Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

Extending STR to a Higher-Order Consistency

Christophe Lecoutre* and Anastasia Paparrizou’ and Kostas Stergiou

CRIL-CNRS UMR 8188
Université d’ Artois
F-62307 Lens, France

Abstract

One of the most widely studied classes of constraints in con-
straint programming (CP) is that of table constraints. Nu-
merous specialized filtering algorithms, enforcing the well-
known property called generalized arc consistency (GAC),
have been developed for such constraints. Among the most
successful GAC algorithms for table constraints, we find vari-
ants of simple tabular reduction (STR), like STR2. In this pa-
per, we propose an extension of STR-based algorithms that
achieves full pairwise consistency (FPWC), a consistency
stronger than GAC and max restricted pairwise consistency
(maxRPWC). Our approach involves counting the number of
occurrences of specific combinations of values in constraint
intersections. Importantly, the worst-case time complexity of
one call to the basic filtering procedure at the heart of our new
algorithm is quite close to that of STR algorithms. Experi-
ments demonstrate that our method can outperform STR2 in
many classes of problems, being significantly faster in some
cases. Also, it is clearly superior to maxRPWC+, an algo-
rithm that has been recently proposed.

Introduction

Table constraints, i.e., constraints given in extension by list-
ing the tuples of values allowed or forbidden by a set of vari-
ables, are widely studied in constraint programming (CP).
This is because such constraints are present in many real-
world applications from areas such as design and config-
uration, databases, and preferences’ modeling. So far, re-
search on table constraints has mainly focused on the devel-
opment of fast algorithms to enforce generalized arc consis-
tency (GAC) which is a first-order consistency, i.e. a con-
sistency that allows us to identify only inconsistent values
(nogoods of size 1). GAC algorithms delete values from
variable domains and achieve the maximum level of filter-
ing when constraints are treated independently.

GAC algorithms for table constraints have attracted con-
siderable interest, dating back to GAC-Schema (Bessiere

*This work has been supported by both CNRS and OSEO
within the ISI project *Pajero’.

TThis research has been partly funded by the Research Commit-
tee of the University of Macedonia, Economic and Social Sciences,
Greece, under grant 80749 for the advance of Basic Research.

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Dept. of Informatics and Telecommunications Engineering

University of Western Macedonia

576

Greece

and Régin 1997). Classical algorithms iterate over lists of
tuples in different ways ; e.g., see (Bessiere and Régin 1997;
Lhomme and Régin 2005; Lecoutre and Szymanek 2006).
Recent developments, however, suggested maintaining dy-
namically the list of supports in constraint tables: these
are the variants of simple tabular reduction (STR) (Ull-
mann 2007; Lecoutre 2011; Lecoutre, Likitvivatanavong,
and Yap 2012). Alternatively, specially-constructed in-
termediate structures such as tries (Gent et al. 2007) or
multi-valued decision diagrams (MDDs) (Cheng and Yap
2010) have been proposed. A more recent development of
ACS5-based algorithms has also been proposed in (Mairy,
Van Hentenryck, and Deville 2012), but its relevance has
been shown on binary/ternary constraints only. Among this
variety of algorithms, STR2 along with the MDD approach
are considered to be the most efficient ones (especially, for
large arity constraints).

A different line of research has investigated stronger con-
sistencies and algorithms to enforce them. Some of them are
first-order consistencies, e.g., see (Debruyne and Bessiere
2001; Bessiere, Stergiou, and Walsh 2008; Karakashian et
al. 2010) whereas a few other ones are higher-order, e.g.,
see (Montanari 1974; Janssen et al. 1989; Jégou 1993;
Lecoutre, Cardon, and Vion 2011) indicating that inconsis-
tent tuples of values (nogoods of size 2 or more) can be iden-
tified. In contrast to GAC algorithms, the proposed algo-
rithms to enforce these stronger and/or higher-order consis-
tencies are able to reason from several constraints simulta-
neously, as, for example, constraint intersections with pair-
wise consistency (PWC) (Janssen et al. 1989). Most of
these methods are generic, since they are applicable on con-
straints of any type, which typically results in a high com-
putation cost. A specialized algorithm for table constraints
that achieves a consistency stronger than GAC was pro-
posed very recently (Paparrizou and Stergiou 2012). This
algorithm, called maxRPWC+, extends the GAC algorithm
of (Lecoutre and Szymanek 2006) and enforces a domain-
filtering restriction of PWC, called max restricted pairwise
consistency (maxRPWC) (Bessiere, Stergiou, and Walsh
2008). Interestingly, it achieves good performance on sev-
eral classes of problems, but it was not tested against state-
of-the-art GAC algorithms.

