Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

Parameterized Complexity Results for Plan Reuse

Ronald de Haan'* and Anna Roubickova® and Stefan Szeider!*
nstitute of Information Systems, Vienna University of Technology, Vienna, Austria
dehaan @kr.tuwien.ac.at stefan @szeider.net
2Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
anna.roubickova @stud-inf.unibz.it

Abstract

Planning is a notoriously difficult computational problem of
high worst-case complexity. Researchers have been investing
significant efforts to develop heuristics or restrictions to make
planning practically feasible. Case-based planning is a heuris-
tic approach where one tries to reuse previous experience
when solving similar problems in order to avoid some of the
planning effort. Plan reuse may offer an interesting alternative
to plan generation in some settings.

We provide theoretical results that identify situations in which
plan reuse is provably tractable. We perform our analysis in
the framework of parameterized complexity, which supports a
rigorous worst-case complexity analysis that takes structural
properties of the input into account in terms of parameters. A
central notion of parameterized complexity is fixed-parameter
tractability which extends the classical notion of polynomial-
time tractability by utilizing the effect of structural properties
of the problem input.

We draw a detailed map of the parameterized complexity land-
scape of several variants of problems that arise in the context
of case-based planning. In particular, we consider the problem
of reusing an existing plan, imposing various restrictions in
terms of parameters, such as the number of steps that can
be added to the existing plan to turn it into a solution of the
planning instance at hand.

Introduction

Planning is one of the central problems of Al with a wide
range of applications from industry to academics (Ghallab,
Nau, and Traverso 2004). Planning gives rise to challeng-
ing computational problems. For instance, deciding whether
there exists a plan for a given planning instance is PSPACE-
complete, and the problem remains at least NP-hard under
various restrictions (Bylander 1994). To overcome this high
worst-case complexity, various heuristics, restrictions, and
relaxations of planning problems have been developed that
work surprisingly well in practical settings (Hoffmann 2001;
Helmert 2006). Among the heuristic approaches is case-
based planning, which proceeds from the idea that significant
planning efforts may be saved by reusing previous solutions
(Kambhampati and Hendler 1992; Veloso 1994). This ap-
proach is based on the assumption that planning tasks tend to

*Supported by the European Research Council (ERC), project
COMPLEX REASON, 239962.
Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

224

recur and that if the tasks are similar, then so are their solu-
tions. Empirical evidence suggests that this assumption holds
in many settings, and that the case-based approach works
particularly well if the planning tasks require complex solu-
tions while the modifications required on the known plans
are considerably small.

So far the research on the worst-case complexity of case-
based planning did not take into account the essential as-
sumption that similar planning tasks require similar solutions.
Indeed, as shown by Liberatore (2005), if none of the known
solutions are helpful, then the case-based system needs to
invest an effort comparable to generating the solution from
scratch, and hence does not benefit from the previous ex-
perience. There is no way to benefit from the knowledge
of an unrelated solution. However, the result disregards the
case-based assumptions which are meant to avoid such worst
cases. It seems that the classical complexity framework is not
well-suited for taking such assumptions into account.

New Contribution In this paper we provide theoretical
results that identify situations in which the plan reuse of
the case-based approach is provably tractable. We perform
our analysis in the framework of parameterized complex-
ity, which supports a rigorous worst-case complexity anal-
ysis that takes structural properties of the input into ac-
count (Downey, Fellows, and Stege 1999; Niedermeier 2006;
Gottlob and Szeider 2006). These structural properties are
captured in terms of parameters, which are integer numbers
that are small compared to the size of the total problem input.
The theoretical analysis now considers the impact of these pa-
rameters on the worst-case complexity of the considered prob-
lems. A central notion of parameterized complexity is fixed-
parameter tractability, which extends the classical notion of
polynomial-time tractability by utilising the impact of pa-
rameters. Parameterized complexity also provides a hardness
theory that, similar to the theory of NP-completeness, pro-
vides strong evidence that certain parameterized problems are
not fixed-parameter tractable (fixed-parameter intractable).
In the problems we study we are given a planning task
together with a stored solution for a different planning task,
where this solution consists of a plan and an initial state the
plan is applied to. The question is to modify the existing
solution to obtain a solution for the new planning task. By
means of various parameters we control the modifications
applied to the stored solution. For instance, we can require
that the number of additional planning steps added to fit the

stored solution to the new planning task is small compared to
the length of the stored solution.

In order to evaluate the impact of structural properties
on the overall complexity we use parameters based on the
following four restrictions, each restriction is associated with
one of the four symbols L, A, V, and D.

L: bounds on the number of added planning steps

A: bounds on the size of a specified set of actions from which
the added planning steps are built (each action from the set
can be added several times)

V: bounds on the size of a specified set of variables that may
be mentioned by the added planning steps

D: bounds on the size of a specified set of values that may be
mentioned by the added planning steps

We show that parameterized by L the problem is fixed-
parameter intractable even if the additional steps may only
be added to the beginning and end of the plan. Parameter-
ized by A the problem is fixed-parameter tractable. Param-
eterized either by V or D, the problem is fixed-parameter
intractable; however, if we combine these two parameters,
we achieve fixed-parameter tractability. Combining the re-
striction L with either V or D is not enough to achieve fixed-
parameter tractability.

