Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

How to Cut a Cake Before the Party Ends

David Kurokawa
Computer Science Department
Carnegie Mellon University
dkurokaw @cs.cmu.edu

Abstract

For decades researchers have struggled with the problem of
envy-free cake cutting: how to divide a divisible good be-
tween multiple agents so that each agent likes his own allo-
cation best. Although an envy-free cake cutting protocol was
ultimately devised, it is unbounded, in the sense that the num-
ber of operations can be arbitrarily large, depending on the
preferences of the agents. We ask whether bounded protocols
exist when the agents’ preferences are restricted. Our main
result is an envy-free cake cutting protocol for agents with
piecewise linear valuations, which requires a number of op-
erations that is polynomial in natural parameters of the given
instance.

Introduction

More than six decades ago, Steinhaus (1948) posed the prob-
lem of envy-free (EF) cake cutting: when multiple agents
have heterogeneous valuations over a divisible cake, how
can we divide the cake between the agents so that each agent
(weakly) prefers its piece to every other piece? For two
agents, the trivial solution is given by the cut and choose
protocol: one agent divides the cake into two pieces that
it values equally, and the other agent chooses its preferred
piece.

In 1960, Selfridge and Conway independently proposed
an elegant EF cake cutting algorithm for the case of three
agents (see, e.g., (Brams and Taylor 1995)). The gen-
eral case continued to tantalize researchers for decades. In
a 1988 episode of his PBS show, Sol Garfunkel, the fa-
mous mathematical educator, proclaimed it to be one of the
greatest problems of 20th Century mathematics. Finally, in
1995—half a century after the problem was posed—Brams
and Taylor (1995) published an EF cake cutting algorithm
for any number of agents.

Our story would end here (somewhat prematurely), if not
for a disturbing property of the Brams-Taylor algorithm: al-
though it is guaranteed to terminate in finite time, the num-
ber of operations carried out by the protocol can be arbi-
trarily large, depending on the preferences of the agents. In
other words, for every ¢ there are preferences such that the
algorithm performs at least ¢ operations. This is a major

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

John K. Lai
School of Engineering and Applied Sciences
Harvard University
jklai @seas.harvard.edu

555

Ariel D. Procaccia
Computer Science Department
Carnegie Mellon University
arielpro@cs.cmu.edu

flaw, especially from the computer scientist’s—or parent’s,
for that matter— point of view; if you start cutting a cake
during your child’s third birthday party, you would like to
finish before he turns eighty!

The problem of designing a bounded EF cake cutting al-
gorithm (where the number of operations depends only on
the number of agents) remains an open problem. In fact,
it is generally believed that such an algorithm does not ex-
ist. Be that as it may, the difficulty seems to stem from the
complexity of agents’ preferences, which are generally rep-
resented by arbitrary continuous density functions. In this
paper, we therefore ask the following question:

Assuming that agents’ preferences are restricted, can
we design bounded (or even computationally efficient)
EF cake cutting algorithms?

Our model and results

Agents’ preferences are represented by valuation functions,
which assign values to given pieces of cake. We consider
several classes of structured, concisely representable valua-
tions that were originally proposed by Chen et al. (2013),
and further studied in several recent papers (Caragiannis,
Lai, and Procaccia 2011; Cohler et al. 2011; Bei et al. 2012;
Brams et al. 2012). An agent with a piecewise uniform
valuation function is interested in a subset of the cake, and
simply wants to receive as much of that subset as possible.
As an intuitive example where piecewise uniform valuations
may arise, suppose that the cake represents access time to a
shared backup server; an agent may be able to use as much
time as it can get, but only when its computer is idle. Agents
with piecewise constant valuations are interested in several
contiguous pieces of cake, so that each piece is valued uni-
formly (one crumb is as good as another) but crumbs from
different pieces are valued differently. This class is more
general than the class of piecewise uniform valuations; in
fact, piecewise constant valuations can approximate general
valuations to an arbitrary precision. Piecewise linear valua-
tions are even more general, and in a sense are almost fully
expressive.

To discuss bounded cake cutting algorithms, we also need
to define which operations the algorithm is allowed to per-
form. Here we draw on the well-studied Robertson-Webb
model (Robertson and Webb 1998; Busch, Krishnamoor-
thy, and Magdon-Ismail 2005; Edmonds and Pruhs 2006;

Woeginger and Sgall 2007; Procaccia 2009), which allows
two types of operations: cut, which returns a piece of cake
with a given value for a given agent, and eval, which queries
an agent on its value for a given piece. This model is es-
sentially beyond reproach as it is sufficient to simulate all
famous discrete cake cutting algorithms.

