in Π and Π∗ relative to Z \ Z′, or

3. Z is an empty set.

We can see that zs-hedge captures the known cases of
z-transportability. For example, if there is no S-node in the
diagram, there must exist an experiment Z in the source such

8For a more detailed discussion on the relationship between
these two structures, refer to [BP, 2012b].

PROCEDURE TRz(y,x, PI ,Z, I, D)
INPUT: x,y value assignments, PI observational distribution in
Π∗ (if I = ∅), and interventional distribution in Π (if I 6= ∅), Z set
of variables with interventional distributions available in Π, I set
of active variables in Z, D a selection diagram, S set of selection
nodes. [P ∗, PZ are globally available, and PI represents the
distribution given active Z, removing the nodes after conditioning
in the top. order.]
OUTPUT: P ∗x (y) in terms of P ∗, PZ or FAIL(D,C0).

1 if x = ∅, return
∑

V\Y PI(V)

2 if V \An(Y)D 6= ∅, return TRz(y,x ∩An(Y)D,∑
V\An(Y)D

PI ,Z, I, An(Y)D)
3 Set W = (V \X) \An(Y)D

X
.

if W 6= ∅, return TRz(y,x ∪w, PI ,Z, I, D)
4 if C(D \X) = {C0, C1, ..., Ck},

return
∑

V\{Y,X}
∏

i TRz(ci,V \ ci, PI ,Z, I, D)
5 if C(D \X) = {C0},
6 if C(D) 6= {D},
7 if C0 ∈ C(D), return

∑
s\Y

∏
i|Vi∈C0

PI(vi|V (i−1)
D )

8 if (∃C′)C0 ⊂ C′ ∈ C(D), return TRz(y,x ∩ C′,∏
i|Vi∈C′ PI(Vi|V (i−1)

D ∩ C′, v
(i−1)
D \ C′),Z, I, C′)

9 else,
10 if

(
(S ⊥⊥ Y | X)D

X
∧ (Z ∩X 6= ∅)

)
,

return TRz(y,x \ z, PI ,Z \X,Z ∩X, D \ {Z ∩X})
11 else, FAIL(D,C0)
Figure 4: Modified version of transportability algorithm ca-
pable of recognizing z-transportable relations.

that the target quantity is rewritten so as to make use of this
experiment (i.e., the second condition should fail). If the set
Z is empty, the problem is unsolvable since there is no exper-
iment that might yield z-transportability. If there is a Z-node
that has a directed open path to Y (in the d-separation sense),
this implies that the expression cannot be rewritten to make
use of experimental data over Z.

Finally, we make the formal connection between the exis-
tence of a zs-hedge and the impossibility of z-transporting a
certain causal relation.

Theorem 3. Assume there exist s∗-trees F, F ′ that form a zs-
hedge for P ∗x (y) in Π and Π∗ relative to Z. Then R = P ∗x (y)
is not z-transportable from Π to Π∗ in D.

Proof sketch. Based on Lemma 1, we construct two models
that agree on the observables 〈P, Iz, P ∗〉, but disagree on
the target relation R. These models extend the construction
given in Thm. 3 [BP, 2012a] and Thm. 5 [BP, 2012b], being
more involved due to the additional requirements imposed by
z-transportability. See the full technical report for the explicit
construction [Bareinboim and Pearl, 2013a]. �

While this result establishes the fact that zs-hedges pre-
cludes z-transportability, Theorem 3 shows neither how
to locate a zs-hedge given a specific selection diagram,
nor whether zs-hedges characterizes z-transportability (i.e.,
whether the converse holds). In the next section, we con-
struct an algorithm which z-transports any causal effects in a
diagram which does not contain a zs-hedge.
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A Complete Algorithm for z-Transportability
Some of the previous analyses of identifiability, z-
identifiability, and transportability [Kuroki and Miyakawa,
1999; Tian and Pearl, 2002; Shpitser and Pearl, 2006; Huang
and Valtorta, 2006; BP, 2012b; 2012a] will be useful in the al-
gorithmization of z-transportability which generalizes these
problems. We construct an algorithm called TRz (see Fig.
4) based on the algorithm sID algorithm introduced in [BP,
2012b] (a variant of ID [Shpitser and Pearl, 2006]), which
explicitly employed the s-hedge structure that will show to
be instrumental to prove completeness.