We obtain a full classification as shown in Figure 1. In
addition, we show that the same results hold even if we reuse
only some “infix” of the stored solution, i.e., if it is allowed
to discard any number of actions from the beginning and
end of the stored solution before the modification takes place.
Finally, we prove that in more general settings where we reuse
only the syntactical sequence of actions as represented by the
stored solution (disregarding the actual states of the stored
solution), all the combinations of parameters considered yield
fixed-parameter intractability.

para-PSPACE-complete

P

W[1]-complete

DVA| LDA VA LDV

LDVA

Figure 1: Overview of the fixed-parameter (in)tractability results
for all combinations of restrictions L, A, V, D.

Preliminaries

In this section we introduce basic notions and notation re-
lated to (case-based) planning and parameterized complexity,
which are used further in the paper.

Planning In this study, we use the SAS+ planning frame-
work (Bickstrom and Nebel 1996) in the notational variant
of (Chen and Giménez 2010): An instance of the planning
problem, or a planning instance, is a tuple Il = (V, I, G, A),
whose components are described as follows.

e V is a finite set of variables, where each v € V has an
associated finite domain D(v). A state s is a mapping
defined on a set V' of variables such that s(v) € D(v) for
each v € V. A partial state p is a mapping defined on a
subset vars(p) of V' such that for all v € vars(p) it holds
that p(v) € D(v). We sometimes denote a partial state p
by a set of explicit mappings { v — p(v) : v € vars(p) }.

o [is a state called the initial state.

e (5 is a partial state called the goal.

e A is a set of actions; each action a € A is of the form
a = (pre(a) = post(a)), where pre(a) is a partial state
called precondition, and post(a) is a partial state called
postcondition.

For a (partial) state s and a subset W C V, we let (s [W)
be the (partial) state resulting from restricting s to W. We
say that a (partial) state s is a goal state, or that s satisfies
the goal, if (s | vars(G)) = G. A plan (for an instance IT)
is a sequence of actions p = (a1, ..., a,). The application
of a plan p on a state s yields a state s[p], which is defined
inductively as follows. The application of an empty plan

(p = €) does not change the state (s[e] = s). For a non-
empty plan p = (a4, ..., a,), we define s[p] based on the
inductively defined state s[p'], where p’ = (a1, ..., an_1).

o If (s[p'] | vars(pre(an))) # pre(an) then s[p] = s[p'],
i.e., if the precondition of a,, does not hold in s[p'], the
action a,, is not applicable and does not change the state.

e Otherwise, a,, is applicable and s[p] is the state equal to
post(a,,) on variables v € vars(post(ay,)), and equal to
s[p'l onwv € V' \ vars(post(ay,)).

A plan p is a solution plan if I[p] is a goal state.

If | D(v)| < 2 for each v € V, then we have a Boolean (or
binary) instance, which in fact gives us a notational variant
of the STRIPS planning framework (Bylander 1994).

Consider the following example instance, that we will use
as a running example in the remainder of this paper.
Example 1. We let 11 = (V,1,G, A) be the planning in-
stance defined below. A solution plan for 11 would be p =
(as, a1, az).

V:{’Ul,v271}3} I:{’UlF—)O,UgF—)O,’UgF—)O}
D(vy) ={0,1,2} D(vy) = D(v3) ={0,1}
G = {v; — 2} A={a1,a2,a3,a4
ar = ({vr = 0,vg = 1}, {v1 = 1})

as = ({v1 = 1,9 = 1}, {v; — 2})

ag = ((Z), {’UQ —> 1,113 — 1})

as = (0, {vs = 0})

Case-Based Planning Case-based planning (CBP) is a
type of case-based reasoning that involves the use of stored
experiences (called cases) of solving analogous problems.
Often, a case is composed of a planning instance II' =
(V,J, H, A) and a solution plan ¢ of II'. The plan ¢ can be

replaced by some other information related to the search for
a solution to IT’ (e.g., a set of justifications) (Kambhampati
and Hendler 1992; Veloso 1994; Hanks and Weld 1995). A
plan library, or a case base, is a collection of such cases,
constituting the experience of the planner. For more detailed
explanation of implementation choices of specific planners
we refer to the survey of Spalazzi (2001).

Example 2. Consider the case (IU', ¢), where the planning
instance I1' coincides with the instance defined in Example 1
on V, A, and where J = {v; — 0,09 — 1,v3 — 0} and
H = {v1 — 2}. The solution plan ¢ = (a1, az) can be
reused to find the solution p given in Example 1.

When faced with a new problem, the case-based planner
follows a sequence of steps common in case-based reason-
ing (Aamodt and Plaza 1994). First, it queries the library to
retrieve cases suitable for reuse. The reuse step modifies the
retrieved solution(s) to solve the new problem and such a new
solution is validated in the revision phase by execution, simu-
lated execution, etc. The verified solution may be eventually
stored in the case base during a retention process.

In this paper, we focus on theoretical properties of plan
reuse and therefore we skip the retrieval, we simply assume
that together with the problem to solve we are also given a
case which contains a suitable solution for reuse. In other
words, we assume that the instance I1I to be solved coincides
on the sets V, A with the instance I’ provided in the case.

Parameterized Complexity Here we introduce the rele-
vant concepts of parameterized complexity theory. For more
details, we refer to the works of Downey and Fellows (1999),
Downey, Fellows and Stege (1999), Flum and Grohe (2006),
Niedermeier (2006), and Gottlob and Szeider (2006).