A natural starting point for our study is the design of EF
cake cutting algorithms for the most restricted of the three
classes, piecewise uniform valuations. Strikingly though,
our first result is that the existence of a bounded EF algo-
rithm for piecewise uniform valuations implies the existence
of a bounded EF algorithm for general valuations. In other
words, EF cake cutting under piecewise uniform valuations
is already as hard as the general case, which is believed to
be impossible!

Nevertheless, the three classes of valuation functions have
a distinct advantage over general valuations in that they can
be parameterized by the number of “pieces” in the word
“piecewise”. For example, in our backup server setting, this
parameter k£ would represent the number of time intervals in
which the agent’s computer is idle. Can we design EF al-
gorithms that are bounded by a function of the number of
agents n and the number of pieces k? Our answer, which
we view as our main result, is the most positive one could
hope for: even for piecewise linear valuations, we design an
EF cake cutting algorithm whose number of queries (in the
Robertson-Webb model) is bounded by a polynomial func-
tion in n and k. We feel that this strong result alleviates
the tension around the apparent nonexistence of EF cake
cutting algorithms for unrestricted valuations, and paints a
compelling picture of what makes the problem difficult.

Encouraged by this result, we next ask whether we can
strengthen it even further by designing EF algorithms that
satisfy additional desirable properties and run in time that is
bounded by a function of n and k. It turns out that the answer
is negative when the additional property is strategyproof-
ness, in the sense that an agent can never gain from manipu-
lating the algorithm. Moreover, we find that there are no fi-
nite cake cutting algorithms that satisfy Pareto-optimality—
a well-known criterion of economic efficiency—even if one
does not ask for EF.

Related work

Several papers support our premise that EF cake cutting is
extremely difficult. Stromquist (2008) showed that there are
no bounded algorithms, albeit under the strong assumption
that the algorithm must allocate contiguous pieces of cake;
his result was strengthened by Deng et al. (2009), but they
made the same assumption. Procaccia (2009) proved an un-
conditional but rather weak lower bound of Q(n?) in the
Robertson-Webb model.

Bounded cake cutting algorithms do exist when the num-
ber of agents is very small. As discussed above, the solu-
tions for the cases of two and three agents have long been
known. The cases of four and five agents have recently been
solved (Saberi and Wang 2009), but they require the use of
moving knives.! For more than five agents, no bounded al-

!The Robertson-Webb model cannot simulate moving knives.

556

gorithms are known, even if moving knives are allowed.

We obtain a strong positive result by restricting the
agents’ valuations. Alternatively, one can relax the target
property itself, by requiring only approximate EF, so that
envy is bounded by a given e. This goal is implicit in the
work of Su (1999), and explicit in a paper of Lipton et
al. (2004), who design an ¢-EF algorithm whose number of
queries (in the Robertson-Webb model) is polynomial in n
and 1/e.

Importance in AI

In the last few years there has been a surge of papers on
cake cutting in top Al conferences (Procaccia 2009; Chen et
al. 2013; Caragiannis, Lai, and Procaccia 2011; Cohler et
al. 2011; Brams et al. 2012; Bei et al. 2012). The reason
for this interest is twofold. First, until recently research on
cake cutting was restricted to mathematics, economics, and
political science, but it turns out that the computer science
point of view (especially algorithm design and complexity)
is crucial in addressing some of the key challenges of this
field. Second, fair division is emerging as a central tool for
resource allocation in multiagent systems (Chevaleyre et al.
2006), and specifically fair division of divisible goods is a
crucial component. For example, recent Al work deals with
fair division of divisible computational resources like CPU
and RAM (Gutman and Nisan 2012). See the cake cutting
survey by Procaccia (2013) for more details.

Preliminaries

We model the cake as the real interval [0,1]. The set of
agents is N = {1,...,n}; we also denote [k] = {1,...,k}.
Each agent is associated with a value density function v;
whose derivative is undefined or discontinuous only at a fi-
nite number of points.