In the sequel, we explain the general strategy undertaken
by TRz, which builds on two observations developed so far:

(i) z-transportability (sufficiency): Causal relations can be
z-transported if trivially transportable (def. 3) or directly
z-transportable (def. 4), which relies on the experiments
performed over Z. The current algorithms already operate on
the first part, proceeding through a sequence of equalities in
do-calculus based on the sC-component decomposition. The
idea is to apply a divide-and-conquer strategy breaking the
problem into smaller, more manageable pieces, and then to
assemble them back when this is possible. In each base case,
we have to evaluate these pieces, checking whether they are
z-transportable based on the definitions 3 or 4.

(ii) Non-z-transportability (necessity): The algorithm pro-
ceeds until it is not able to resolve a certain subproblem,
which implies the existence of a zs-hedge. It is not imme-
diately obvious that failure of the algorithm implies the ex-
istence of this zs-hedge. Assuming that this is the case, it
is not difficult to see that Theorem 3 can be used to gener-
ate a counterexample to non-z-transportability based on the
refutation of the uniqueness property using Lemma 1.

Before showing the more formal properties of TRz , we
demonstrate how TRz works through the z-transportability
of R = P ∗(y|do(x)) using {Z} in the graph D in Fig. 3(b).

The process starts with TRz(y,x, PI , {Z}, {}, D, 1), and
after failure in the tests in lines 1 and 2, TRz succeed in line
3, setting W = {Z} (since An(Y)DX

= {X,Y,W}, which
does not include {Z}). Thus, the original problem is reduced
to the call TRz(y, {x} ∪ {z}, PI ,Z, {}, D).

After failure in the previous tests, TRz invokes line 4.
Since D = An(Y ) and C(D \ {X,Z}) = (C0, C1), where
C0 = D({W}) and C1 = D({Y }), the original problem is
reduced to z-transporting respectively Q0 = P ∗x,z,y(w) and
Q1 = P ∗x,w(y, z), which implies that R =

∑
wQ0 Q1.

Evaluating the first factor Q0 = P ∗x,z,y(w), TRz triggers
line 2, noting that nodes which are not ancestors of W can
be ignored. This implies that P ∗x,z,y(w) = P ∗x,z(w) with
induced subgraph C0 = {Z → X,X → W,Z ← Uzx →
X}, where Uzx stands for the hidden variable between Z
and X . In the new call, TRz goes to line 5, where locally
C(D \ {X,Z}) = {C1}, for C1 = {W}. Given that C0 6=
C1, the test in line 6 succeed, and so the test in line 7, noting
that C1 is an sC-component itself (there is no bidirected
edge connecting {W} and {Z,X}). So, TRz can trivially
z-transport this factor and returns P ∗(w|z, x).

Evaluating the second factor Q1 = P ∗x,z,w(y), TRz fails

until the tests in lines 5 and 6, where the local induced
subgraph is C0 = {Y }. TRz fails in line 7 since C0 is
not an sC-component itself (just a part of another sC-
component). In the sequel, the test in line 8 comes true, where
C ′ = {Z → X,X → Y,Z ← Uzx → X,Z ← Uzy → Y },
so the original call is reduced through the removal of {W},
which is not part of the sC-component (there are no bidi-
rected edges between {W} andC ′). In the new call, TRz suc-
ceed in the test in line 5, but fails in line 6. In the sequel, both
tests in line 10 come true, and {X,Z} ∩ {Z} = {Z} = I,
which induces the graph C ′ \ {Z} = {X → Y } = C2. Fi-
nally, TRz fails until line 6, and then triggers line 7 since {Y }
is a component itself in C2, so returning P (y|w, x, do(z)) (in
the source since I 6= ∅). This result coincides with Eq. (4).

We prove next soundness and completeness of TRz.
Theorem 4 (soundness). Whenever TRz returns an expres-
sion for P ∗x (y), it is correct.

Proof. The result partly follows from the soundness of sID
shown in Thm. 6 [BP, 2012b], which is inherited by TRz

by construction. Note that the process of identification of
the target relation without the Z-nodes, that were considered
in line 10, is allowed since, by assumption, the interven-
tional distribution do(Z) can be used after testing for direct
z-transportability in the respective local call. �

Theorem 5. Assume TRz fails to z-transport P ∗x (y) (exe-
cutes line 11). Then, there exists X′ ⊆ X, Y′ ⊆ Y, Z′ ⊆ Z
such that the graph pair D,C0 returned by the fail condition
of TRz contains as edge subgraphs s∗-trees F , F ′ that form
a zs-hedge for P ∗x′(y

′) in Π and Π∗ relative to Z′.

Proof sketch. We can use the specific topological relation
between the graphs D,C0, remove non-essential edges, and
show that the remaining structure matches the definition of a
zs-hedge. See [Bareinboim and Pearl, 2013a]. �

The following results are now immediate.
Corollary 1 (completeness). TRz is complete.