In the traditional setting of considering the complexity of a
problem, the input size n of the instance is the only measure
available. Parameterized complexity is a two-dimensional
framework to classify the complexity of problems based on
their input size n and some additional parameter k. An in-
stance of a parameterized problem is a pair (I, k) where [is
the main part of the instance, and k is the parameter. A pa-
rameterized problem is fixed-parameter tractable if it can be
solved by a fixed-parameter algorithm, i.e., if instances (7, k)
can be solved in time O(f(k)n°®), where f is a computable
function of k, ¢ is a constant, and n is the size of I. FPT
denotes the class of all fixed-parameter tractable decision
problems. Many problems that are classified as intractable
in the classical setting can be shown to be fixed-parameter
tractable.

Parameterized complexity also offers a completeness the-
ory, similar to the theory of NP-completeness. This allows
the accumulation of strong theoretical evidence that a parame-
terized problem is not fixed-parameter tractable. Hardness for
parameterized complexity classes is based on fpt-reductions,
which are many-one reductions where the parameter of one
problem maps into the parameter for the other. A parame-
terized problem L is fpt-reducible to another parameterized
problem L’ if there is a mapping R from instances of L
to instances of L’ such that (i) (I,k) € L if and only if
(I')K') = R(I,k) € L', (ii)) ¥ < g(k) for a computable
function g, and (iii) R can be computed in time O(f(k)n°)

226

for a computable function f and a constant ¢, where n is the
size of I.

Central to the completeness theory is the hierarchy of pa-
rameterized complexity classes FPT C W[1] C W[2] C
-+ C W[P] C para-PSPACE, where all inclusions are be-
lieved to be strict. Each of the classes W[t] for ¢t > 1 and
WI[P] contains all parameterized problems that can be re-
duced to a certain parameterized satisfiability problem under
fpt-reductions. For instance, for W[2], the corresponding sat-
isfiability problem asks whether a given CNF formula has
a satisfying assignment that sets exactly k variables to true.
A sufficient condition for a problem to be hard for the class
para-PSPACE is that the problem is PSPACE-hard for a sin-
gle value of the parameter (Flum and Grohe 2003). There is
strong evidence that a parameterized problem that is hard for
any of these intractability classes is not in FPT.

We use the following problems to prove some fixed-
parameter intractability results.

PARTITIONED-CLIQUE is a W[1]-complete problem (Fel-
lows et al. 2009). The instances are tuples (V, E, k), where V
is a finite set of vertices partitioned into & subsets V7, ..., Vi,
(V, E) is a simple graph, and 1 < k is a parameter. The ques-
tion is whether there exists a k-clique in (V, E) that contains
a vertex in each V.

HITTING-SET is a W[2]-complete problem (Downey and
Fellows 1995). The instances are tuples (S, C, k), where S
is a finite set of nodes, C is a collection of subsets of S, and
1 < k < |C| is a parameter. The question is whether there
exists a hitting set H C S such that |[H| < kand H Nc # ()
forall c € C.

p-WSAT(CIRC) (weighted circuit satisfiability) is a W[P]-
complete problem (Downey and Fellows 1995). The instances
are pairs (C, k), where C'is a Boolean circuit, and 1 < k is a
parameter. The question is whether there exists a satisfying
assignment of C' that sets at most & input nodes to true.

LONGEST-COMMON-SUBSEQUENCE-I is a parameterized
problem that is W[t]-hard for all ¢ > 1 (Bodlaender et al.
1995). As input, it takes & strings X5, ..., X over an al-
phabet 3, and a positive integer m. The parameter is k. The
question is whether there is a string X € ¥* of length at least
m that is a subsequence of X; forall 1 <17 < k.

Related Work

The first paper providing a complexity-theoretical study of
plan reuse (Nebel and Koehler 1995) considered so-called
conservative plan reuse. Conservative plan reuse maximizes
the unchanged part of the known solution. The authors
showed that such a plan reuse is not provably more efficient
than plan generation. Moreover, they show that identifying
what is the maximal reusable part of the stored solution is an
additional source of hardness.

Liberatore (2005) studied the problem of plan reuse in a
different fashion, interpreting the case (or the case base) as
a “hint” that makes the search for the solution plan more
informed. The complexity results he provides do not improve
over the complexity of uninformed plan generation. He does
however give a tractable compilation result for planning in-

stances that differ from the stored instances only in a constant
number of valuations from the initial state and goal.

The parameterized complexity of planning was first studied
by Downey, Fellows, and Stege (1999) and, more recently,
by Bickstrom et al. (2012; 2013), using the solution length
as the parameter. The analysis by Bickstrom et al. reveals
that the planning problem is W[2]-complete and there exist
fragments that are W[1]-complete and other fragments that
are fixed-parameter tractable. More specifically, they provide
a full classification of SAS+ planning under all combinations
of the P, U, B and S restrictions introduced by Backstrom
and Klein (1991), and they provide a full classification of
STRIPS planning under the syntactical restrictions studied
by Bylander (1994).

Parameterized Complexity of Plan Reuse

In this paper, we study the parameterized complexity of
reusing a plan. However, as this work is motivated by plan
reuse in the context of case-based planning, we exploit as-
sumptions common in the case-based approaches to ensure
that there is a solution at hand that can be reused. Also, we
consider a more specific form of a plan reuse (case reuse)
and generalizations thereof.

