
Qualitative Planning under Partial Observability in Multi-Agent Domains

Ronen I. Brafman
Ben-Gurion University

Beer-Sheva 84105, Israel
brafman@cs.bgu.ac.il

Guy Shani
Ben-Gurion University

Beer-Sheva 84105, Israel
shanigu@cs.bgu.ac.il

Shlomo Zilberstein
University of Massachusetts
Amherst, MA 01003, USA

shlomo@cs.umass.edu

Abstract

Decentralized POMDPs (Dec-POMDPs) provide a rich, at-
tractive model for planning under uncertainty and partial ob-
servability in cooperative multi-agent domains with a grow-
ing body of research. In this paper we formulate a qualita-
tive, propositional model for multi-agent planning under un-
certainty with partial observability, which we call Qualitative
Dec-POMDP (QDec-POMDP). We show that the worst-case
complexity of planning in QDec-POMDPs is similar to that
of Dec-POMDPs. Still, because the model is more “classical”
in nature, it is more compact and easier to specify. Further-
more, it eases the adaptation of methods used in classical and
contingent planning to solve problems that challenge current
Dec-POMDPs solvers. In particular, in this paper we describe
a method based on compilation to classical planning, which
handles multi-agent planning problems significantly larger
than those handled by current Dec-POMDP algorithms.

Introduction
Many problems of practical importance call for the use of
multiple autonomous agents that work together to achieve a
common goal. For example, disaster response teams typ-
ically consist of multiple agents that have multiple tasks
to perform, some of which require or can benefit from the
cooperation of multiple agents. In such domains, agents
typically have partial information, as they can sense their
immediate surroundings only. And because agents are of-
ten located in different positions and may even have differ-
ent sensing abilities, their runtime information states differ.
Sometimes, this can be overcome using communication, but
communication infrastructure can be damaged, and even if
it exists, communication may be costly (in terms of time and
resources) and should be reasoned about explicitly.

Decentralized POMDPs (Dec-POMDPs) offer a rich
model for capturing such multi-agent planning prob-
lem (Bernstein et al. 2002; Seuken and Zilberstein 2008).
Dec-POMDPs extend the single agent POMDP model to ac-
count for multiple agents with possibly different information
states, but the complexity of the Dec-POMDP model has
limited its applicability. In this paper we define and study
a conceptually simpler model for multi-agent planning that

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

extends the single-agent contingent planning model. We call
this new model Qualitative Dec-POMDP (QDec-POMDP).

In terms of worst-case complexity, we show that QDec-
POMDPs are no easier than Dec-POMDPs. Nevertheless, a
multi-agent contingent planning formalism offers two main
advantages. First, being geared to propositional (a.k.a. fac-
tored) state models, it allows for more convenient model
specification, as opposed to flat state models that character-
ize much of the work on Dec-POMDPs. Second, much like
contingent planning, it is more amenable to the use of cur-
rent classical planning methods, which are quite powerful.
Thus, it could allow us to solve much larger problems. In-
deed, one of our main contributions is a compilation method
from QDec-POMDPs to classical planning, allowing us to
tackle domains larger than those that can be solved by cur-
rent Dec-POMDP algorithms.

Of course, the qualitative contingent planning model is
less expressive in that it specifies the possible outcome states
without their likelihood. But this is an advantage in cases
where it is difficult to specify a richer, quantitative model,
or when such models are too complex to solve. Further-
more, a solution to a qualitative model can provide guid-
ance and heuristics for methods that operate on the quanti-
tative model. Alternatively, one could use information from
the quantitative model to bias choices made by a qualitative
counterpart, e.g., when state sampling techniques are used,
thus gradually moving from qualitative to quantitative.

In the next section we introduce the formal QDec-
POMDP model. We start with an analysis of the com-
plexity of solving a flat state-space qualitative model. This
makes clear the impact of the move from a quantitative Dec-
POMDP model, for which complexity results exist in that
form. Next, we take a closer look at the issue of belief state
representation, which is much more complex than in the sin-
gle agent case. Here we still consider a flat state space model
for semantic clarity. Next, we introduce a factored model,
in the spirit of contingent planning models. Focusing on
a deterministic variant of this model, we suggest an offline
compilation method for its solution, and describe its empir-
ical performance. The earlier discussion of belief states will
help us understand an essential simplification made by this
model. We end by discussing some of the challenges faced
in designing an online algorithm.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

130

Model Definition
We start with the basic definition of a flat-space QDec-
POMDP.

Definition 1. A qualitative decentralized partially observ-
able Markov decision process (QDec-POMDP) is a tuple
Q = 〈I, S, b0, {Ai}, δ, {Ωi}, O,G, T 〉 where

• I is a finite set of agents indexed 1, ...,m.
• S is a finite set of states.
• b0 ⊂ S is the set of states initially possible.
• Ai is a finite set of actions available to agent i and ~A =
⊗i∈IAi is the set of joint actions, where ~a = 〈a1, ..., am〉
denotes a particular joint action.

