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Abstract

Classic sparse representation for classification (SRC)
method fails to incorporate the label information of
training images, and meanwhile has a poor scalabil-
ity due to the expensive computation for `1 norm. In
this paper, we propose a novel subspace sparse cod-
ing method with utilizing label information to effec-
tively classify the images in the subspace. Our new ap-
proach unifies the tasks of dimension reduction and su-
pervised sparse vector learning, by simultaneously pre-
serving the data sparse structure and meanwhile seeking
the optimal projection direction in the training stage,
therefore accelerates the classification process in the
test stage. Our method achieves both flat and structured
sparsity for the vector representations, therefore mak-
ing our framework more discriminative during the sub-
space learning and subsequent classification. The em-
pirical results on 4 benchmark data sets demonstrate the
effectiveness of our method.

Introduction
Sparse representation has been extensively studied in sig-
nal processing (Candes and Wakin 2008) and computer vi-
sion (Wright et al. 2008) areas. Despite its success in the
applications, the standard sparse representation framework
has several limitations: (i) In the learning process, the train-
ing data are first grouped into the column-based matrix, then
the sparse representation of the test image is found via solv-
ing a convex problem which minimizes the empirical loss
with an `1 regularization that introduces the sparsity. How-
ever, the label of the training data is not utilized, therefore
the sparsity is based solely on the structure of the individual
data. (ii) Sparse representation itself does not involve any
dimension reduction process, solving a high dimensional
`1 minimization problem is still computational expensive
nowadays. When the atoms used for the sparse decompo-
sition are the training samples themselves, then this frame-
work usually requires the training matrix to be overcomplete
(the number of training samples is larger than the individual
image dimension), therefore sparse representation so far is
applied to relatively small scale data sets.
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To address the issue caused by unsupervised training, we
introduced the group sparse regularity term to incorporate
the label information and therefore explore the sparse struc-
ture of the representation vector. To have better data scalabil-
ity, we seek a projection matrix to effectively lower down the
image dimension and meanwhile preserve the sparse struc-
ture for subsequent classification. During the training stage,
we develop a novel supervised subspace learning algorithm
using group sparse regularization term, named Supervised
and Projected Sparse Coding (SPSC), which simultaneously
optimizes the sparse vector representations and the projec-
tion direction. To the best of our knowledge, our algorithm
is the first projected sparse coding algorithm using the la-
bel information. Our algorithm has several explicit advan-
tages. First, extending from sparse representation, our al-
gorithm incorporates the label information during each it-
eration of the projection matrix updating, therefore making
our method more discriminative. Second, through the learn-
ing of the projection matrix, we can save more time in the
classification stage than the time spent for training, therefore
our proposed algorithm has the potential to solve large-scale
problems. Last, our method has no explicit feature selection
process and is robust to contiguous image occlusions. To
demonstrate the effectiveness and advantage of the proposed
method for image classification, extensive experiments have
been performed on the four commonly used data sets. We
compare the classification results of our method with multi-
ple related methods. In particular, the experiments show that
with the same subspace dimension, our method gets better
classification results than other benchmark methods.

Sparse Representation Overview
In this section, we first briefly introduce the basic back-
ground of sparse representation and necessary notations for
subsequent context. Suppose we have n images of size r×c,
reshape them to vectors, arrange them into columns of a
training sample matrix

A = (x1, · · · ,xn) ∈ Rm×n

where m = r ∗ c is the length of xi. Sparse representation
based classification model assumes n � m, i.e., A is an
overcomplete system. Given a new input image y, Sparse
representation based classification model computes a repre-
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sentation vector

α = (α1, · · · , αn)T ∈ Rn (1)

to satisfy

y =
n∑
i=1

xiαi = Aα (2)

Since A is overcomplete, to seek a sparse solution, it is
natural to solve

min
α
‖Aα− y‖22 + λ0‖α‖0 (3)

where `0 pseudo norm counts the number of non-zero ele-
ments in α and λ0 > 0 is the controlling parameter.

Recent discovery in (Donoho 2004; Candes and Tao
2006) found that the sparse solution in Eq. (3) could be ap-
proximated by solving the `1 minimization problem:

min
α
‖α‖1, s.t. Aα = y (4)

or the equivalent penalty version:

min
α
‖Aα− y‖22 + λ1‖α‖1 (5)

This `1 problem can be solved in polynomial time by
standard linear programming methods (Chen, Donoho, and
Saunders 1998).