Reusing the Case In its general form, the classical com-
plexity of plan reuse is not better than the one of plan genera-
tion.Liberatore (2005) has shown it to be PSPACE-complete.
However, the case-based approach assumes that similar prob-
lems have similar solutions (Leake 1996). This means that
cases can either be used to yield a solution by applying only a
limited number of modifications or will not be helpful at all in
finding a solution. When considering the complexity of plan
reuse in the classical setting, we cannot exclude the worst
case in which the case provides no guidance and where an
uninformed search similar to the traditional plan generation
is needed. When using the framework of parameterized com-
plexity instead, we can capture the computational complexity
of reusing a case in those settings where it can be used to get
a solution plan with only a limited amount of modification.

We consider a case (IT, ¢) useful for solving an instance
II if ¢ can be modified to a solution plan p for I by means
of limited modification. We define the following template
CASEMOD for the decision problems, intended to find such
useful cases.

CASEMOD

Instance: a planning instance IT = (V, I, G, A); a case
(I', ¢) consisting of an instance I1' = (V, J, H, A)! and
its solution plan ¢ = (e¢1,...,¢); a subset of actions
A’ C A; and an integer M.

Question: Does there exist a sequence of actions

(915---59m) € (A))™ for some m < M, and
does there exist some 0 < ¢ < m, such that
(9153 GisCly -+ Cly Git1s - - -, gm) 1S @ solution plan
forITand I[(g1,...,9:)] = J?

'In the remainder of the paper, we will often specify an instance
IT' in the definition above only by its value of J. Since IT and
IT’ coincide on V and A, and the choice of H is not relevant for
answering the question, this will suffice for most purposes.

227

R R-CASEMOD

(A} FPT (Thm 1)
{V,D} FPT (Cor 1)
{L,V} W[1]-complete (Thm 4)
{L} WI[2]-complete (Prop 1)
{L,D} WI[2]-complete (Cor 2)
{V} Wi[t]-hard forall t > 1 (Thm 2)
{D} para-PSPACE-complete ~ (Thm 3)

Table 1: Map of parameterized complexity results.

The sequence g = (g1, - - -, gm) in the definition above can
be thought of as the “glue” that enables the reuse of the plan
c by connecting the new initial state I to the beginning of the
case (IT', ¢), using the plan ¢ to reach its goal and connecting
it to the goal required by instance II. In the following, we will
often refer to these action occurrences (or steps) as glue steps.
Though such a reuse may seem naive, CASEMOD is in fact
implemented and used by CBP system FAROFF (Tonidandel
and Rillo 2002).

Example 3. Ler II be the planning instance from Exam-
ple 1 and (IU, ¢) the case from Example 2. Consider the
instance for CASEMOD, given by (11, (II', ¢), A’, M), where
A’ ={as, a4} and M = 3. This is a positive instance, since
the solution plan p = (a3, a4,a1,as2) can be constructed
from c by adding the sequence of actions (a3, a4) from A’,
I[(as,a4)] = J and |(as,a4)| < M.

We will consider a number of different parameterizations
for CASEMOD, where in each case the parameter is intended
to capture the assumption that the plan given in the case is
similar to the solution we are looking for. In order to define
these variants, we define the problems R-CASEMOD, for any
subset R of {L,V, D, A}. The choice of the parameterization
depends on this set R of restrictions.

e If Rincludes L, we add to the parameterization the allowed
maximum length of the glue sequence g.

e If Rincludes V, we add to the parameterization the number
of variables mentioned in the actions in A’.

e If Rincludes D, we add to the parameterization the number
of values mentioned in the actions in A’.

e If Rincludes A, we add to the parameterization the number
of actions in A’.

For instance, the parameter in the problem {L, A}-CASE-
MobD is k + [, where k is the maximum length allowed for
the sequence of glue steps and [= |A’|.

In order to establish the parameterized complexity land-
scape for various combinations of these restrictions as
sketched in Figure 1, we need to prove the following results.
We show that R-CASEMOD is fixed-parameter tractable for
R € {{A},{V,D}}, that it is W[1]-complete for R =
{L,V}, that it is W[2]-complete for R € {{L},{L,D}},
that it is W[¢]-hard for all ¢ > 1, for R = {V'}, and that it
is para-PSPACE-complete for R = {D}. These results are
summarized in Table 1.

The modification of a plan (or a case) concerns addition
of actions to the plan stored in the case. One intuitive way to
restrict the amount of modification that is allowed in order to
reuse the case is to restrict the number of allowed additional

steps, resulting in the L restriction. It is believed (Kambham-
pati and Hendler 1992) that the presence of a similar solution,
or rather the fact that only %k actions need to be added to
the stored plan c in order to find the plan p, will make the
decision problem of existence of p (and also its generation)
easier than if no suitable solution c is available. Unfortunately,
the following result shows that the corresponding problem
{L}-CASEMOD remains hard.

Proposition 1. {L}-CASEMOD is W[2]-complete.

Proof. The result follows from the W[2]-completeness proof
of finding a solution plan of at most & action occurrences (the
k-step planning problem) given by Béckstrom et al. (2012).
They proved that W[2]-hardness already holds for complete
goal states. Now, by letting (¢, J) = (e, G), the k-step plan-
ning problem directly reduces to {L}-CASEMOD.