A piece of cake X is any finite collection of subintervals
of [0, 1]. An agent’s value for a piece of cake X is denoted
by V;(X) and defined by the integral of its density func-
tion, i.e. Vi(X) = [y vi(x)dz. For an interval [z, y], we
abuse notation by writing V;(z, y) instead of V;([z, y]). The
definition implies that agent valuations are additive and non-
atomic, i.e. Vi(z,z) = 0.

We assume that agent valuations are normalized so that
Vi(0,1) = 1. This assumption is without loss of gener-
ality as the properties we consider (envy-freeness, Pareto-
optimality, strategyproofness) are invariant to scaling the
valuation functions by a constant factor.

Following Chen et al. (2013), we consider three restricted
classes of valuations. We say that an agent has a piecewise
constant valuation when its value density function is piece-
wise constant, that is, [0, 1] can be partitioned into a finite
number of subintervals such that the function is constant on
each interval. We define piecewise linear valuations sim-
ilarly. Piecewise uniform valuations are a special case of
piecewise constant where on each subinterval the density is
either some fixed constant ¢ > 0, or zero. Piecewise uniform
valuations are less expressive than piecewise constant valu-
ations, which are less expressive than piecewise linear valu-
ations. The reader is encouraged to verify that these formal

definitions are consistent with their intuitive interpretations
above.

An allocation (X1, ..., X,,) assigns a piece of cake X to
each agent i such that no two pieces overlap.> An allocation
is envy-free (EF) if V;(X;) > V;(X;) for all 4,5 € N. That
is, each agent prefers its own piece to the piece given to any
other agent.

In the rest of the paper, we assume that we are operating
in the standard Robertson-Webb query model. That is, the
algorithm can only ask agents two types of queries:

1. Eval query: asks agent ¢ € N for its value for the interval
[x,y], that is, eval(i, x, y) = Vi(z,y).

2. Cut query: the query cut(i,z,w) returns the minimum
(leftmost) point y € [0, 1] such that V;(z,y) = w or
claims impossibility if no such y exists.

For example, consider the cut and choose protocol; it
can be simulated using two queries in the Roberston-Webb
model. First, a cut(1,0,1/2) query gives a point w such
that the interval [0, w] is worth 1/2 to agent 1, and hence
the value of the complement [w, 1] is also 1/2. Next, an
eval(2,0,w) query gives the value of agent 2 for [0, w]. If
this value is at least 1/2, we allocate [0, w] to agent 2 and
[w, 1] to agent 1, and if it smaller than 1/2, we switch the
allocated pieces.

General vs. Piecewise Uniform Valuations

Although confining agent valuations to piecewise uniform
valuations may seem overly restrictive as a first step, our first
result shows that this is not the case. In fact, EF cake cutting
for piecewise uniform valuations is just as hard as EF cake
cutting for general valuations, when seeking algorithms that
are bounded by a function of the number of agents.

Theorem 1. Let A be an algorithm that computes an EF
allocation for n arbitrary piecewise uniform valuations in
less than f(n) queries. Then A can compute EF allocations
in less than f(n) queries for general valuation functions.

Proof. LetVy, ...V, be general valuation functions for the
agents. Run A4 on these valuations. There are two cases to
consider.

Case 1: A terminates in f(n) queries or less, and outputs
an allocation (X7, ..., X,). We claim that (X1,...,X,) is
EF with respect to Vi, ..., V,,. To prove this, we construct
piecewise uniform valuations U; based on the queries and
responses when .4 runs on the V;. The high-level idea is
to construct U; which are equivalent to the V; in the sense
that A would treat them identically, and then prove envy-
freeness of (Xi,...,X,,) for V; using the envy-freeness of
(Xl, e ,Xn) for Ul

Let W; be the set of all endpoints for all queries and re-
sponses associated with agent 7 when A runs on valuations
V;. That is, if we were to construct W iteratively with each
query to agent , then a query and response b = cut(i, a, w)
or w = eval(s, a,b) would add both @ and b to W;.

Technically we allow overlap at a finite number of points since
valuations are non-atomic.

557

Similarly, denote by Y the set of all endpoints for the con-
tiguous intervals in the allocation produced by A. That is,
wherever the interval [0, 1] is cut to construct a part of the
final allocation, we place the cut pointin Y.