• δ : S × ~A→ 2S is a non-deterministic Markovian transi-
tion function. δ(s,~a) denotes the set of possible outcome
states after taking joint action ~a in state s.

• Ωi is a finite set of observations available to agent i and
~Ω = ⊗i∈IΩi is the set of joint observation, where ~o =
〈o1, ..., om〉 denotes a particular joint observation.
• ω : ~A× S → 2

~Ω is a non-deterministic observation func-
tion. ω(~a, s) denotes the set of possible joint observations
~o given that joint action ~a was taken and led to outcome
state s. Here s ∈ S, ~a ∈ ~A, ~o ∈ ~Ω.

• G ⊂ S is a set of goal states.
• T is a positive integer representing the horizon.

Our model allows for non-deterministic action effects as
well as non-deterministic observations. That is, we allow a
set of possible global states to result from a single joint ac-
tion, and we also allow multiple possible observations per
outcome state. Additionally, our model assumes a shared
initial belief state, as most Dec-POMDP models. The case
where agents have different initial belief states is very im-
portant, as it corresponds to the situation in on-line planning,
but is also very challenging.

We represent the local plan of each agent using a policy
tree q, which is a tree with branching factor |Ω| and depth
T . Each node of the tree is labeled with an action and each
branch is labeled with an observation. To execute the plan,
each agent performs the action at the root of the tree and
then uses the subtree labeled with the observation it obtains
for future action selection. If qi is a policy tree for agent i
and oi is a possible observation for agent i, then qioi denotes
the subtree that corresponds to the branch labeled by oi.

Let ~q = 〈q1, q2, · · · , qm〉 be a vector of policy trees.
~q is also called a joint policy. We denote the joint ac-
tion at the root of ~q by ~a~q , and for an observation vector
~o = o1, . . . , om, we define ~q~o = 〈q1o1

, . . . qmom
〉.

We later suggest algorithms to compute a joint policy that
solves a given QDec-POMDP (guarantee goal reachability).

Complexity of QDec-POMDP
We now analyze the complexity of generating plans in our
proposed model, compared with policy generation in the tra-
ditional Dec-POMDP model.

We first characterize the set of states reachable via a joint
policy ~q. Intuitively, if all states reached by time T are goal
states, the joint policy is a solution to the QDec-POMDP. To
do so, we define the set of pairs of the form (global state,

joint policy) that are reachable, denoted by β. The base
case, β0, corresponds to initially possible states and the full
depth-T joint policy ~q: β0 = {(s, ~q)|s ∈ b0}. We define βt
inductively:

βt = {(s′, ~q~o) | (s, ~q) ∈ βt−1, s
′ ∈ δ(s,~a~q), ~o ∈ ω(~a, s′)}

We can now formally define a solution to a QDec-
POMDP using our β notation:

Definition 2. A given depth-T joint policy ~q is a solution to
a QDec-POMDP Q iff ∀s : (s, ∅) ∈ βT ⇒ s ∈ G.

Note that at time T the remaining policy trees are empty.

Definition 3. Let QDec-POMDPm denote the problem of
finding a joint policy ~q that is a solution of a given m-
agent QDec-POMDP Q = 〈I, S, {Ai}, δ, {Ωi}, O,G, T 〉
(i.e., |I| = m).

We now analyze the complexity of finding such solutions.

Theorem 1. For all m ≥ 2, if |T | ≤ S, then
QDec-POMDPm ∈ NEXP.

Proof. We show that a nondeterministic machine can solve
an instance of QDec-POMDPm using at most exponential
time. To start, we guess a joint policy ~q. A joint policy
includes m policy trees, each of size O(|Ω|T). Overall, the
size is O(m|Ω|T), and because T < |S|, the joint policy can
be generated in exponential time. Given a joint policy, the
update of the belief state βt can be performed in exponential
time: βt can be larger than βt−1 by at most a multiplicative
factor of |S|, and the update takes polynomial time in the
size of βt. Thus repeating this process T times may require
at most exponential time. Finally, all we need is to verify
that ∀s : (s, ∅) ∈ βT ⇒ s ∈ G.

Theorem 2. For m ≥ 2, QDec-POMDPm is NEXP-Hard.

Proof. The proof is similar to the one presented by (Bern-
stein et al. 2002) for Dec-POMDPs. It follows a reduction
of the TILING problem (Lewis 1978; Papadimitriou 1994),
which is NEXP-complete, to the QDec-POMDP2 problem.
We only sketch the argument here.

TILING involves a given board size n (represented in
binary), a set of tile types L = {tile0, ..., tilek}, and a
set of binary horizontal and vertical compatibility relations
H,V ∈L×L.

A tiling f is consistent iff (a) f(0, 0) = tile0, and (b) for
all x, y 〈f(x, y), f(x + 1, y)〉 ∈ H and 〈f(x, y), f(x, y +
1)〉 ∈ V . That is, adjacent tiles satisfy the compatibil-
ity relations. The decision problem is to determine, given
n,L,H, V , whether a consistent tiling exists.