In this paper, we propose a new higher-order consistency
algorithm for table constraints, called FPWC—STR, based on

STR. Actually, we show that all STR-based algorithms can
be easily extended to achieve stronger pruning by introduc-
ing a set of counters for each intersection between any two
constraints ¢; and c;. At any time each counter in this set
holds the number of valid tuples in ¢;’s table that include
a specific combination of values for the set of variables that
are common to both ¢; and c¢;. We show that FPWC-STR en-
forces full pairwise consistency, i.e., both PWC and GAC,
and we prove that it also guarantees maxRPWC. Impor-
tantly, the worst-case time complexity of one call to the basic
filtering procedure at the heart of FPWC-STR is quite close
to that of STR algorithms. Our experiments demonstrate
that FPWC—-STR can outperform STR2 on many classes of
problems with intersecting table constraints (being signifi-
cantly faster in some cases), and is also typically consider-
ably faster than maxRPWC+ (often by very large margins).

Background

An instance of the constraint satisfaction problem (CSP)
is defined by a constraint network (CN) which is a triplet
(X,D,C) where X = {x1,...,x,} is a set of n variables,
D ={D(x1),...,D(x,)}is a set of finite domains, one for
each variable, and C = {c1,...,c.} is a set of e constraints.
We will denote by d the maximum cardinality of domains.
For simplicity, a pair (z, a) such that x € X and a € D(z)
is called a value (of the CN).

A positive table constraint is a constraint given in ex-
tension and defined by a set of allowed tuples. Each table
constraint ¢; is a pair (scp(c;), table(c;)), where sep(c;) =
{zi,,...,x; } is an ordered subset of X referred to as the
constraint scope, and table(c;) is a subset of the Carresian
product D(z;,) X ... x D(x;.) that specifies the allowed
combinations of values (tuples) for the variables in scp(c;);
r denotes the arity of ¢;. Each tuple 7 € table(c;) is an or-
dered list of values. Given a (table) constraint ¢, and a tuple
T € table(c), we denote by 7[x] the projection of 7 on a
variable € scp(c) and by 7[X] the projection of 7 on any
subset X C scp(c) of variables ; 7[X] is called a subtuple
of 7. A tuple is valid iff none of the values in the tuple has
been removed from the variable domains. Given two con-
straints ¢; and ¢;, if [sep(c;) N sep(c;)| > 1 we say that the
constraints intersect non trivially.

The most commonly used local consistency in constraint
solvers is generalized arc consistency (GAC). A value (z, a)
is GAC iff Ve € C | z € sep(c), 3T € table(c) such that
7[z] = a and 7 is valid. In this case 7 is called a support
of (z,a) on c¢. A constraint ¢ is GAC iff all values (z,a)
with z € scp(c) and @ € D(z) are GAC. A CN is GAC iff
all its values are GAC. Among local consistencies stronger
than GAC, max restricted pairwise consistency (maxRPWC)
looks quite promising (Bessiere, Stergiou, and Walsh 2008).
A value (x,a) is maxRPWC iff Ve; € C | © € sep(e;),
(x,a) has a support 7; on ¢; such that V¢; € C, 31; €
table(c;) | i[scp(e:) N sep(c;)] = mlsep(es) N seple;)]
and 7; is valid. In this case, we say that 7; is a PW-support
of 7; in table(c;) and 7; is a maxRPWC-support of (z,a). A
CN is maxRPWC iff all its values are maxRPWC.

GAC and maxRPWC are first-order consistencies,
thereby filtering variable domains. Higher-order consisten-

577

cies allow us to identify inconsistent tuples of values. This is
the case of pairwise consistency (PWC) defined as follows
(for positive table constraints). A tuple 7; in the table of a
constraint ¢; is PWC iff Ve; € C, 37; in table(c;) which
is a PW-support of 7;. A CN is PWC iff every tuple of
every constraint of P is PWC. We will also say that a CN
is PWC+GAC (resp, PWC+maxRPWC) iff it is both PWC
and GAC (resp, PWC and maxRPWC). Finally, full pairwise
consistency (FPWC) is the name we choose for PWC+GAC.

Following (Debruyne and Bessiere 2001), a local consis-
tency ¢ is stronger than 1 iff in any CN in which ¢ holds
then v holds, and strictly stronger iff it is stronger and there
is one CN for which 1 holds but ¢ does not. Accordingly, ¢
is incomparable to v iff neither is stronger than the other.