Finally, let Z; = W; UY U {0, 1} denote an ordered set
(using the natural ordering on the reals) and z; ; denote the
4" smallest element of Z;. We are now ready to define the
value density function u; (which pins down the valuation
function Uj;):

. Vi(2i.,%1.541)
. M; 3] st.x € |:Zi7j+1 — %, Zij+1
0 otherwise,

where M; = max; (7%(Zi’j’zi’j+l)).

Zi,j+1—%i,j
For a given interval [2; ;, 2 j11], U; satisfies two crucial
properties:

1. Ui(zi,ja Zi,jJrl) = V;(Zi’j7 Zi,jJrl)’ and
2. if U;(2i 5, 2zij4+1) > O then there exists ¢ > 0 such that
for all z € [Zi’jJrl — €, Zi,jJrl]’ UZ(£E) = M,.

These two properties imply that (1) A will ask the same
queries and terminate with the same allocation when run on
U; instead of V; and (2) U;(X;) = Vi(X;), where X is the
piece given to agent 7 in the allocation returned by .A.

To see this, note that the first property ensures all eval
query responses are the same for both V; and U;. The two
properties together similarly ensure all cut query responses
are also unaffected; in particular, the second property guar-
antees that cutting slightly to the left of z; ;1 would give
strictly smaller value, hence the leftmost cut point with the
same value is still z; ;1. Finally, since Y is included in
Z;, the first property implies that U;(X;) = V;(X;) for the
allocation returned by A.

Case 2: A terminates in f(n) or more queries. Consider the
queries asked and responses given after .4 has asked f(n)—1
queries. Now consider U; as defined in case 1, except with
Z; = W; U{0,1} (we drop the set of points Y since we
do not know the allocation that A will return). U; satisfies
the property that .4 will behave the same with respect to U;
and V;. However, this means that .4 will take at least f(n)
queries when operating on Uj;, and this contradicts the as-
sumption that A finds an EF allocation in less than f(n)
steps for any piecewise uniform valuations. O

Bounded Algorithm for Piecewise Linear
Valuations

We have shown that restricting agents’ valuations to piece-
wise uniform valuations does not make the problem of find-
ing EF allocations any easier. However, these results rely
crucially on the allowance of any number of discontinuities
in the value density functions. In the piecewise uniform
case, the discontinuities are the points where the density
function jumps to a constant c or drops to 0. For piecewise
linear valuations, we refer to the endpoints of the subinter-
vals on which the density is linear (hence these are discon-
tinuities of the derivative of the density function rather than

of the density function itself.) We use the term break points
of the value density function.

In this section, we consider what happens when we bound
the total number of break points across agents’ value density
functions. Even when the agent valuations are piecewise lin-
ear, and assuming that there are at most & break points across
all agents’ valuations, we design a cake cutting algorithm
that finds an EF allocation with at most O(n°k In k) queries
in the Robertson-Webb model. Before presenting this algo-
rithm we introduce a few definitions and subroutines.

Definition A separating interval of [a,b] is an interval
[e, B] C [a,] such that:

1. Vi(a, B) < 2V;(a,b) foralli € N, and
2. there exists an agent p such that V,,(c,) = 2V, (a,b).
We refer to p as the champion of the separating interval.

Given an interval [a, b], we construct a cover of separating
intervals. That is, we find a finite set C' = {[w;, Bi;]}
indexes the separating intervals with champion %) such that
[avij, Bij] is a separating interval of [a,b] with champion i
and for every x € [a,b], there exists an ¢ and j such that
x € [a;j, Bi;]. Algorithm 1 produces exactly this.

Algorithm 1 Cover [a, b] by separating intervals
COVER(a, b)
1. LetC ={},a=a.
2. Repeat:
(a) Let 8 < bbe the minimal value such that [«, 8] is worth
exactly V;(a,b)/n to some agent i.
(b) If no such f exists, break out of this loop.
© C=CU{a,pB).
(@) a=p.
3. Let o be the largest value such that [a*, b] is worth ex-
actly V;(a, b)(n — 1)/n to some agent i.
4. Return C' U [, b].

Note that step 2(a) can be simulated with
cut(é, a, V;(a,b)/n) queries, and step 3 can be simu-
lated with cut(i,0, V;(a, b)(n — 1) /n) queries.® V;(a, b) can
be obtained via an eval(i, a, b) query.