The basic idea is to create a two-agent QDec-POMDP
that randomly selects two tiling locations bit by bit, inform-
ing one agent of the first location and the other agent of the
second location. The agents’ local policies are observation-
history based, so the agents can base their future actions on
the tiling locations given to them. After generating the lo-
cations, the agents are simultaneously queried to place tiles
at some locations. The QDec-POMDP problem is designed
such that the agents reach the goal iff their answers to the
query are based on some agreed upon solution of the tiling

131

problem. Here is a brief discussion of the phases of the
original proof from (Bernstein et al. 2002) and the relevant
changes needed for the QDec-POMDP model.

Select Phase Using nondeterminism, the system generates
two random bit positions and values. They are memorized
as part of the state and not observed by the agents.

Generate Phase Using nondeterminism, the system gener-
ates two tile locations and reveals one to each agent via
their observation streams.

Query Phase Each agent is queried for a tile type to place
in the location specified to it.

Echo Phase The agents are now required to echo their tile
locations. Only one position (not known to the agents) is
verified by the system per observation stream. Making an
error in the echo phase leads to a dead-end, from which
the goal cannot be reached. During the echo phase, the
system tracks the adjacency relationship between the tile
locations.

Test Phase The system checks whether the tile types pro-
vided in the query phase come from a single consistent
tiling. If the tile types violate any of the constraints, a
dead-end state is reached. Otherwise, the goal is reached.

Similar to the original proof, if there exists a consistent
tiling, then there must exist a joint policy for the constructed
QDec-POMDP2 that reaches the goal state. Likewise, there
is no way to guarantee goal reachability without the agents
being faithful to a single consistent tiling.

Note that the QDec-POMDP constructed for the proof is
in fact a QDec-MDP (i.e., the observations of the two agents
combined provide full information on the state of the sys-
tem). Therefore, QDec-MDP2 is NEXP-Hard as well.

Corollary 1. For all m ≥ 2, both QDec-POMDPm and
QDEC-MDPm are NEXP-complete.

It is somewhat surprising that the qualitative model with
its different objective (goal reachability versus maximizing
expected reward) has the same complexity as the standard
Dec-POMDP model. In some sense, this confirms the in-
tuition that the main source of complexity is decentralized
operation with partial information, not stochastic actions.

Belief States and Joint Policies
The notion of the agent’s belief state plays a central role in
algorithms for solving problems with partial observability
and in the representation and computation of policies. In
this section, we seek to understand belief states in QDec-
POMDPs, explain some simplification we make, and use
this to provide an alternative representation for a joint policy.

Online Local Belief States
We begin with a definition of a local belief state of an agent
in the context of a known joint-policy tree. This definition is
useful for reasoning about the information state of an agent
online. However, it is not useful for the generation of a joint-
policy, as it assumes a fixed policy.

Each agent can maintain a belief state βti at time t that
reflects its own experience. The belief state includes all

the possible pairs of the form system state and joint policy.
Agent i knows its own policy tree, so all joint policies con-
sidered possible in its belief state must agree with its own,
actual, policy tree.

The initial belief state of agent i is β0
i = {(s0, ~q)|s0 ∈ b0}

where ~q is the initial vector of policy trees for all the agents.
Let ati be the action agent i executes at time t, and oti the
observation it obtains. We define βt inductively as follows:

βti = {(st, ~q~o) | (st−1, ~q) ∈ βt−1
i , (1)

st ∈ δ(st−1,~a~q),

~o ∈ ω(~a~q, st), ~o[i] = oti}

The only difference between the global update of βt and the
local update is the added condition ~o[i] = oti, which means
that we only include outcome states st that produce the ac-
tual observation that agent i obtained. That is, we use the
local information of agent i to filter states that are inconsis-
tent with its knowledge.

This belief state update scheme is valid when the joint
policy is fixed in advance in the form of policy trees. But
if we want to have policies that depend on these local belief
states we run into a problem. The actions of the other agents
depend on their beliefs that in turn depend on their actions.
Without resolving this circularity, it is hard to generate plans
conditioned on local beliefs.

Offline, Policy Independent Belief States
Most existing methods for planning under partial observabil-
ity rely on a “nice-to-manage”, policy-independent notion of
belief state. These methods include, for example, search in
belief state space, the computation of a real-valued function
over belief states, as in POMDPs, and the generation of a
policy that maps belief states to actions.

In the multi-agent case there is no longer a single
belief state, but we can replace that with the notion
of a history. A history is a sequence of states and
actions, of the form (s0, a1, s1, . . . , an, sn), denoting
the initial state, the initial action, the resulting state,
etc. If h = (s0, a1, s1, . . . , an, sn), let hs(k) = sk
and ha(k) = ak. Initially, every agent’s belief state is
β0
i = {(s0)|s0 ∈ b0}. We define βtβt−1,ai,oi

, the new belief
state of agent i at time t after executing ai and observing oi
in belief state βt−1, as follows:

βtβt−1,ai,oi
= {(h ◦ (~at, st)) | h ∈ βt−1, (2)

st ∈ δ(hs(t− 1),~at), ~at[i] = ai,

~o ∈ ω(~at, st), ~o[i] = oi}

That is, those histories that extend current histories with a
joint action that is consistent with the local action executed
by the agent, and with a state which is the result of applying
that joint action to the last state of the history, such that this
last state and action can induce a joint-observation consistent
with an agent’s local observation.