While sparse representation has been applied successfully
in the areas mentioned in the introduction, it also has two
major limitations. 1) No label information has been used for
the learning of α. 2) Poor data scalability, so far no effi-
cient tool to solve large scale high dimension `1 minimiza-
tion problem.

Supervised Group Sparse Coding
When applied to image classification, an important limita-
tion of sparse representation is that the useful label informa-
tion is not used in the classification. Note that in Eq. (5), the
calculation of α is totally based on the individual data struc-
ture without the label information, the non-zero elements in
α are although sparse(flat sparse), not so condensed. In or-
der to take advantage of the training data labels, in this paper,
we introduce the group `1 norm, which is defined as follows:
assuming there are c classes in the total n images, each class
has nk images for k = 1, · · · , c, the representation vector α
can be written into Eq. (6) considering its label information.

α = (α1,1, · · · , α1,n1
, · · · , αc,n1

, · · · , αc,nc
), (6)

We assume

A = (A1, · · · , Ac), θ = (θ1, · · · ,θc)T ,

where

Ak = (xk1, · · · ,xknk
), θk = (αk1, · · · , αkni)

T ,

The corresponding group sparse coding framework could be
written in a compact way as follows:

min
θ

1

2
‖Aθ − y‖22 + γ‖θ‖g (7)

where

‖θ‖g =
c∑

k=1

‖θk‖2 (8)

denotes the group `1 norm throughout this paper and γ > 0
is the parameter. It is easy to see ‖.‖g is well defined and es-
sentially same as the penalty term of the group lasso model
proposed in (Yuan and Lin 2006), except here we do not take
the group size into account for simplicity. With the group `1
regularization term, the learned θ explores the sparse struc-
ture of θ as it also encodes the label information. Fig. (1)
illustrates the framework. It can be expected that our pro-
posed method would be more discriminative than the sparse
representation framework if both used for image classifica-
tion. We will give the detailed algorithm for solving Eq. (7)
in the subsequent subsection.

Group Sparse Coding Algorithm
One of the most important contributions in this paper is our
new algorithm to solve the group `1 problem. The Eq. (7)
can be written explicitly in the following form:

min
θ

1

2
‖Aθ − y‖22 + γ

c∑
i=1

‖θi‖2 (9)

Taking the derivative with respect to θ and setting to 0,
we get the following equation:

ATAθ −AT y + γDθ = 0 (10)

where D is a block diagonal matrix and defined by
1

2‖θ1‖2 In1 · · · 0
...

. . .
...

0 · · · 1
2‖θc‖2 Inc


From this, we obtain

θ = (ATA+ γD)−1ATy (11)

Because D depends on θ, the convergence of this algorithm
is unclear at this point. We need to give an algorithm that
is indeed convergent. We present an iterative algorithm to
solve this problem. The detailed algorithm is given in Algo-
rithm 1.
A few notes about this algorithm:

Step(A0): The Eq. (9) is a convex problem, therefore the
initialization in (A0) is quite flexible given enough number
of iterations, it is guaranteed that Algorithm 1 will converge
to global optimum. In practice, we start with θ the identity
matrix.

Step(A2): The updating formula for θ is a closed form
solution and relatively simple, which makes the algorithm
easy to implement.

Convergence criteria: we terminate the iteration when the
value of the objective function ‖obj

(t+1)−obj(t)‖2
‖obj(t)‖2

< 10−4 or
the maximum number of iterations reached, which is 50. We
want to point out that 50 is generally far more than the actual
iterations needed to get the algorithm converged (at least true
for our experiments in this paper). Indeed, we compared our
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Figure 1: The illustration of our group sparse coding method. We use `2-norm for coefficients of images from the same subject,
and impose `1-norm between different subjects. Thus, in group sparse coding process, the images from the same group prefer
to have the large or small weights together, i.e. we expect the images from the correct class can dominant the sparse coding.

Algorithm 1: The Group Sparse Coding Algorithm

(A0): t=0. Initialize θ(t) = (θ
(t)
1 , · · · ,θ(t)

c )T repeat
(A1): Calculate the diagonal matrix

D(t) =


1

2‖θ(t)
1 ‖2

In1
· · · 0

...
. . .