In each iteration of step 2, we add a separating interval
since we know that [, 5] has value exactly V;(a,b)/n to
some agent i, and we choose the smallest possible (3, all
other agents j have value at most V;(a, b) /n. What remains
to be shown is that all points are in some separating interval.
We move from left to right in step 2 without skipping over
any points, so the only possible missing points would be in
the case where no viable (8 exists. However, in this case,
[av, b] has value less than V;(a, b)/n for all agents i. Step 3
ensures that we cover [a, b] since [a*,b] has value at least
Vi(a,b)/n for some agent i and therefore a* < a.

3Obtaining the largest a* may require a cut from right to left,
but this can be avoided by tweaking step 3.

558

L
| | separating interval |
a o B b

\
1
1
\
\
|

Figure 1: A sandwich allocation for agents 1 (the champion),
2, and 3, with dotted, solid, and dashed densities, respec-
tively. The value of agent 1 for the separating interval is
Vi([a,b])/3. Agent 2 receives the first and fourth quarters
of [a, @] and [$, b]; note that its value for this allocation (the
gray area) is Va([a, o] U [5,D])/2.

Definition The sandwich allocation of [a, b] with respect to
separating interval [« 8] (with champion p) is the alloca-
tion where p receives [«, 3] and the remaining agents each
receive some X; for j € [n — 1], where X is defined as:

e [a+(j—1)y,a+jyland [a—jy,a— (5 — 1),

e [B+(j—1)3,5+ 6 and [b—js,b— (5 —1)d],

where v = (a — a)/(2(n — 1)),6 = (b — 8)/(2(n — 1)).
In words, the sandwich allocation divides [a, a] to 2(n —

1) subintervals of equal length, and adds subintervals j and

n — j + 1 (enumerating from left to right) to X;. A similar

process is done for 3, b]. See Figure 1 for an illustration.

We require the following well-known property of piece-
wise linear valuations (Chen et al. 2013; Brams et al. 2012).

Lemma 2. Suppose that an agent has linear value density
on interval [c,d), and that [c,d] is divided into 2k equal
pieces. Let X for j € [k] denote the piece formed by com-
bining the j*" piece from the left (moving right) and the j*"
piece from the right (moving left). That is, X, is the left-
most and right-most piece, X is the second from the left
combined with the second from the right, etc. Then the agent
is indifferent between the X ;.

We can now show that if there are no break points outside
of the separating interval, then the sandwich allocation is EF
(see Figure 1).

Lemma 3. Let o, 8] be a separating interval of [a,b]. Fur-
thermore, suppose that there are no break points in the
agents’ piecewise linear value density functions on [a, @)
and (B, b]. Then the sandwich allocation of [a, b] with sepa-
rating interval [a, (] is EF.

Proof. By assumption there are no break points in [a, &),
(8, b], so each agents’ density function is linear on these in-
tervals. Let p denote the champion of the separating interval.
Lemma 2 tells us that the agents are indifferent among the
pieces given to agents in N \ {p}. Agent: € N \ {p} there-
fore receives value exactly (V;(a,b) — Vi(e, 8))/(n — 1) >
Vi(a, B) since V;(a, B) < Vi(a,b)/n (by the definition of
sandwich allocation).

We can now argue that the sandwich allocation is EF. An
agent in N \ {p} does not envy another agent in the same

set since the agent is indifferent among the pieces given to
agents in N \ {p}. These agents also do not envy agent p
since they receive value at least V;(«, 3) from their pieces.
It remains to show that agent p does not envy any other
agent. Agent p receives value V;(a,b)/n from its piece.
Since agent p is indifferent among the pieces in N \ {p}, it
receives value (V;(a, b) — Vi(a,b)/n)/(n—1) = Vi(a,b)/n
for these pieces. Agent p is therefore indifferent among all
the pieces in the sandwich allocation. O

We are now ready to give our algorithm that computes an
EF allocation for agents with piecewise linear valuations and
at most k total break points. At a high-level, our algorithm
constructs a cover of separating intervals. For each separat-
ing interval in the cover, we attempt to construct an EF allo-
cation. If any of these attempts are successful, we are done.
Otherwise, we split [a, b] at every endpoint of an interval in
the cover and recurse on these smaller subintervals. Criti-
cally, our allocation is chosen so that if we do indeed require
a split, then we will separate at least two break points.

Algorithm 2 EF procedure for piecewise linear valuations
1. EF-ALLOCATE(O, 1).