In the (qualitative) single agent case, due to the Marko-
vian assumption, one can simply maintain the set of last
states of the above histories, rather than the entire history,

132

i.e., maintaining the set of currently possible states. Unfor-
tunately, to the best of our knowledge, such a “truncation” is
not possible in the multi-agent case without sacrificing com-
pleteness. The reason is that different histories that led one
agent to the same state, lead to different states of informa-
tion for other agents. Thus, the set of last states in histories
considered possible by an agent only approximates its state
of knowledge. We will employ this approximation in the
planning algorithm introduced later, referring to it as set-of-
possible-states approximation.

Initially, every agent’s belief state is β0
i = {(s0)|s0 ∈ b0}.

The estimated set of possible states for agent i at time t
given the estimated belief state at time t − 1, action ai by
the agent, and observation oi is defined as follows:

βtβt−1,ai,oi
= {st : st−1 ∈ βt−1, (3)

st ∈ δ(st−1,~at),~at[i] = ai,

~o ∈ ω(~at, st), ~o[i] = oi}

Global Policy Tree
To describe a joint policy, we used a vector ~q of individual
policy trees. An alternative description is a global policy
tree, which we denote by qg . Its definition is identical to that
of an individual policy tree, except that nodes are labeled by
joint actions, and edges are labeled by joint observations.

Unfortunately, some general policy trees do not corre-
spond to any joint policy. If two nodes in the global pol-
icy tree correspond to branches that would yield the same
history for agent i, i.e., agent i cannot distinguish between
these branches, the action assigned to i in these nodes must
be identical.

Thus, let qg be a policy tree, and let b0 be the initial be-
lief state. For every node n, let ~b(n) = b1(n), . . . , bm(n)
be the vector of agents’ belief states given the history that
corresponds to the path to this node. qg is executable if for
every agent i = 1, . . . ,m and every two nodes n, n′ in gp,
if bi(n) = bi(n

′) then the ith component of the joint actions
associated with n and n′ must be identical.

Although joint policies are easier to execute – they con-
tain an explicit policy for each agent – global policy trees
are a better fit for the compilation approach that we describe
below, because they are closer in form to (single-agent) clas-
sical plans over joint actions: Instead of generating joint
policy trees consisting of m local policies, our translation
method will seek a single executable global policy tree. To
ensure that the global tree is executable, we will enforce the
constraint described above while using the set-of-possible-
states approximation for agents’ state of knowledge. Be-
cause this approximation is sound, i.e., two histories that the
agent cannot distinguish with will always yield two identical
sets of possible states (but not vice versa), we are guaranteed
that the global policy tree is indeed executable.

Factored Representation of QDec-POMDP
A factored representation of a planning problem makes it
more compact and facilitates development of efficient algo-
rithms that leverage the factored structure. With a few ex-

ceptions (Oliehoek et al. 2008; Kumar, Zilberstein, and Tou-
ssaint 2011), little work has focused on exploiting such fac-
tored models for Dec-POMDPs. Moreover, existing factored
Dec-POMDPs use a “flat” state representation per agent
(one state variable per agent) as opposed to multiple generic
state variables that describe compactly the entire state space.

In this section we describe a factored specification of a
QDec-POMDP model, motivated by the classical STRIPS
and PDDL languages. We propose a PDDL-like representa-
tion that is much more compact than the SPUDD-like repre-
sentation used in some factored Dec-POMDPs. At present,
our language does not support non-deterministic observa-
tions. Although conceptually simple and easy to define in
multi-valued settings, formalizing non-deterministic obser-
vations in the boolean STRIPS setting is not straightforward,
and is thus left for future work. In what follows we slightly
abuse notation by overloading previously defined terms.

Definition 4. A factored QDec-POMDP is a tuple
〈I, P, ~A,Pre,Eff ,Obs, b0, G〉 where I is a set of agents,
P is a set of propositions, ~A is a vector of individual ac-
tion sets, Pre is the precondition function, Eff is the effects
function, b0 is the set of initially possible states, and G is
a set (conjunction) of goal propositions. The state space S
consists of all truth assignments to P , and each state can be
viewed as a set of literals.

The precondition function Pre maps each individual ac-
tion ai ∈ Ai to its set of preconditions, i.e., a set of literals
that must hold whenever agent i executes ai. Preconditions
are local, i.e., defined over ai rather than ~a, because each
agent must ensure that the relevant preconditions hold prior
to executing its part of the joint action. We extend Pre to
be defined over joint actions {~a = 〈a1, .., am〉 : ai ∈ Ai}
(where m = |I|): Pre(〈a1, .., am〉) = ∪iPre(ai).