...
0 · · · 1

2‖θ(t)
c ‖2

Inc


(A2): θ(t+1) = (ATA+ γD(t))−1ATy
(A3): t=t+1

until Converge

method with the gradient projection method in SLEP (Liu,
Ji, and Ye 2009) to solve Eq. (9), for the data in this paper,
it takes gradient projection method over 30,000 iterations
to get the same converged objective function value that our
method gets within 20 iterations and our method runs about
4 times faster.

Parameter Setting: overall the method is not sensitive to
the parameter γ as long as within the reasonable threshold.
For images with pixel value ranging from 0 to 255, γ = 100
is a good starting point for tuning.

There are several other ways to solve `1 problems, such as
gradient projection (Figueiredo, Nowak, and Wright 2007;
Kim et al. 2007), homotopy (Asif and Romberg 2009), itera-
tive shrinkage-thresholding (Wright, Nowak, and Figueiredo
2008), proximal gradient (Beck and Teboulle 2009), iterative
re-weighted (Nie et al. 2010; Cai et al. 2011), and augmented
Lagrange multiplier (Bertsekas 2003). The comparison of
these methods is beyond the scope of this paper.

Convergence Analysis
In step (A2) of the algorithm, assume θ = θ(t) for notation
simplicity in the proof and the updated θ is θ̃.

Theorem 1. The objective function value in each iteration
will decrease.

Proof. According to step (A2), we know that

θ̃ =
1

2
min
θ
‖Aθ − y‖22 + γθTD(t)θ

therefore

1

2
‖Aθ̃−y‖22+γθ̃TD(t)θ̃ ≤ 1

2
‖Aθ−y‖22+γθTD(t)θ (12)

Because we can easily prove

‖θ̃‖2 −
‖θ̃‖22
2‖θ‖2

≤ ‖θ‖2
2

= ‖θ‖2 −
‖θ‖22
2‖θ‖2

, (13)

we have

γ
c∑
i=1

‖θ̃i‖2 − γ
c∑
i=1

‖θ̃i‖22
2‖θi‖2

≤ γ
c∑
i=1

‖θi‖2 − γ
c∑
i=1

‖θi‖22
2‖θi‖2

which is equivalent to

γ
c∑
i=1

‖θ̃i‖2−γθ̃TD(t)θ̃ ≤ γ
c∑
i=1

‖θi‖2−γθTD(t)θ (14)

Adding the inequalities (12) and (14) in both sides, we arrive
at:

1

2
‖Aθ̃−y‖22+γ

c∑
i=1

‖θ̃i‖2 ≤
1

2
‖Aθ − y‖22+γ

c∑
i=1

‖θi‖2 (15)

since the objective function would decrease at each iteration
or have converged according to our criteria and bounded be-
low, the algorithm would converge.

Supervised and Projected Sparse Coding
Although the group sparse coding method works well for
the classification task, it still needs to be accelerated to over-
come the efficiency issue as mentioned in the sparse rep-
resentation. Given the high-dimensional data, one way is to
apply classic dimension reduction methods such as PCA and
LDA first, then apply the Group Sparse Coding to do the
classification using projected data. However, such projected
subspace is unlikely to be optimal for Group Sparse Coding
method due to the decoupling of the two steps involved.

We propose to tightly integrate these two steps, the di-
mension reduction and classification, together in a unified
framework. The critical part here is how to learn a proper
projection matrix W . Here we propose a consistent way to
get W , utilizing the class label information as discussed in
preceding parts.
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The objective function of our framework to learn W
is the following

min
W,βi

n∑
i=1

1
2‖W

TA−iβi −WTxi‖22 + γ‖βi‖g
s.t. WTW = I

(16)

where

βi = (β1, · · · , βi−1, βi+1, · · · , βn)T ∈ Rn−1 (17)

A−i = (x1, · · · ,xi−1,xi+1, · · · ,xn) ∈ Rm×(n−1) (18)

Here xis are individual images from the training matrix
A. The main motivation here is to simultaneously optimize
the sparse vector representation for individual images and
seek optimal projection matrix in terms of the representa-
tion residue sum, therefore find the optimal projected sub-
space for the subsequent classification. After we learned W ,
we can do the classification with Group Sparse Coding again
in the embedded space.