To show W[2]-membership, we sketch the following re-
duction to the k-step planning problem. We introduce an
additional operator (J U {x +— 0} = J[] U {* — 1}),
where * is a fresh variable. Furthermore, we let {x — 0} € I
and {x — 1} € G, and we let k' = k + 1. It is straightfor-
ward to verify that this reduces {L }-CASEMOD to the k’-step
planning problem. O

Intuitively, the reason of such a result is that the large number
of different actions to choose from is a source of hardness.
Backstrom et al. showed that for the k-step planning prob-
lem, complexity results can be improved by considering only
planning instances whose actions satisfy the condition of
post-uniqueness. Similarly, we can require the set of actions
A’, from which glue steps can be taken, to be post-unique
(Béckstrom et al. 2012). This parameterized problem is in fact
fixed-parameter tractable (this result follows from Theorem 5
in (Bickstrom et al. 2012)).

In a similar way, parameterizing directly by the cardinality
of A’ also provides fixed-parameter tractability:

Theorem 1. {A}-CASEMOD is in FPT.

Proof. We have that k = | A’|. Then the number of states s’
reachable from any state s by actions from A’ is bounded
by a function of £ and can be enumerated in fixed-parameter
tractable time. Similar bounds hold for all the states s’ reach-
able from s’[c] for each such s’. Overall, checking if any of
these states s” satisfies the goal state can thus be done in
fixed-parameter tractable time. O

As a consequence of Theorem 1, we get another fixed-
parameter tractability result.

Corollary 1. {V,D}-CASEMOD is in FPT.

Proof. If the set A’ of actions refers to at most k variables
and at most m values, then the number of different actions
that A’ can possibly contain is bounded by (m + 1)2%. The
result then follows from Theorem 1.]

The fact that the above results are the only fixed-parameter
tractable results under the considered restrictions suggests
that plan reuse is not the answer to the high computational
complexity of planning in general. However, we can use these
results to identify settings in which plan reuse is likely to per-
form well. For example, Theorem 1 suggests that replanning
in case of an execution failure is tractable to implement as

228

plan reuse, provided that the number of applicable actions is
limited due to, e.g., limited resources.

These results for plan reuse as implemented in case-based
planning are quite unpleasant as in such settings usually
A = A’. Additionally, |A| tends to be quite high, as the
set of actions is obtained by grounding a set of (few) opera-
tors (propositional implication rules) over a set of potentially
many objects, giving a rise to a rich set of actions which
only very rarely satisfies the condition of post-uniqueness to
make {L}-CASEMOD fixed-parameter tractable. Neverthe-
less, these claims suggest that, besides identifying where to
apply the glue steps, a case-based planning system needs to
employ heuristics to identify which glue steps may be useful.
Even though {V, D}-CASEMOD is in FPT, parameterizing
only on the number of variables occurring in actions in A’,
or only on the number of values occurring in actions in A’,
yields fixed-parameter intractability.

Theorem 2. {V}-CASEMOD is W([t]-hard for all t > 1.

Proof. We prove the result by giving an fpt-reduction from
LONGEST-COMMON-SUBSEQUENCE-I, which is W[¢]-hard
for all t > 1. Let the strings X1, ..., X} over the alphabet
3. and the integer m constitute an instance of LONGEST-
COMMON-SUBSEQUENCE-I. For a string X of length [we
write X[0]... X[l — 1]. For each X; we let I; = |X;|.
We construct an instance of {V}-CASEMOD specified by
= WV,I,G,A), (c,J), A and M. Welet (c,J) = (¢, G),
A’ = A and M be a sufficiently large number (that is,
M >3 oo |1 Xl + (B + 1)m + k). Also, we define:

V= {Ula"'vvkvsla'"askytly”'atkaw};
D(’UZ) = {0,,[1},
D(s;)) = Y U{x}
D(t;) = {none,read,used};
D(w) = {0,...,m};
A= Askip U Aread U Acheck U Afinish;

Askip = {({Uz = u,t; — none} = {Ui = u+ 17
t; — none}), ({v; — u,t; — used} =
{vi—u+1,t; —none}) : 1 <i<k,
0<u<l; },

Aread = { ({v; = u,t; — none} = {s; — X;[u],
ti—read}): 1 <i<k,0<u<l;};

Acheek = {({t1 —read,... ¢ty —read,s; — o,...,
Sp = o,w=u} = {t; — used,...,
tp = used,w—u+1}): 0 <u<m,
oeX};
Afnish = { ({vi = I;} = {t; — none, s; — %}) :
1<i<k}
I'= {v;—=0,8;,~*t;—~none:1<i<k}U
{w + 0}; and
G = {’Ui0—>li,$il—>*,ti}—>nonei1§i§k}u
{w — m}.

Note that |V| = 3k + 1.

The idea behind the reduction is that any solution plan
that results in an assignment of variable w to any d > 1
corresponds to a witness that the strings X, ..., X have a
common subsequence of length d. The variables vy, ..., vg
correspond to the position of reading heads on the strings that
can only move from left to right, and the variables sq, ..., si

are used to read symbols in the string on the position of the
reading heads. The variables t1,...,t; are used to ensure
that each symbol is read at most once (each symbol is either
read by using an action in Aje,q or skipped by using an action
in Agp). Then the variable w can only be increased if in all
strings the same symbol is read (by using an action in Agpeck)-
The actions Agy;sy are used to be able to enforce a complete
goal state.

It is now straightforward to verify that there exists a com-
mon subsequence X for X7, ..., Xy of length m if and only
if the constructed instance is a yes-instance. O

As mentioned above in the preliminaries, if we restrict the
planning instances to Boolean values, we get a framework
corresponding to the STRIPS planning framework. By the
fact that {V, D}-CASEMOD is fixed-parameter tractable, we
get that {V}-CASEMOD for STRIPS instances is also fixed-
parameter tractable.