Extending STR

In this section, we present a simple way to filter domains
and constraints by using the technique of simple tabular re-
duction (STR), together with a few additional data struc-
tures related to (sub)tuple counting. We explain how the up-
date/restoration and the exploitation of introduced counters
is interleaved with STR in a seamless way to obtain special-
ized and efficient higher-order consistency algorithms for
table constraints. The new algorithms we propose will be
called eSTR~*, derived from extended STR. The ’x’ stands
for a particular STR algorithm (e.g., when extending STR2
we name the algorithm e STR2).

The central idea of e STR« is to store the number of times
that each subtuple appears in the intersection of any two con-
straints. Specifically, for each constraint ¢;, we introduce a
set of counters for each (non trivial) intersection between
¢; and another constraint ¢;. Assuming that Y is the set of
variables that are common to both ¢; and ¢;, at any time each
counter in this set holds the number of valid tuples in ¢;’s ta-
ble that include a specific combination of values for Y. In
this way, once a tuple 7 € table(c;) has been verified as
valid, we can check if it has a PW-support in table(c;) sim-
ply by observing the value of the corresponding counter (i.e.,
the counter for subtuple 7[scp(c;)Nsep(c;)]). If this counter
is greater than O then 7 has a PW-support in table(c;). Im-
portantly, this check is done in constant time.

Note that our approach is related to that in (Samaras and
Stergiou 2005), where arc consistency is enforced on the
dual representation of non-binary problems using counters
that record information about constraint intersections. How-
ever, for any two constraints that intersect, the space com-
plexity of that approach is exponential in the size of the sub-
set of variables belonging to the intersection. Counters have
also been exploited in algorithms AC4/GAC4 (Mohr and
Henderson 1986; Mohr and Masini 1988). Finally, there ex-
ist some connections with both the MDD-based propagation
approach (Hoda, van Hoeve, and Hooker 2010), because in-
valid tuples are aimed at being removed, and the intersection
encoding of sliding constraints (Bessiere et al. 2008).

Algorithm 1 presents the main framework for e STR+ by
extending the basic STR algorithm, as proposed in (Ullmann
2007). We choose to present an extension of STR, simply
called eSTR, because of its simplicity compared to STR2
and STR3, which can be extended in a very similar way.

Here, we consider a constraint-based vision! of STR, mean-
ing that the propagation queue, denoted by (), handles con-
straints, because it is quite adapted to our filtering opera-
tions. The level of local consistency achieved by means of
the process of propagation will be discussed in the next sec-
tion. Whenever a constraint is removed from the queue, STR
iterates over the valid tuples in the constraint and removes
any tuple that has become invalid through the deletion of one
of its values (the while loop in Algorithm 1 ; see lines 4—14).
Thus, only valid tuples are kept in tables. After finishing the
iteration, all values that are no longer supported are deleted
(the for loop in Algorithm 1 ; see lines 15-21) and for each
variable x whose domain has been reduced, all constraints
involving z are added to the propagation queue @, exclud-
ing the currently processed constraint (lines 20-21).

For each (positive table) constraint ¢ of the CN, we have
the following STR data structures:

o table[c] is the set of allowed tuples associated with c. This
set is represented by an array of tuples indexed from 1 to
tablec].length which denotes the size of the table.

e position|c] is an array of size table[c].length that pro-
vides indirect access to the tuples of c. At any given
time the values in position|c] are a permutation of
{1,2,...,t}, where t is the size of the table. The i* tuple
of ¢ is table[c][position|c][i]].

o currentLimit|c| is the position of the last valid tuple in
table[c]. The current table of ¢ is composed of exactly
current Limit[c] tuples. The values in position[c] at in-
dices ranging from 1 to current Limit[c] are the positions
of the currently valid tuples of c.

e pwValues|c][z] is a set that contains for variable z in
scp(c) all values in D(z) proved to have a maxRPWC-
support when e STR is applied on c. This structure is quite
similar to that of STR, called gacV alues[z].

Structures position[c] and current Limit[c|, which basi-
cally implement the structure called sparse set (Briggs and
Torczon 1993), allow restoration of deleted tuples in con-
stant time (during backtrack search) ; for more information,
see (Ullmann 2007). We now describe, for each non trivial
intersection of a constraint ¢ with a constraint ¢;, the addi-
tional structures used in e STR:

e ctrlc][¢;] is an array that stores the counters associated
with the intersection of ¢ with ¢;. For each subtuple for
variables in scp(c) N sep(c;) that appears in at least one
tuple of table(c), there is a counter ctr|c][c;][7] that holds
the number of valid tuples in table[c] that include that sub-
tuple. The value of the index j can be found from any
tuple in table[c] using the next structure.

o ctrIndezes|c|[c;] is a set of indexes for the tuples of
table[c]. For each tuple T, this data structure holds the
index of the counter in ctr|c|[c;] that is associated with
the subtuple 7[scp(c) Nsep(c;)]. ctrIndexes|c][c;] is im-
plemented as an array of size table[c].length.