Supervised Projected Sparse Coding Algorithm
Initialization The training of W has two stages. The first
stage is to do the initialization of β(0)

i

β
(0)
i = (β

(0)
1 , · · · , β(0)

i−1, β
(0)
i+1, · · · , β

(0)
n )T ∈ Rn−1 (19)

from
min
β

(0)
i

1

2
‖A−iβ(0)

i − xi‖22 + γ‖β(0)
i ‖g (20)

for each training image xi, where A−i defined in Eq.(18)
represents the training matrix without i-th image, this can be
solved using the algorithm given in Section .

After we learned β
(0)
−i s, we can find the initial projection

matrix W (0) according to the following objective function:

min
WT

n∑
i=1

1

2
‖WTA−iβ

(0)
−i −W

Txi‖22 s.t. WTW = I

(21)
Here W (0) ∈ Rm×k and k is the pre-specified subspace
dimension. The solution of W (0) is given by the eigenvec-
tors corresponding to the k smallest eigenvalues of S, where

S =
n∑
i=1

(A−iβ
(0)
i − xi)(A−iβ

(0)
i − xi)

T . So W (0) is the

initial projection matrix to minimize S, the following sec-
tion is about how to iteratively update W to find the optimal
projection direction to minimize the sum of representation
residuals for the training data.

Algorithm for Learning W After the initialization of W
and βis, we employ an iterative approach to solve Eq. (16).
The first term in Eq. (16) is the sum of individual represen-
tation residuals in the subspace, the second term ensures the
group sparsity of βis. We solve Eq. (16) using an iterative
approach that repeats the following two steps:
Step A. With W fixed, we get the updated βis by solving
Eq. (16). The objective function Eq. (16) becomes:

min
β−i

n∑
i=1

1
2‖Ã−iβi − x̃i‖22 + γ‖βi‖g

Ã−i =WTA−i x̃i =WTxi

(22)

This involves n independent quadratic problems containing
βi, which can be solved by Algorithm 1.
Step B. Solve W while fixing βis. The objective function
Eq. (16) becomes:

min
W

Tr WTSW, s.t. WTW = I (23)

where S =
n∑
i=1

(A−iβi − xi)(A−iβi − xi)
T

The solution of W is given by the eigenvectors correspond-
ing to the k smallest eigenvalues of S.
Convergence. This iterative algorithm is guaranteed to con-
verge because in both steps (A,B), the objective function is
decreased. We set the convergence criteria of W as

‖W (t)W (t)T −W (t−1)W (t−1)T ‖1
‖W (t−1)W (t−1)T ‖1

< ε (24)

where W (t) is the W at the t-th iteration and ε is a small
tolerance which is usually set to ε = 10−4.

Classification The class label prediction is given by the
following equation.

min
θ

1

2

∥∥WTAθ −WT y
∥∥2
2
+ γ ‖θ‖g

min
k

rk(y) = ‖WTy −WTAkθk‖2 (25)

Here y is the test image and θ is the same value used for
training for simplicity. It can be observed that classifica-
tion equation (25) is consistent with Eq. (16), the W from
Eq. (16) is well designed for the projected space classifica-
tion.

Summary of Our Framework
There are a few main advantages of our method that we want
to summarize here. First, different from sparse representa-
tion, our Group Sparse Coding method successfully incor-
porates the label information and therefore becomes a su-
pervised method, in Algorithm 1 we further derive the solu-
tion to iterative update the representation vectors to find the
global solution. Next, in our Projected Group Sparse Coding
framework, with the unified objective function and simulta-
neous optimization strategy, the optimal projection matrix is
iteratively updated. The experimental comparison between
our algorithm and gradient projection method also demon-
strates our method runs much faster.

Learning W using `1 Norm
There is another interesting discovery about the distinction
of `1 norm and group `1 norm. If we replace the group `1
with the `1 norm throughout the training function, to be spe-
cific, replace Eq. (16) by the following equation:

min
W,βi

n∑
i=1

‖WTA−iβi −WTxi‖22 + λ2‖βi‖1 (26)

where λ2 > 0 is the appropriate parameter. If using almost
identical procedure except now involving `1 minimization
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problems, we find the above plausible model fails due to
low classification performance, the reason is that W would
diverge from the supposed projection direction after enough
long time of iterations in Eq.(26). This demonstrates the ef-
fectiveness of the label information and the group sparse reg-
ularization term from another point of view.