EF-ALLOCATE(a, b):

1. Let C = COVER(a, b).

2. For each [a,] € C, check if the sandwich allocation of
[a, b] for separating interval [« /3] is EF (for all agents). If
it is then return the sandwich allocation.

3. If no separating interval admits an EF sandwich allo-
cation, then let Z be all endpoints of separating in-
tervals in C'. Sort Z from smallest to largest, giving
points {z1,...,2mn}. Recursively call EF-ALLOCATE
on intervals formed by consecutive points in Z (i.e.,
EF-ALLOCATE(%;, 2;+1)). Return the allocation formed
by joining the allocations returned by each of these recur-
sive calls.

Theorem 4. Algorithm 2 will terminate, produce an EF al-
location and require at most O(n°kIn k) queries.

Proof. As the algorithm can only return by producing an EF
allocation or recursing, it will produce an EF allocation if it
terminates. Moreover, each iteration of the algorithm will
issue a nonzero number of queries (in order to construct a
cover and sandwich allocations). Therefore, if we show the
number of queries is O(n®k In k), we will have also shown
the algorithm will terminate and produce an EF allocation.
Lemma 3 tells us that for a separating interval [«,], the
sandwich allocation is EF if there are no break points in
[a, @), (B, b], or in other words, all break points are included
in [a,). If Algorithm 2 does not find an EF allocation in
step 2, then no separating interval in the cover contains all
break points. Therefore, recursing on intervals formed by
consecutive points in Z (the ordered set of endpoints of sep-
arating intervals in C') will separate at least two break points.
If there are at most & break points in [a, b], there can be at
most £ — 1 break points in any of the intervals recursed on.

559

The base case of this recursion is the case where £ < 1. If
k = 1, then the sandwich allocation for the separating inter-
val containing the break point will be EF. If k£ = 0, then the
sandwich allocation of any separating interval will be EF.

Now let us consider the number of queries our algo-
rithm uses. It is not difficult to see that computing the
cover will take at most n® + n < 2n3 queries and pro-
duce a set of at most cardinality n2 4+ 1 < 2n2. Moreover,
checking if a sandwich allocation is EF will require at most
4(n — 1)n queries. This is because the sandwich allocation
splits [a,], [8, b] each into 2(n — 1) intervals, so there are
4(n—1) intervals to ask the agents to evaluate (as there is no
need to evaluate [, 8]). The maximum number of queries
T'(n, k) can therefore be implicitly given by:

2n?
T(n, k) < 20° + 2n°(4(n — 1)n) + > _T(n, kj)
j=1

21’L2
< 8n* + Z T(n, kj),
j=1
where due to the property that we split break points, k; < k
for all j, and due to the property that a break point can appear
in only one of the recursively allocated intervals, ijl kj <
k.* We now show by induction that:

8n* k<1
T(n,k) < e
(n, k) < {24n6k: Ink otherwise

As a base case, it is clear the statement holds for k£ < 1. We
now assume this statement holds true for &, and inductively
establish it for k + 1.
2n?
T(n,k+1)<8n*+ ZT(n,k‘j)
j=1
<8nt+ > 8nt+ > 24n°k;Ink;
ki<l kj>1
<8n*+16n°+ > 24n°k;Ink
k:j >1

< 24nS + 24n°Ink Y k;
k;j>1

< 2405 + 24nSkInk

=24n°(1 + klnk)

< 24n8(k + 1) In(k + 1),

where the last inequality uses the fact that 1 + kIlnk < (k+
1)In(k + 1) for £ > 1. This is easy to see for k > 2 since
1 < In(k+1), and we can manually verify the case of k = 1.
Therefore, the number of queries made by Algorithm 2 is
O(n®k1Ink). Since the number of queries is bounded, we
know that Algorithm 2 terminates (and therefore returns an
EF allocation). O]

“Technically, a break point can appear in two recursively allo-
cated intervals if it is an endpoint of the cover, but in this case the
break point is an inconsequential break point in the recursed inter-
vals and so we ignore it.

Additional Properties

Theorem 4 is encouraging, and it seems natural to ask
whether one can do better: can we design bounded (in n
and the number of break points k) algorithms that achieve
allocations that are EF and satisfy additional desirable prop-
erties? Unfortunately, for the two prominent properties that
we consider, the answer is negative.