By naively keeping track of all states reachable from the
initial state (which are at most n* many, for n = |D|and k =
[V']) we get that {V}-CASEMOD can be solved in polynomial
time for each constant value of k. As a consequence, the
following theorem shows that {D}-CASEMOD is of higher
complexity than {V}-CASEMOD (unless P = PSPACE).

Theorem 3. {D}-CASEMOD is para-PSPACE-complete.

Proof. The para-PSPACE-membership result follows from
the fact that {D}-CASEMOD, when unparameterized, is in
PSPACE (Béckstrom and Nebel 1996).

For the hardness result, consider the case where the number
k of values allowed in the set of actions A’ is 2. The problem
then reduces to the problem of finding a solution plan for the
Boolean planning instance II, in case we let (¢, J) = (¢, G).
Backstrom and Nebel (1996) showed that finding a solution
plan for Boolean planning instances (even for complete goal
states) is PSPACE-hard. Since this hardness result holds al-
ready for a single value of k, the para-PSPACE-hardness
result follows (Flum and Grohe 2003). O

Parameterizing on the combination of the number of allowed
additional steps together with either the number of variables
or the number of values occurring in actions in A’ is not
enough to ensure fixed-parameter tractability.

Theorem 4. {L, V}-CASEMOD is W[1]-complete.

Proof. W[1]-membership can be proven analogously to the
W[1]-membership proof given by Bickstrom et al. (2012,
Theorem 4) for the k-step planning problem restricted to
actions with one postcondition. In this proof the problem is
reduced to a certain first-order model checking problem.

For the hardness result, we reduce from the W[1]-complete
problem PARTITIONED-CLIQUE. Let (V, E,k) be an in-
stance of PARTITIONED-CLIQUE, where V is partitioned
into V1,..., V). We define the instance (II, (IT', ¢), A’, k')
of {L,V}-CASEMOD as follows: IT = (W, I,G, A), I’ is
specified by its initial state J, (¢, J) = (¢, G), k' = 2k + (]29)

229

and A’ = A. We define:

W= {z1,...,2,}U{y;;: 1 <i<ji<k}
D(x;) = V;U{x} forall z; (and arbitrary x ¢ V);
D(yi,j) = {071} for all Yi,js
A= {guessclear),:1<i<kdecV;}U
{check;”" : 1 <i<j<kveV,

_ w eV, {v,w} € E}; _
guess;, = (0 = {z; — d}), for each guess!;
clear, = () = {x; — *}), for each clear’;;

check;’ = ({zi = v,z = w} = {y;j = 1}),
for each check;’f’;

I= {a;>x:1<i<k}U

{yi; »0:1<i<j<k}; and
G= {m—»*x:1<i<k}U

The intuition behind the reduction is as follows. The budget
of k' actions allows for k guessing steps, to set the variables
z; using actions guess; (g) verification steps, to set the
variables y; ; to 1 using actions check?)i;” ; and k cleanup
steps, to reset the variables x; using actions clear};. The only
way to achieve the goal state is by guessing a k-clique.

It is now straightforward to verify that the graph (V, E)
has a k-clique if and only if there exist plans p,p’ of total
length &’ such that I[p] = J and J[c][p’] satisfies G. O

Corollary 2. {L,D}-CASEMOD is W[2]-complete.

Proof. The claim follows directly from the proof of Propo-
sition 1, since k-step planning is W[2]-complete already for
Boolean planning instances (Backstrom et al. 2012). O

The above results together give us the complete parameter-
ized complexity characterization as depicted in Figure 1.

Reusing an infix of the case As a slight generalization
of the CASEMOD problem, we consider the problem CASE-
MobD*. In this problem, we require not that the full plan ¢
from the case is being reused together with its initial state
J, but that any infix ¢’ of the plan (i.e., any subplan ¢’ result-
ing from removing any prefix and postfix from c) is reused
with its corresponding initial state J’. Formally, the ques-
tion becomes whether there exists a sequence of actions
(915---,9m) € (A")™ for some m < M, and whether there
exists some 0 < 7 < m and some 1 < 77 < 49 <[such that
(g1y -+ GirCiys -+ Cins Gitls- - -, gm) SOlves the new plan-
ning instance IT and I[(g1,...,9:)] = J[(c1,---,¢i,-1))
where ¢ = (c1,...,¢).

The following results show that this generalization does
not change the parameterized complexity results that we
obtained in the previous section.

Observation 1. Whenever R-CASEMOD is in FPT, then
also R-CASEMOD” is in FPT.

Proof. Letc = (c1,...,c,) € A™. There are only n? dif-
ferent ways of selecting subplans (cg, . .., c.) to consider,
for 1 < d < e < n. For each of these, we can compute
the initial state J[(cy, . .., cq—1] in linear time. Simply trying
all these n? possibilities using the algorithm for R-CASE-
MOD results in an fixed-parameter tractable algorithm for
R-CASEMOD”. O

Theorem 5. The completeness results in Proposition 1, The-
orems 2, 3 and 4 and Corollary 2 also hold for the corre-
sponding variants for R-CASEMOD”.

Proof (sketch). For the hardness results, it suffices to note
that the hardness proofs of these theorems use a case contain-
ing the empty plan e.