Experiments
Four benchmark datasets are used in our experiments,
including extended YaleB (Georghiades, Belhumeur, and
Kriegman 2001), subset of CMU PIE (contains only C05,
C07, C09, C27, C29) (Sim, Baker, and Bsat 2002), USPS
Handwritten Digit, and UCI Semeion Handwritten Digit
(Buscema and MetaNet 1998). We use the cropped images
from them, resize them to 16 × 16 pixels images to satisfy
the over-complete assumption for sparse representation.

In this section, we want to demonstrate the classifica-
tion performance for both Group Sparse Coding (GSC) and
SPSC. We will also include supervised translation-invariant
sparse coding (SSC) for classification comparison for non-
embedding scenario, as SSC requires reasonable size batch
and therefore quite difficult to apply to low dimension cases.

Unless otherwise specified, the experiment setting
throughout this section is as follows. We randomly select
n images from each class, equally split them into training
set and test set and then do the two-fold cross validation on
the same data instance for each method. Since each classi-
fication method has one or more parameters to be tuned, in
order to compare these methods fairly, we run these methods
under different parameters setting for each instance and the
best one for each method has been recorded. The reported
result is the average accuracy in percentages of 10 indepen-
dent such experiments on each data set.

For k in kNN, it is tuned by searching the grid
{1, 2, 3, . . . , 10}. For our method Group Sparse Coding and
SRC, the regularization parameters are tuned by search-
ing the grid {1, 2, 22, . . . , 210} for images with pixel values
from 0 to 255, adjusted accordingly for normalized images.
For c in SVM linear model, we search from 10−8 and double
it each time for 40 different values. We choose to use linear
kernel for simplicity due to the subspace structure of face
images and there is a justification on page 9 in (Wright et
al. 2008). These parameters are set via searching for optimal
setting. For SSC, we use the suggested value in (Yang, Yu,
and Huang 2010).

Comparison to Different Classification Methods
In this part, we want to demonstrate the classification perfor-
mance of the GSC method. We randomly sample 30 images
each class from YaleB, 20 each class from PIE, 100 each
class from USPS and 100 each class from Semeion, apply
these classification methods on the same data instances and
summarize the average accuracy results in Table 1. It can be
observed that GSC outperforms other methods on all data
sets except PIE. In particular, this indicates encoding the la-
bel information during the sparse coding can further improve
the classification results at most cases.

Table 1: Classification Methods Accuracy Comparison
Methods YaleB PIE USPS Semeion

GSC 91.9± 0.2 86.9± 0.1 93.4± 0.1 92.8± 0.1
SSC 91.7± 0.2 87.3± 0.2 93.1± 0.1 92.6± 0.1
SRC 91.4± 0.2 85.0± 0.1 92.8± 0.1 92.6± 0.1
SVM 78.6± 0.3 60.2± 0.2 92.9± 0.2 91.8± 0.2
KNN 39.5± 0.4 29.3± 0.4 90.6± 0.3 85.8± 0.4

Classification in Subspace
In this part, we compare our Projected Group Sparse Cod-
ing method with different combinations of three dimension
reduction methods and three classification methods, in to-
tal 9 different combinations. Dimension reduction methods
are PCA, LDA, neighborhood component analysis (NCA)
(Goldberger et al. 2004) and Laplacian preserving projection
(LPP), classification methods are KNN, SVM (linear kernel)
and SRC. It is well known that PCA and LPP belong to the
unsupervised category, we include PCA here since it is very
popular and a good benchmark, as to LPP, we implemented
the supervised version of LPP in (Cai, He, and Han 2007), in
their paper, Cai et al. integrate the label information into the
projection matrix by searching the nearest neighbors of each
training sample among the points sharing the same label. In
the experiment section, when we mention LPP, we are refer-
ring to the supervised LPP and we set its parameters using
the suggested values by the authors.