The effects function Eff maps joint actions into a set of
pairs (c, e) of conditional effects, where c is a conjunction
of literals and e is a single literal, such that if c holds before
the execution of the action e holds after its execution. Thus,
effects are a function of the joint action rather than of the
local actions, as can be expected, due to possible interactions
between local actions. For the sake of semantic clarity, we
assume that if (c, e) and (c′, e′) are conditional effects of
the same joint action, then c and c′ are inconsistent. Here
we focus on deterministic effects, but one can model non-
deterministic effects simply by allowing for multiple pairs
of the form (c, e), (c, e′) representing alternative outcomes
of the action under the same conditions.

The preconditions and effects functions together define
the transition function between states given actions.

For every joint action ~a and agent i, Obs(~a, i) =
{p1, . . . , pk}, where p1, ..., pk are the propositions whose
value agent i observes after the joint execution of ~a. The
observation is private – i.e., each agent may observe differ-
ent aspects of the world, and we assume that the observed
value is correct and corresponds to the post-action value of
these variables.

A solution to the factored model is identical to that used
for the flat model. We can use joint policy trees or executable
global policy trees, as discussed earlier.

133

Figure 1: Illustration of Example 1 showing the box pushing do-
main with 2 agents and a possible joint policy tree with nodes la-
beled by joint actions. Possible agent actions are sensing a box at
the current agent location (denoted SB), moving (denoted by ar-
rows), pushing a box up (denoted P), and no-op (denoted N). On
the second level of the tree, nodes marked 1 and 2 must have the
same action for agent 1 (push up in this case), because agent 1 can-
not distinguish between these two nodes. Likewise for nodes 2 and
4 with respect to agent 2 that cannot distinguish between them.

Example 1. We now illustrate the factored QDec-POMDP
model using a simple box pushing domain (Figure 1).In this
example there is a one dimensional grid of size 3, with cells
marked 1-3, and two agents, starting in cells 1 and 3. In each
cell there may be a box, which needs to be pushed upwards.
The left and right boxes are light, and a single agent may
push them alone. The middle box is heavy, and requires that
the two agents push it together.

We can hence define I = {1, 2} and P =
{AgentAt i,pos,BoxAtj,pos} where pos ∈ {1, 2, 3} is a
possible position in the grid, i ∈ {1, 2} is the agent in-
dex, and j ∈ {1, 2, 3} is a box index. In the initial state
each box may or may not be in its corresponding cell —
b0 = AgentAt1,1∧AgentAt2,3∧ (BoxAtj,j ∨¬BoxAtj,j)
for j = 1, 2, 3. There are therefore 8 possible initial states.

The allowed actions for the agents are to move left and
right, and to push a give box up. There are no preconditions
for moving left and right, i.e. Pre(Left) = Pre(Right) =
φ. To push up box j, agent imust be in the same place as the
box. That is, Pre(PushUpi,j) = {AgentAt i,j ,BoxAtj,j}.
The moving actions transition the agent from one position
to the other, and are independent of the effects of other
agent actions, e.g., Right i = {(AgentAt i,1,¬AgentAt i,1 ∧
AgentAt i,2), (AgentAt i,2,¬AgentAt i,2 ∧ AgentAt i,3)}.
The only truly joint effect is for the actions that contain
a component PushUpi,2, where box 2 is the heavy box
— Eff (PushUp1,2, a2) where a2 is some other action, are
identical to the independent effects of action a2, while

Eff (PushUp1,2,PushUp2,2) = {(φ,¬BoxAt2,2)}, that is,
if and only if the two agents push the heavy box jointly, it
(unconditionally) gets moved out of the grid.

We define sensing actions for boxes — SenseBoxi,j , with
precondition Pre(SenseBoxi,j) = AgentAti,j , no effects,
and Obs(SenseBoxi,j) = BoxAtj,j . The goal is to move
all boxes out of the grid, i.e.,

∧
j ¬BoxAtj,j .

Compilation-Based Method
We now present a method for solving QDec-POMDP prob-
lems using a compilation approach to classical planning.
Our approach generates a planning problem whose solution
corresponds to an executable global plan tree, branching on
agent observations. It relies on the approximate, sound, but
incomplete notion of belief state, as discussed earlier.

The compilation method is currently designed for deter-
ministic QDec-POMDPs, i.e., ones where actions have de-
terministic effects. The method could in principal be ex-
panded to handle non-determinism by embedding the un-
certainty of action effects into the uncertainty of the initial
belief (Yoon et al. 2008), but this will clearly impact the so-
lution time and size. We hence leave discussion of efficient
handling of non-deterministic effects to future research.