For the membership results, we note that the R-CASE-
MoD* problem can be solved by answering the disjunction
of polynomially many (independent) R-CASEMOD instances.
The W[t]-membership results can then be proved by encod-
ing the R-CASEMOD instances as instances of certain first-
order model checking problems (Bickstrom et al. 2012),
and combining these into one model checking problem in-
stance that is equivalent to the disjunction of the separate
R-CASEMOD instances. For the para-PSPACE-membership
result, we can straightforwardly evaluate the disjunction of
the R-CASEMOD instances in polynomial space. O

Generalized infix reuse The problem of CASEMOD can
be generalized even further by reusing an infix of the stored
solution plan ¢ from any state that satisfies the preconditions
of the plan infix. For this problem, the instances coincide
with those of CASEMOD, but the question is:

Question: Does there exist a sequence of actions

(91,---,9m) € (A)™ for some m < M, and does
there exist 0 < ¢4 < mand 0 < ¢ < 49 < [
such that (g1, ..., Gi, Ciys -+ Cigy Gitls- -+, Jm) 1S & SO-

lution plan for II and for all ; < j < 45 we have that
action ¢; is applicable in I[(g1,..., s, ¢y, -, ¢j—1)]?

This generalization does not change the parameterized com-
plexity results stated in Table 1. In all cases where R-CASE-
MobD is fixed-parameter tractable, we can obtain a fixed-
parameter tractable algorithm to solve the above problem,
since in those cases we can enumerate all states reachable
from a given state in fixed-parameter tractable time. For the
fixed-parameter intractability results, the hardness follows
straightforwardly from the hardness proofs for the corre-
sponding R-CASEMOD problems.

Reusing a sequence of actions In principle, there is no
need to require anything from the state to which the stored
plan is applied. Therefore we will consider the following gen-
eralization of the CASEMOD problems discussed above. In
this problem, denoted by PLANMOD, we remove the require-
ment that the additional steps added before the plan c result in
the initial state .J or some other state that satisfies the precon-
ditions of (the infix of) the plan c. Also, we allow the insertion
of additional steps in the middle of the plan c. Formally, the
question then becomes whether there exists some m < k,
a sequence of actions ¢ = (g1,...,9m) € A™, and some
sequence of actions p = (p1, ..., Pi+m) such that p is a solu-
tion plan of 1I and p can be divided into two subsequences ¢
and g, i.e., interleaving ¢ and g yields p. In other words, the
additional steps g can be used anywhere before, after or in
the middle of the plan c. Since we do not restrict ourselves
to any particular state being visited in our solution plan, the
actions in the glue sequence g can be used anywhere before,
after or in the middle of the plan c. Similarly to the case for

230

CASEMoOD, we define the variants PLANMOD*, R-PLAN-
MobD and R-PLANMOD*. In the following, we show that all
variants of PLANMOD are fixed-parameter intractable.

Theorem 6. {L,V,D, A}-PLANMOD is W[P]-complete.

Proof (sketch). For W[P]-membership, we sketch how to
reduce {L,V, D, A}-PLANMOD to the problem of determin-
ing whether a nondeterministic Turing machine 7" accepts
the empty string within a bounded number of steps using at
most k' nondeterministic steps (parameterized by k’). Since
this parameterized halting problem is in W[P] (Cesati 2003),
this suffices to show W[P]-membership. First T" guesses k
pairs (m;, a;), for 0 < m; < |c| and a; € A’. Pair (m1,a1)
corresponds to the application of the first m; actions from
the given plan c, followed by the application of action a;.
Similarly, for each ¢ > 1, pair (m;, a;) corresponds to the
application of the next m; actions from the given plan c,
followed by the application of action a;. Then T" (determinis-
tically) verifies whether applying the plan corresponding to
(mq,a;),...,(mk,ax) is a solution plan.

To prove W][P]-hardness, we reduce from
p-WSAT(CIRC). Let C' be a circuit for which we
want to check whether there exists a satisfying assignment
of weight at most k. Let z1,...,z, be the input nodes,
Y1,-..,Ym the internal nodes, and z the output node of
C, together denoted nodes(C). We assume without loss of
generality that C' contains only AND and NEGATION nodes.
Since C'is acyclic, we let the sequence (g1, ..., g;) denote
the nodes of C' in any order such that for each g; we have
that j < ¢ for all input nodes g; of g;. We construct an
instance of {L, V, D, A}-PLANMOD consisting of a planning
instance II = (V, I, G, A), aplan ¢, and an integer k’. We let
k' = k, and we define:

nodes(C) U {o};

{0,1} forallv € V;

{v—=0:veV}

{z+— 1}

{a®,...,a* } U {a®™,a®T} U {a%,... a%};

{aOH};
({o — 1} = {x; — 1}) for each z;;
(0= {o—1});

a®®= () = {0+~ 0}); and
(

a®® a®r a a®2 .. a0 a a9, .. ad).

We define a9 for each g; as follows. If g; is a NEGATION
node with input y, we let a¥ = ({y — 0} = {g; — 1}).
If g; is an AND node with inputs y1, ..., y,, we let a¥%
=1L yu = 1} = {gi = 1}).

It is now straightforward to verify that (IL, ¢, k') is a yes-
instance of {L,V, D, A}-PLANMOD if and only if the circuit
C has a satisfying assignment of weight k. O

Note that the proof of the above theorem suffices to show
fixed-parameter intractability of all variants of the PLAN-
MobD and PLANMOD* problems. We also point out that this
fixed-parameter intractability result holds even when the prob-
lem is restricted to instances for which the entire set A of
actions satisfies post-uniqueness.