Classification with Varying Sample Size In this part, we
experiment on the influence of different number of train-
ing samples for the classification performance. LDA method
can reduce image size to a valid dimension up to number of
class minus one. We set the projection dimension close to
the number of class trying to be fair. In YaleB, we set the
subspace dimension to 40; in PIE, we set it to 80; in USPS
and Semeion, we set it to 20. We use SPSC to represent our
method in the tables and figures thereafter. From Table 2,
it can be observed that our method outperforms the other
methods including those methods that use SRC classifier.

Classification with Partial Occluded Images
In this part, we want to demonstrate our method is robust to
occlusions and compare the classification performance with
other methods when the images are partially occluded. There
are a few papers discussing the solutions to the image occlu-
sions. Martinez et al. (Martinez 2002) choose to use blocks
of features and analyze the local match with a probabilis-
tic measure while Pentland et al. (Pentland, Moghaddam,
and Starner 1994) used multiple eigenfaces to select fixed
feature. However, when the location of the occlusion is un-
predictable, these methods are less likely to succeed here.
SRC has demonstrated its robustness dealing with image
occlusions comparing to conventional methods. We want to
show our method has even more advantages. Table 3 sum-
marizes the classification methods’ performance as occlu-
sion size grows, the sample size n is 30 images each class in
YaleB, 20 images each class in PIE, 100 images each class in
USPS and Semeion, our method restricted the subspace di-
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(a) YaleB

Methods/Samples 20 30 40
SPSC 80.7± 0.3 83.0± 0.4 90.3± 0.6

LDA+SRC 73.4± 1.7 82.5± 0.8 89.4± 0.5
LDA+KNN 72.3± 1.6 81.8± 0.9 86.8± 1.0
LDA+SVM 73.9± 1.0 82.1± 0.2 87.4± 0.7
LPP+SRC 77.9± 0.6 82.1± 0.9 85.1± 0.2
LPP+KNN 77.1± 1.1 82.5± 0.2 85.0± 1.4
LPP+SVM 77.1± 1.1 81.3± 0.4 84.6± 0.9
NCA+SRC 75.7± 1.2 81.5± 0.6 87.7± 0.3
NCA+KNN 75.3± 1.4 82.3± 0.4 85.8± 0.9
NCA+SVM 75.4± 1.2 81.8± 0.3 86.2± 0.8
PCA+SRC 73.8± 0.7 79.2± 0.7 84.6± 0.9
PCA+KNN 31.8± 0.2 38.2± 1.7 40.2± 1.3
PCA+SVM 73.9± 1.0 76.4± 0.8 82.3± 1.3

(b) PIE

Methods/Samples 20 30 40
SPSC 79.4± 0.1 97.0± 0.3 98.3± 0.3

LDA+SRC 78.2± 0.3 96.0± 0.3 97.4± 0.1
LDA+KNN 76.8± 2.4 94.6± 0.8 97.0± 0.2
LDA+SVM 77.1± 0.7 95.5± 0.9 96.8± 0.3
LPP+SRC 77.4± 0.1 90.5± 1.1 95.3± 0.7
LPP+KNN 76.9± 1.3 82.5± 0.8 95.6± 0.1
LPP+SVM 78.9± 0.9 93.8± 0.7 95.7± 0.4
NCA+SRC 77.2± 0.1 90.5± 1.0 95.4± 0.6
NCA+KNN 76.8± 2.2 93.8± 1.2 95.5± 0.3
NCA+SVM 78.3± 1.2 94.8± 0.9 96.4± 0.3
PCA+SRC 57.7± 1.3 90.5± 1.9 89.8± 0.9
PCA+KNN 29.8± 2.5 69.0± 2.3 72.1± 0.7
PCA+SVM 60.7± 2.8 81.0± 0.2 92.7± 0.2