Corollary 2 (do-calculus characterization). The rules of
do-calculus, together with standard probability manipula-
tions are complete for determining z-transportability of
P ∗x (y).

Corollary 3 (zs-hedge criterion). P ∗x (y) is z-transportable
from Π to Π∗ in D if and only if there does not exist a zs-
hedge for P ∗x′(y

′) in D, for any X′ ⊆ X, Y′ ⊆ Y, Z′ ⊆ Z.

Conclusions
This paper treats transportability problems in which experi-
ments can be conducted only over limited sets of variables
Z. We provide a necessary and sufficient graphical condition
under which causal effects in a target environment can be
estimated from experimental information transported from
the source environment, potentially different from the former.
We further provide a complete algorithm for computing the
resulting mapping, that is, a formula for fusing available ob-
servational and experimental data to synthesize an estimate
of the desired causal effects. We show that the do-calculus
is complete for characterizing the z-transportability class.
While practical applications of these results are predicated on
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the availability of problem-specific selection diagrams, the
general understanding of why some problems permit infor-
mation transfer and other do not has scientific merit on its
own. It informs investigators what kind of disparities between
environments would make transportability theoretically im-
possible, and what disparities can be circumvented by clever
information fusion strategies. Even though the construction
of a selection diagram might be a demanding task, the com-
pleteness result makes such construction unavoidable if one
seeks theoretical guarantees for a given method of informa-
tion transfer. Fortunately, the knowledge necessary to con-
struct a diagram is not much different than that required for
ordinary causal diagrams as used, for example, to establish in-
ternal validity (i.e., identifiability). This paper complements
a recent work on a task called meta-transportability [Barein-
boim and Pearl, 2013b], which deals with transferring causal
information from multiple heterogeneous domains.
Acknowledgement We thank the reviewers for their com-
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Appendix 1
The do-calculus [Pearl, 1995] consists of three rules that per-
mit us to transform expressions involving do-operators into
other expressions of this type, whenever certain conditions
hold in the causal diagramG. We consider a DAGG in which
each child-parent family represents a deterministic function
xi = fi(pai, εi), i = 1, . . . , n, where pai are the parents
of variables Xi in G; and εi, i = 1, . . . , n are arbitrarily
distributed random disturbances, representing background
factors that the investigator chooses not to include in the
analysis.

Let X , Y , and Z be disjoint sets of nodes in a causal DAG
G. We denote by GXZ . the graph obtained by deleting from
G all arrows pointing to nodes in X and all edges emerging
from nodes in Z. The following three rules are valid for every
interventional distribution compatible with G.
Rule 1: Px(y|z,w) = Px(y|w) if (Y ⊥⊥ Z|X,W)GX

.
Rule 2: Px,z(y|w) = Px(y|z,w) if (Y ⊥⊥ Z|X,W)GXZ

.
Rule 3: Px,z(y|w) = Px(y|w) if (Y ⊥⊥ Z|X,W)G

X,Z∗
,

where Z∗ = Z \Anc(W)GX
.

In words, rule 1 affirms that the d-separation criterion holds
when the system is under an intervention do(X = x); rule
2 gives a condition to exchange the action do(Z = z) with
passive observation (Z = z); rule 3 gives a condition under
which the action do(Z = z) is irrelevant and can be deleted
(similarly to conditional independences when an observation
is irrelevant). The do-calculus was proven to be complete for
the task of identification of causal effects [Shpitser and Pearl,
2006; Huang and Valtorta, 2006].

Appendix 2
To exemplify the use of do-calculus, we apply it to derive the
transport formula for the model of Fig. 3(b) (Eq. 4),

P ∗(y|do(x)) = P (y|do(x), S) = P (y|do(x), do(z), S)(
3rd rule of do-calculus, (Z ⊥⊥ Y |X,S)G

X

)

=
∑

wP (y|do(x), do(z), w, S)P (w|do(x), do(z), S)

=
∑

wP (y|do(x), do(z), w)P (w|do(x), do(z), S)(
1st rule of do-calculus, (S ⊥⊥ Y |X,Z)G

X,Z

)
=
∑

wP (y|x, do(z), w)P (w|do(x), do(z), S)(
2nd rule of do-calculus, (X ⊥⊥ Y |Z)G

XZ

)
=
∑

wP (y|x, do(z), w)P (w|x, z, S)(
2nd rule of do-calculus, (X,Z ⊥⊥W )GX,Z

)
=
∑

wP (y|x, do(z), w)P ∗(w|x, z)
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