Conclusion

We provided theoretical results, using the framework of pa-
rameterized complexity, to identify situations in which plan
reuse is provably tractable. We drew a detailed map of the
parameterized complexity landscape of several variants of
problems that arise in the context of case-based planning. In
particular, we considered the problem of reusing an existing
plan, imposing various restrictions in terms of parameters,
such as the number of steps that can be added to the existing
plan to turn it into a solution of the planning instance at hand.

The results show that contrary to the common belief, the
fact that the number of modifying actions is small does not
guarantee tractability on its own. We additionally need to
restrict the set of actions that can participate in the modifica-
tions. This indicates the need for a good heuristic function
that identifies a limited set of actions used for modifications.

In the future, these results may be extended to richer plan-
ning formalisms, e.g., considering variables of different types
or using predicates to express certain properties related to a
planning domain rather than planning instance.

References

Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
foundational issues, methodological variations, and system
approaches. AI Communications 7(1):39-59.

Bickstrom, C., and Klein, I. 1991. Planning in polyno-
mial time: the SAS-PUBS class. Computational Intelligence
7:181-197.

Béckstrom, C., and Nebel, B. 1996. Complexity results for
SAS+ planning. Computational Intelligence 11:625-655.

Béckstrom, C.; Chen, Y.; Jonsson, P.; Ordyniak, S.; and Szei-
der, S. 2012. The complexity of planning revisited - a
parameterized analysis. In Twenty-Sixth AAAI Conference on
Artificial Intelligence.

Bickstrom, C.; Jonsson, P.; Ordyniak, S.; and Szeider, S.
2013. Parameterized complexity and kernel bounds for hard
planning problems. In Spirakis, P., and Serna, M., eds., Algo-
rithms and Complexity (CIAC 2013), volume 7878 of Lecture
Notes in Computer Science.

Bodlaender, H. L.; Downey, R. G.; Fellows, M. R.; and Ware-
ham, H. T. 1995. The parameterized complexity of sequence
alignment and consensus. Theoretical Computer Science
147:31-54.

Bylander, T. 1994. The computational complexity of proposi-
tional STRIPS planning. Artificial Intelligence 69:165-204.
Cesati, M. 2003. The Turing way to parameterized complex-
ity. Journal of Computer and System Sciences 67:654—685.
Chen, H., and Giménez, O. 2010. Causal graphs and struc-
turally restricted planning. Journal of Computer and System
Sciences 76(7):579-592.

Downey, R. G., and Fellows, M. R. 1995. Fixed-parameter
tractability and completeness I: Basic results. SIAM J. Com-
put. 24(4):873-921.

Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. New York:
Springer Verlag.

231

Downey, R.; Fellows, M. R.; and Stege, U. 1999. Parameter-
ized complexity: A framework for systematically confronting
computational intractability. In Contemporary Trends in
Discrete Mathematics: From DIMACS and DIMATIA to the
Future, volume 49 of AMS-DIMACS, 49-99. American Math-
ematical Society.

Fellows, M. R.; Hermelin, D.; Rosamond, F. A.; and Vialette,
S. 2009. On the parameterized complexity of multiple-
interval graph problems. Theoretical Computer Science
410(1):53-61.

Flum, J., and Grohe, M. 2003. Describing parameterized com-
plexity classes. Information and Computation 187(2):291-
319.

Flum, J., and Grohe, M. 2006. Parameterized Complex-
ity Theory, volume XIV of Texts in Theoretical Computer
Science. An EATCS Series. Berlin: Springer Verlag.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Morgan Kaufmann.

Gottlob, G., and Szeider, S. 2006. Fixed-parameter algo-
rithms for artificial intelligence, constraint satisfaction, and
database problems. The Computer Journal 51(3):303-325.
Survey paper.

Hanks, S., and Weld, D. 1995. A domain-independent algo-
rithm for plan adaptation. Journal of Artificial Intelligence
Research (JAIR) 2:319-360.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191-246.

Hoffmann, J. 2001. Ff: The fast-forward planning system.
Al magazine 22(3):57.

Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse. Artifi-
cial Intelligence 55:193-258.

Leake, D. B., ed. 1996. Case-Based Reasoning. Cambridge,
Massachusetts: The MIT Press.

Liberatore, P. 2005. On the complexity of case-based plan-
ning. Journal of Experimental & Theoretical Artificial Intel-
ligence 17(3):283-295.

Nebel, B., and Koehler, J. 1995. Plan reuse versus plan
generation: A complexity-theoretic perspective. Artificial
Intelligence- Special Issue on Planning and Scheduling

76:427-454.

Niedermeier, R. 2006. Invitation to Fixed-Parameter Al-
gorithms. Oxford Lecture Series in Mathematics and its
Applications. Oxford: Oxford University Press.

Spalazzi, L. 2001. A survey on case-based planning. Artificial
Intelligence Review 16(1):3-36.

Tonidandel, F., and Rillo, M. 2002. The FAR-OFF system:
A heuristic search case-based planning. In Ghallab, M.;
Hertzberg, J.; and Traverso, P., eds., AIPS, 302-311. AAAL

Veloso, M. 1994. Planning and Learning by Analogical Rea-
soning, volume 886 of Lecture Notes in Artificial Intelligence
and Lecture Notes in Computer Science. New York, USA:
Springer-Verlag Inc.