A classical planning problem is a tuple π = 〈P,A, s0, G〉
where P is a set of propositions, A is a set of actions, s0 is
the initial state, and G is a set of goal propositions. We use a
translation method inspired by the MPSR translation method
(Brafman and Shani 2012) and improves upon it. An impor-
tant concept in this translation is distinguishability between
states. We say that we can distinguish at runtime between
two states s, s′, denoted ¬s/s′, if we observed the value of
some proposition p which is true in s and false in s′. In our
translation we have two types of distinguishability — when
a single agent can distinguish between states based on its
own observations, denoted ¬s/s′|i, and when the combined
observations of the agents can distinguish between states,
denoted ¬s/s′, as in MPSR.

Given a factored QDec-POMDP problem π = 〈I, P, ~A =
{Ai},Pre,Eff ,Obs, b0, G〉 defined as in the previous sec-
tion we create the following classical planning problem
πc = 〈Pc, Ac, s0c

, Gc〉:
Propositions Pc = {p/s : p ∈ P, s ∈ S} ∪ {¬s/s′ :

s, s′ ∈ S} ∪ {¬s/s′|i : s, s′ ∈ S, i ∈ I}. Propositions of
the form p/s capture the value at run time of p when s is
the true initial state. Propositions of the form ¬s′/s|i de-
note that at run-time, if s is the true initial state, then agent i
has gathered sufficient data to conclude that s′ cannot be the
true initial state, i.e., to distinguish between state s and s′.
These propositions allow us to define the agent-specific be-
lief state during execution, and will be used later to enforce
the constraint on actions at the same level explained in the
previous section. Propositions of the form ¬s′/s allow us to
distinguish between states that at least one of the agents can
distinguish between. These propositions allow us to define
the joint belief state during plan construction.

Actions For every joint action ~a and every subset of
S′ ⊆ b0, Ac contains an action aS′ . This action denotes
the execution of ~a when the set of possible states is S′ (aS′

134

Table 1: Execution time (seconds) for different box pushing domains, comparing our translation-based QDec-POMDP approach, and two
Dec-POMDP solvers, IPG and GMAA-ICE with the QMDP heuristic. A model is defined by its width (W), length (L), and number of boxes
(B). Average depth denotes the average depth of leaves in the policy tree. Expected cost was reported by the GMAA-ICE solver.

Domain |S| |b0| QDec- Avg IPG GMAA- Expected
W,L,B POMDP depth IPG ICE cost
2 , 2 , 2 256 4 12.79 2 450 15.32 2
2 , 3 , 2 1296 4 25.39 2 × 59.67 2
2 , 3 , 3 7776 8 48.42 5 × 732.59 5
3 , 3 , 3 59049 8 66.47 6 × × ×

has no effect on states outside S′). It is defined as follows:
pre(~aS′) = {p/s : s ∈ S′, p ∈ pre(~a)} ∪ {¬s′/s : s′ ∈
S′, s ∈ b0\S′}. That is, the preconditions must hold prior to
applying the action in all states for which this action applies,
and the joint knowledge of the agents must be sufficient to
distinguish between any state in S′ and every state not in S′.
Thus, the plan can choose action aS′ only when the current
belief state is S′, and all action preconditions are known to
hold in S′.

For every (c, e) ∈ effects(a), effects(aS′) contains the fol-
lowing conditional effects:
• For each s ∈ S′, (c/s, e/s) — the effect applied to every

state in S′.
• {(p/s ∧ ¬p/s′,¬s/s′|i)} — for every p observable by

agent i, and every two states s, s′ ∈ S′, if the states dis-
agree on p, then agent i can distinguish between the states
following the observation of the value of p.
Initial State s0c

=
∧
s∈b0,s|=l l/s — for every literal we

specify its value in all possible initial states.
Goal Gc = {

∧
s∈b0 G/s}— we require that the goal will

be achieved in all states.
In addition we must explicitly enforce the constraints on

nodes at the same depth or level, as explained in the previous
section. To avoid the dependency on the depth, which is a
numeric variable, unsupported by the planners that we use,
we enforce the plan construction to proceed in a breadth-
first-search (BFS). That is, each level in the tree must be
fully constructed before the next level can be started. To
achieve that we add for each state s in the initial belief a
proposition LevelDones. For each compiled action ~aS′
we add preconditions

∧
s∈S′ ¬LevelDones, and uncondi-

tional effects
∧
s∈S′ LevelDones. Thus, once a state has

been handled at the current level of the tree, no action
that applies to it can be executed at the current level. To
move to the next level, we add an action ResetLevel with
preconditions

∧
s∈b0 LevelDones and unconditional effects∧

s∈b0 ¬LevelDones. That is, once all states have been con-
sidered at the current level, the LevelDone propositions are
reset and the next level begins. Our method adds only |b0|
additional propositions to the translation.