The property of Pareto optimality is a standard notion of
economic efficiency; an allocation X7, . .., X, is Pareto op-
timal if there is no other allocation X7, ..., X/ such that

Vi(X]) > Vi(X;) for all i € N, and there exists j € N
such that V;(X!) > V;(X;). It turns out that the Robertson-
Webb model does not permit algorithms that produce Pareto
optimal allocations—even if other properties such as envy-

freeness are not required!

Theorem 5. There is no (finite) Pareto optimal cake cutting
algorithm for piecewise constant valuations.

Proof. Suppose A is a cake cutting algorithm and let all n
agents answer queries to .4 in a way that is consistent with
uniform value density functions (that is, v;(x) = 1 for all
x € [0,1]). Now take any interval [a, b] of non-trivial length
that is given to a single agent and does not contain any end-
point of any query. Call the owner of this piece agent p.
Change p’s value density to be:

2 ifwe [a:; R
0 ifwe (%520 25]
1 otherwise

b—a

vp(2)

Running A on these new valuations (with p changing to
vp and all other agents unchanged) produces the same al-
location as running A on agents with uniform value den-
sity functions as the answers to the eval and cut queries re-
main unaffected. However, the allocation produced by A
is clearly not Pareto optimal as assigning [%$2,b — 25%] to
some other agent would raise the receiver’s utility without

affecting p. O

Taking a game-theoretic point of view (Chen et al. 2013),
we would like to design cake cutting algorithms that are
strategyproof, in the sense that agents can never benefit from
answering the algorithm’s queries untruthfully, regardless of
what other agents do. In other words, truthfully answering
the algorithm’s queries must be a dominant strategy.

In contrast to Pareto optimality, strategyproofness alone
can be achieved easily, e.g., by always allocating the entire
cake to a fixed agent. However, if we additionally ask for an
algorithm that is EF and bounded (in n and k), we obtain an
impossibility result even for piecewise constant valuations.
The proof of the following statement is our most technically
intricate, and is omitted due to lack of space.5

Theorem 6. For any function f : N x N — N and any
number of agents n > 2, there exists no strategyproof and
EF cake cutting algorithm on piecewise constant valuations
that requires at most f(n,k) queries for every number of
break points k.

3The full version of the paper that includes the proof of Theo-
rem 6 is available at: www.cs.cmu.edu/ arielpro.

560

We can obtain analogs of Theorems 5 and 6 for piecewise
uniform valuations, at the expense of slightly weakening the
algorithm’s computational power: for Pareto optimality we
require the algorithm to be bounded rather than simply finite,
and for strategyproofness and envy-freeness we also require
the number of contiguous intervals in the algorithm’s allo-
cation to be bounded.

Discussion

One of the nice features of piecewise uniform, constant, and
linear valuations is that they can be concisely represented.
For example, a piecewise linear value density function is of
the form f(z) = a; - © + b; on each subinterval I;, so we
simply need to know a; and b; for all j < k + 1, where £ is
the number of break points (including 0 and 1) of the density
function. Given the full, explicit representations it is easy to
compute an EF allocation in polynomial time in the size of
the representation. Several recent papers (Chen et al. 2013;
Cohler et al. 2011; Bei et al. 2012) leverage this insight
by making a powerful assumption: the inputs to the cake
cutting algorithm are the agents’ full valuation functions.

In contrast, our algorithmic model is based on the
Robertson-Webb model. Conceptually, this model captures
what we normally think of as cake cutting protocols. The
Robertson-Webb model is harder than the full revelation
model: any polynomial time algorithm in the former model
gives a polynomial time algorithm in the latter model, but
the converse is not true. To illustrate this difference, observe
that when full piecewise constant valuations are reported, it
is straightforward to achieve a Pareto optimal allocation (via
a linear program that maximizes social welfare), whereas
in the Robertson-Webb model Pareto optimality cannot be
achieved (Theorem 5). In addition, in the full revelation
model it is impossible to reason about general valuations—
which have an infinite representation—hence in that model
there is no analog of our Theorem 1.