!Constraint-based and variable-based propagation schemes are
those that are classically implemented in constraint solvers.

578

e ctrLink[c][c;] is an array of size ctr[c|[c;].length
that links ctr[c][¢;] with ctr(c;][c]. For each counter
ctr(c][ei]]j] corresponding to a subtuple for variables in
sep(e) N sep(e;), ctrLink[c][c;][4] holds the index of the
counter in ctr[c;][c] that is associated with that subtuple.
If the subtuple is not included in any tuple of table[c;]
then ctr Link[c][c;][4] is set to NULL.

Figure 1 illustrates eSTR’s data structures. There are
two constraints ¢; and co intersecting on variables x5 and
xz3. Three different subtuples for variables xo and z3 are
present in table[cq]: (0,0), (0,1) and (1,0). Hence, there
are three counters in ctr[c;|[c2]. Each counts the number of
times a specific subtuple appears in table[c;]. For each tuple
in table[cy], the corresponding entry in ctrIndexes|c:|[ca]
gives the index of the counter in ctr|c;|[cs] associated with
the underlying subtuple. For each counter in ctr[ci][c2], the
corresponding entry in ctrLink|[ci][c2] gives the index of
the counter in ctr[cs][c;] associated with the same subtuple.
Since subtuple (0, 1) does not appear in table[cs), the entry
in ctr Link[c1][ce] for this subtuple is NULL.

The behaviour of eSTR is identical to that of STR, ex-
cept: 1) it applies an extra check for PWC when a tuple is
verified as valid, and 2) it decrements (resp. increments) the
corresponding counters when a tuple is removed (resp. re-
stored). Also, eSTR needs to build its data structures in an
initialization step. This is done by traversing each table[c]
exactly once. At the end of this step all counters are set to
their proper values.

table[C,]
Xe Xor X3}

table[C,]
X2 X3 Xa}

ojojlo|o|ofoO|OfO

o0
1{ 1] 0|0
1|0

Rl |o
»|lo|lo |o

1
0
1
0

Figure 1: eSTR structures for the intersection of ¢; with co
on variables x5 and z3. The highlighted values show the first
occurrence of the different subtuples for scp(cy) N sep(ca).

We now describe the auxiliary functions used by the main
algorithm, with a special emphasis on those that are spe-
cific to eSTR. Function isvValidTuple takes a tuple 7
and returns true iff 7 is valid. Function removeTuple
takes a tuple 7 and removes it in constant time by re-
placing position|c][i], where i is the position of 7 in
table[c], with position|c|[currentLimit[c]] (namely by
swapping indexes and not tuples) and then decrementing
currentLimit[c] by one. Function 2, i sPWconsistent,
specific to eSTR is called at line 7 of Algorithm 1 when-
ever a tuple 7 € table(c) has been verified as valid. This
function iterates over each constraint ¢; that intersects with
c and verifies if 7 has a PW-support in table(c;) or not. This
is done through a look-up in the appropriate counter in con-
stant time. Specifically, using structures ctrIndezes|c|[c;]
and ctrLink[c][c;] we locate the appropriate counter in
ctr(c;][c] and check its value. If it is neither NULL nor 0,

then 7 is PW-supported. Otherwise, FALSE is returned in
order to get 7 removed. Function 3, updateCtr, spe-
cific to eSTR is called at line 14 of Algorithm 1 in or-
der to update some counters just after a tuple has been re-
moved. For each constraint ¢; that intersects with ¢, j <
ctrIndexes|c|[¢;][index] is located. The variable j repre-
sents the index for the subtuple of the removed tuple 7 in the
array of counters concerning the intersection of ¢ with c¢;.
Then the corresponding counter in ctr|c][c;] can be decre-
mented. If the value of this counter becomes O then this
means that some tuples in table[c;] have lost their last PW-
support in table[c]. Since this may cause value deletions for
the variables in scp(c;), constraint ¢; is added to) so that it
can be processed again.