After enforcing a BSF plan construction, we enforce that
all agent actions at the current level in different states can
be different only if the agent can distinguish between the
states. As the ability to distinguish between states is a re-
sult of a different observation, this achieves the validity con-
straint required for global policy trees to become executable,
as discussed in the previous section. We add for each agent

i and action ai ∈ {Ai} predicates constraintai,s, modeling
which states are constrained on ai. For every action ~aS′ we
add preconditions:∧
i∈I,s/∈S′

¬LevelDones∧(constraintai,s∨(∧s′∈S′¬s/s′|i))

where ai is the action assigned to agent i in ~aS′ . That is,
for each agent i and state s which is not handled by the
action, either s has not yet been handled by any other ac-
tion, and is hence unconstrained, or there is a constraint of s
and it matches ai, or we can distinguish between s and any
other state s′ ∈ S′ for which the action does apply. We also
add unconditional effects

∧
i∈I,s∈S′ constraintai,s, speci-

fying the new constraint induced when selecting the joint
action. When a level is done, we remove all constraints in
the ResetLevel action, i.e., we add to ResetLevel uncon-
ditional effects

∧
i∈I,ai∈Ai,s∈b0 ¬constraintai,s.

The solution to the classical problem above is a lineariza-
tion of a joint plan tree (Brafman and Shani 2012).

Example 2. We now describe a portion of the compilation
of the box pushing domain described in Example 1. The set
of possible initial state can be described as sb1b2b3 where bi
denotes whether bi is initially in the grid and must be pushed
up. For example, stft denotes that box 1 and 3 are in the
grid, and box 2 is not. The propositions are conditioned on
the initial states, and we thus have, e.g., BoxAtj,pos/sftf ,
and AgentAt i,pos/sttf .

For each subset of states we define one instance
of an action. For example, for S′ = {sttt , sfff },
and action Lefti we will define an action Lefti,S ′
with preconditions

∧
s/∈{sttt ,sfff } ¬sttt/s ∧ ¬sfff /s. We

also need to ensure the BFS expansion, by adding
¬LevelDonesttt

∧ ¬LevelDonesfff
. Finally, we ensure

that the proper execution tree structure holds by adding∧
s/∈{sttt ,sfff } constraintLefti,s ∨ (¬sttt/s

′|i ∧ ¬sfff /s
′|i).

The effects of the action are specified only for sttt and sfff :
(AgentAt i,3/sttt ,¬AgentAt i,3/sttt ∧ AgentAt i,3/sttt),
(AgentAt i,3/sfff ,¬AgentAt i,3/sfff ∧ AgentAt i,3/sfff).
In addition, we add to the effects LevelDonesttt ∧
LevelDonesfff

so that these states will not be handled again
at the current depth. Next, we add the resulting constraint
effect constraintLefti,sttt

∧ constraintLefti,sfff
ensuring

that all states undistinguishable from {sttt , sfff } must also
use Left i at the current tree depth.

135

Experimental Results
We now provide some proof-of-concept experimental re-
sults showing that our algorithm can solve considerable size
QDec-POMDP problems. We experiment with a variant
of the box pushing problem (Seuken and Zilberstein 2007)
where a set of boxes are spread in a grid, and the agents
must push each box to a designated location at the edge of
the grid (the end of the column it appears in). Each box may
be either in a pre-specified location, or at its goal location
to begin with, and the agent must be in the same location as
the box in order to observe where it is. Agents may move
in the 4 primary directions, and can push boxes in these 4
primary directions, if they occupy the same location as the
box. Some boxes are heavy and must be pushed by a few
agents jointly (in our example, heavy boxes are pushed by 2
agents). Agents can also only observe the location of other
agents when they are in the same location. All transitions
and observations in these problems are deterministic.

We experimented with four box pushing domains. The
smallest example that we tried was a 2 × 2 grid, with 2
boxes and 2 agents and the largest had a 3 × 3 grid with
3 boxes. Each Ai has 11 possible actions (4 move actions,
4 push actions, observing the other agent, and observing
each box), and hence there are 121 joint actions. We ran
two Dec-POMDP solvers on this fully deterministic Dec-
POMDP problem — the GMAA-ICE algorithm with the
QMDP search heuristic (Oliehoek, Spaan, and Vlassis 2008)
using the MADP package1, and Incremental Policy Genera-
tion (IPG) (Amato, Dibangoye, and Zilberstein 2009). The
results are presented in Table 1. Our compilation approach
solves all the problems using the Fast Downward (FD) clas-
sical planner (Helmert 2006), while IPG solves only the
smallest instance, and GMAA-ICE solves the smaller in-
stances but not the larger one. Manually observing the trees,
we saw that the planner computed the intuitive plan tree.

We acknowledge that this comparison is not entirely fair,
because Dec-POMDP solvers try to optimize solution qual-
ity, whereas we only seek a satisfying solution. Thus, Dec-
POMDP solvers may need to explore many more branches
of the search graph, at a much greater computational cost.
Furthermore, many Dec-POMDP solvers are naturally any-
time, and can possibly produce a good policy even when
stopped before termination. It may well be that solvers
may reach a satisfying policy, which is the goal in a QDec-
POMDP, well before they terminate their execution. That
being said, our experiments demonstrate that our approach
can provide solutions to decentralized problems and may be
competitive with current Dec-POMDP solvers.

Our experiments investigate scaling up in terms of states
and the horizon, yet another source of complexity in Dec-
POMDP problems is the number of agents. It would be in-
teresting to examine in future work how our approach scales
with the number of agents.