In fact, the main open question of Chen et al. (2013) is
whether their protocol can be simulated in the Robertson-
Webb model. Their main result is a strategyproof and EF
algorithm for piecewise uniform valuations that are fully re-
ported to the algorithm. Our results essentially give a neg-
ative answer to this question, with one caveat: they also as-
sume that the algorithm may throw away pieces of cake.®

The most enigmatic question still remains open: is there
a bounded (in n) EF cake cutting algorithm (i.e., one that
can be simulated in the Robertson-Webb model) for general
valuations? Our Theorem 1 may be the key to unlocking
this mystery: whether one aims to prove a possibility or an
impossibility result, one can focus on piecewise uniform val-
uations, which are exactly as hard as the general case.

Acknowledgements
Kurokawa and Procaccia are partially supported by NSF

grant CCF-1215883. Lai is supported by an NDSEG gradu-
ate fellowship.

SCounterintuitively, it is known that fair cake cutting algorithms
can perform better when allowed to throw away pieces (Arzi, Au-
mann, and Dombb 2011).

References

Arzi, O.; Aumann, Y.; and Dombb, Y. 2011. Throw one’s
cake — and eat it too. In Proceedings of the 4th Inter-
national Symposium on Algorithmic Game Theory (SAGT),
69-80.

Bei, X.; Chen, N.; Hua, X.; Tao, B.; and Yang, E. 2012.
Optimal proportional cake cutting with connected pieces. In
Proceedings of the 26th AAAI Conference on Artificial Intel-
ligence (AAAI), 1263-1269.

Brams, S. J., and Taylor, A. D. 1995. An envy-free cake
division protocol. The American Mathematical Monthly
102(1):9-18.

Brams, S. J.; Feldman, M.; Morgenstern, J.; Lai, J. K.; and
Procaccia, A. D. 2012. On maxsum fair cake divisions.
In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI), 1285-1291.

Busch, C.; Krishnamoorthy, M. S.; and Magdon-Ismail, M.
2005. Hardness results for cake cutting. Bulletin of the
EATCS 86:85-106.

Caragiannis, I.; Lai, J. K.; and Procaccia, A. D. 2011.
Towards more expressive cake cutting. In Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence (IJCAI), 127-132.

Chen, Y.; Lai, J. K.; Parkes, D. C.; and Procaccia, A. D.
2013. Truth, justice, and cake cutting. Games and Economic
Behavior 77:284-297. Preliminary version in AAAT’10.

Chevaleyre, Y.; Dunne, P. E.; Endriss, U.; Lang, J;
Lemaitre, M.; Maudet, N.; Padget, J.; Phelps, S.; Rodriguez-
Aguilar, J. A.; and Sousa, P. 2006. Issues in multiagent
resource allocation. Informatica 30:3-31.

Cohler, Y. J.; Lai, J. K.; Parkes, D. C.; and Procaccia, A. D.
2011. Optimal envy-free cake cutting. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence (AAAI),
626-631.

Deng, X.; Qi, Q.; and Saberi, A. 2009. On the complexity
of envy-free cake cutting. CoRR abs/0907.1334.

Edmonds, J., and Pruhs, K. 2006. Cake cutting really is not a
piece of cake. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 271-278.

Gutman, A., and Nisan, N. 2012. Fair allocation without
trade. In Proceedings of the 11th International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems (AA-
MAS), 719-728.

Lipton, R. J.; Markakis, E.; Mossel, E.; and Saberi, A. 2004.
On approximately fair allocations of indivisible goods. In
Proceedings of the 6th ACM Conference on Electronic Com-
merce (EC), 125-131.

Procaccia, A. D. 2009. Thou shalt covet thy neighbor’s cake.

In Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI), 239-244.

Procaccia, A. D. 2013. Cake cutting: Not just child’s play.
Communications of the ACM. Forthcoming.

Robertson, J. M., and Webb, W. A. 1998. Cake Cutting
Algorithms: Be Fair If You Can. A. K. Peters.

561

Saberi, A., and Wang, Y. 2009. Cutting a cake for five
people. In Proceedings of the 5th International Confer-
ence on Algorithmic Aspects in Information and Manage-

ment (AAIM), 292-300.
Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16:101-104.

Stromquist, W. 2008. Envy-free cake divisions cannot be
found by finite protocols. The Electronic Journal of Combi-
natorics 15:#R11.

Su, F. E. 1999. Rental harmony: Sperner’s lemma in fair di-
vision. American Mathematical Monthly 106(10):930-942.

Woeginger, G. J., and Sgall, J. 2007. On the complexity of
cake cutting. Discrete Optimization 4:213-220.