(c) USPS

Methods/Samples 60 80 100
SPSC 91.9± 0.6 92.5± 0.5 92.8± 0.4

LDA+SRC 45.5± 2.2 62.7± 1.7 73.8± 0.3
LDA+KNN 47.3± 3.1 65.2± 2.0 74.0± 0.4
LDA+SVM 46.3± 2.4 65.5± 2.7 76.1± 2.1
LPP+SRC 89.3± 3.0 89.9± 0.1 90.1± 1.0
LPP+KNN 90.9± 1.1 89.6± 0.4 90.1± 0.6
LPP+SVM 89.8± 0.6 89.7± 0.5 89.7± 0.6
NCA+SRC 89.2± 2.9 89.9± 0.1 90.1± 0.9
NCA+KNN 90.9± 1.0 89.7± 0.4 90.2± 0.4
NCA+SVM 89.7± 0.7 89.8± 0.6 89.8± 0.5
PCA+SRC 86.3± 1.3 85.9± 0.3 85.9± 0.8
PCA+KNN 89.5± 0.3 89.4± 0.6 90.0± 0.6
PCA+SVM 90.2± 2.4 91.3± 0.4 91.5± 0.3

(d) Semeion

Methods/Samples 60 80 100
SPSC 84.4± 0.2 86.4± 0.3 88.8± 0.4

LDA+SRC 39.6± 1.1 61.8± 0.1 69.1± 1.5
LDA+KNN 42.7± 0.2 67.9± 0.7 76.2± 0.7
LDA+SVM 44.4± 1.1 69.1± 1.0 77.2± 0.4
LPP+SRC 74.5± 0.5 79.9± 1.0 82.4± 2.1
LPP+KNN 76.5± 1.0 80.1± 1.5 83.2± 1.1
LPP+SVM 78.8± 0.8 82.5± 0.5 84.5± 0.2
NCA+SRC 77.6± 0.4 82.3± 0.3 85.4± 1.9
NCA+KNN 79.2± 0.9 82.4± 1.1 86.2± 1.3
NCA+SVM 78.6± 0.9 82.8± 0.4 85.1± 0.2
PCA+SRC 83.1± 0.4 85.6± 0.3 86.9± 0.1
PCA+KNN 83.8± 2.5 85.8± 1.1 87.9± 1.1
PCA+SVM 83.8± 1.3 86.1± 0.6 88.3± 0.3

Table 2: Classification Performance on Different Data Sets

(a) YaleB

size 3 4 5 6 7
SPSC 85.4 84.0 83.4 78.6 77.9
SSC 85.1 82.8 81.3 78.3 77.6
SRC 82.4 80.8 79.9 78.2 77.4
SVM 68.1 58.3 58.9 54.7 48.7
KNN 27.8 19.7 15.4 16.1 15.1

(b) PIE

size 3 4 5 6 7
SPSC 77.1 75.2 72.8 70.7 66.1
SSC 78.2 75.7 72.6 69.4 65.7
SRC 76.8 74.3 72.4 68.9 64.9
SVM 42.7 37.1 32.3 28.5 25.8
KNN 20.5 14.3 12.1 11.8 10.8

(c) USPS

size 3 4 5 6 7
SPSC 91.2 91.0 89.3 88.4 84.6
SSC 90.6 88.5 87.3 82.7 78.4
SRC 90.6 88.6 87.2 82.8 78.3
SVM 89.7 90.1 87.0 86.5 82.4
KNN 89.3 87.0 85.3 80.3 77.0

(d) Semeion

size 3 4 5 6 7
SPSC 88.2 88.0 87.2 86.1 85.2
SSC 87.2 85.6 83.3 79.3 77.4
SRC 84.0 84.2 82.8 79.0 77.0
SVM 86.8 87.4 86.0 84.6 83.8
KNN 82.8 81.2 76.6 75.2 73.8

Table 3: Classification Performance on Partial Occluded Different Data Sets

mension to 120 in all four data sets. It can be observed that
our method outperforms other methods in most cases. One
thing to note in these tables is that due to the randomness
in both the images selection and occlusion position, the av-
erage classification accuracy is not a monotone decreasing
curve as the block size grows, nevertheless, it still can be
concluded that our method has better performance overall in
dealing with the random contiguous occlusion.

Conclusion
In this paper, we propose a new Supervised Group Sparse
Coding framework based on the introduction of the label
information during the learning of the representation vec-
tor, such that the conventional sparse representation frame-

work is turned into a supervised method. We also proposed
a novel algorithm to solve group `1 problem. What is more,
we unify the dimension reduction and sparse vector learning
into one objective function and do the simultaneous opti-
mization. Experimental results on four benchmark datasets
demonstrate that the proposed method outperforms related
classification methods.
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