An interesting aspect of our approach is the ability to
compactly represent large problems. For example, the 3× 3
box pushing example that we describe above, required a
model size of over 1GB (specifying only non-zero probabil-

1staff.science.uva.nl/∼faolieho/madp

ities) in the traditional Cassandra format for Dec-POMDPs,
while our factored representation required less than 15KB.

Conclusion
We presented a new model for multi-agent planning prob-
lems, called QDec-POMDP, which emphasizes valid, rather
than optimal solutions, that achieve a given goal, in the spirit
of classical and contingent planning. We analyzed the com-
plexity of the new model, concluding that it is as hard as
the standard Dec-POMDP model for a given horizon. Then,
we presented a factored version of this model, motivated by
similar representations used in classical and contingent plan-
ning. Our representation is compact and can describe mod-
els with tens of thousands of states and about 150 joint ac-
tions using file sizes of less than 15KB. We intend to inves-
tigate even more compact methods for specifying the effects
of joint actions. Next, we described a solution method for
deterministic QDec-POMDPs, based on a compilation ap-
proach to classical planning. Our method creates a classical
planning problem whose solution is a linearized joint plan
tree. We demonstrated the advantage of this compilation
method over Dec-POMDP solvers using a number of exam-
ples. Our approach solves small problems much faster and
scales to larger problems compared to existing Dec-POMDP
solvers.

In this paper, our focus was on providing an exposition
of the model, its properties, and potential. Of course, this is
only the first step towards developing more scalable solvers
for QDec-POMDP domains. In particular, we know well
from contingent planning that it is much harder to scale up
offline solution methods. Hence, we intend to explore online
planning in QDec-POMDPs. This raises some non-trivial
challenges as we will need some mechanism that will al-
low different agents with different belief states to jointly
plan (Wu, Zilberstein, and Chen 2011), unlike the offline
case in which a global plan is generated for a group of agents
that share an initial belief state. The advantage, however,
is that agents can focus on the relevant part of the state
space at each planning phase, requiring smaller encodings
and smaller plans. In addition, online methods are likely to
better deal with non-deterministic effects. A second possible
direction for scaling up would allow agents to plan indepen-
dently, enforcing certain constraints on the joint solution.

Finally, it would be interesting to study variants of the
QDec-POMDP model in more detail to identify the sources
of its complexity, and, in particular, variants that have lower
complexity. For example, we suspect that solving QDec-
POMDPs with deterministic transitions might belong to a
lower complexity class. Additional insights concerning be-
lief state representation may also help yield more efficient
algorithms.

Acknowledgments
Support for this work was provided in part by the Na-
tional Science Foundation under grants IIS-0915071 and
IIS-1116917, the Paul Ivanier Center for Robotics Research
and Production Management and the Lynn and William
Frankel Center for CS Research.

136

References
Amato, C.; Dibangoye, J. S.; and Zilberstein, S. 2009. Incre-
mental policy generation for finite-horizon DEC-POMDPs.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, 2–9.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27:819–840.
Brafman, R. I., and Shani, G. 2012. A multi-path compila-
tion approach to contingent planning. In Proceedings of the
Twenty-Sixth Conference on Artificial Intelligence, 1868–
1874.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Kumar, A.; Zilberstein, S.; and Toussaint, M. 2011. Scal-
able multiagent planning using probabilistic inference. In
Proceedings of the Twenty-Second International Joint Con-
ference on Artificial Intelligence, 2140–2146.
Lewis, H. R. 1978. Complexity of solvable cases of the de-
cision problem for the predicate calculus. In Proceedings of
the Nineteenth Annual Symposium on Foundations of Com-
puter Science, 35–47.
Oliehoek, F. A.; Spaan, M. T. J.; Whiteson, S.; and Vlassis,
N. 2008. Exploiting locality of interaction in factored DEC-
POMDPs. In Proceedings of the Seventh International Joint
Conference on Autonomous Agents and Multiagent Systems,
517–524.
Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. A. 2008.
Optimal and approximate Q-value functions for decentral-
ized POMDPs. Journal of Artificial Intelligence Research
32:289–353.
Papadimitriou, C. H. 1994. Computational Complexity.
Reading, MA: Addison-Wesley.
Seuken, S., and Zilberstein, S. 2007. Improved memory-
bounded dynamic programming for decentralized POMDPs.
In Proceedings of the Twenty-Third Conference on Uncer-
tainty in Artificial Intelligence, 344–351.
Seuken, S., and Zilberstein, S. 2008. Formal models
and algorithms for decentralized decision making under un-
certainty. Autonomous Agents and Multi-Agent Systems
17(2):190–250.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175(2):487–511.
Yoon, S. W.; Fern, A.; Givan, R.; and Kambhampati, S.
2008. Probabilistic planning via determinization in hind-
sight. In Proceedings of the Twenty-Third Conference on
Artificial Intelligence, 1010–1016.

137