Algorithm 1 eSTR(c: constraint)

1: for each unassigned variable z € scp(c) do

2: pwValues[z] + 0

3ii1

4: while i < currentLimit[c] do

5: index <— position[c][i]

6: T < table[c][index]

7. if isvalidTuple(c, 7) AND isPWconsistent(c, index) then
8: for each unassigned variable z € scp(c) do

9: if 7[x] ¢ pwValues[xz] then

10: pwValues[z] < pwValues[z] U {7[z]}

11: P4 141

12: else

13: removeTuple(c, i) // currentLimit[c] decremented
14: updateCtr(c, index) // Counters in ctr[c] decremented

// domains are updated and constraints are enqueued
15: for each unassigned variable = € scp(c) do

16: if pwValues[z] C D(x) then

17: D(z) + pwValues|z]

18: if D(z) = 0 then

19: return FAIL

20: for each constraint ¢’ such that ¢’ # ¢ A = € scp(c’) do
21: add ¢’ to Q

22: return SUCCESS
Function 2 i sPWconsistent(c, index): Boolean

1: foreach c; # cs.t. |scp(c;) N scp(c)| > 1do

j ctrIndexes|c][c;][index]

k < ctrLink[c][c;][7]

if k& = NULL OR ctr[c;][c][k] = O then
return FALSE

6: return TRUE

Function 3 updateCtr(c, index)

1: for each c; # cs.t. |var(c;) Nwvar(c)| > 1do
j « ctrIndexes[c][c;][index];
curlelleali] « cvelelleali] — 1
if ctr[c][c;][7] = O then

add c; to Q

Finally, when a failure occurs in the context of a backtrack
search, certain values must be restored to domains. Conse-
quently, tuples that were invalid may now become valid and
thus must be restored. For each constraint c this is achieved
in constant time by STR by just updating current Limit|c|.
In addition, eSTR updates all the affected counters by it-
erating through all tuples being restored and incrementing
the corresponding counters for every c; that intersects with
¢ (i.e. ctr[c][c;]). This costs O(gt) in the worst case, where
t the size of c and g the number of constraints intersecting

579

with c¢. However, it is much faster in practice since usually
only a few tuples are restored after each failure. Note that
currentLimit[c] allows us to easily locate restored tuples.

Enforcing FPWC

Assuming a CN P only involving positive table constraints,
Algorithm 4, FPWC—-STR, shows the full process of prop-
agating constraints of P by calling procedure eSTR itera-
tively through the use of a propagation queue . Recall that
() may be updated when calling eSTR on a constraint ¢ at
lines 20-21 of Algorithm 1 and also at line 5 of Function
3. A weak version of FPWC-STR, denoted by FPWC-STRY
can be obtained by discarding lines 4-5 of Function 3 (i.e.,
the update of @ is ignored when a PW-support is lost).
Algorithm 4 FPWC-STR(P = (X, D,C) : CN)

I: Q+«+c¢

2: while Q # 0 do

3: pick and delete ¢ from Q

4: if eSTR(c) = FAIL then

5: return FAIL

6: return SUCCESS

Proposition 1 Algorithm FPWC-STR applied to a CN P
enforces full pairwise consistency on P.
Proof: Clearly FPWC-STR enforces GAC because each
call of the form eSTR(c) guarantees that ¢ is made GAC
and everytime a value is deleted for a variable z, all con-
straints involving z are enqueued (and also, all constraints
are enqueued initially). Now, let us consider a tuple 7, in the
table of a constraint ¢, which is not PWC. This means (by
definition of PWC) that there exists a constraint ¢; non triv-
ially intersecting ¢ such that no PW-support of 7 in table(c;)
exists. Because everytime a tuple is deleted, the counters
of underlying subtuples corresponding to constraint inter-
sections are updated (decremented), and also considering
the way these counters are initialized, during the execu-
tion of the algorithm FPWC—-STR, we will necessarily have
ctr(e][c][k] set to value NULL or 0 where k is the index
for the subtuple 7[scp(c) N sep(c;)] in this array of coun-
ters. Besides, the constraint ¢ will necessarily be processed
after ctr{c;][c|[k] reaches O (resp., after it is initialized to
NULL) because of the execution of lines 4-5 of function
updateCtr that adds c to @ (resp., because c is put in
@ initially). When c is processed, the tuple 7 will be deleted
because isPWconsistent will return FALSE. Conse-
quently, any tuple that is not PWC is deleted by our algo-
rithm FPWC—-STR. We can conclude that FPWC-STR en-
forces both PWC+GAC, i.e., full pairwise consistency. ll

It is interesting to note that FPWC guarantees maxRPWC
as shown by the following proposition.

Proposition 2 PWC+GAC and PWC+maxRPWC are
equivalent

Proof: On the one hand, clearly PWC+maxRPWC is
stronger than PWC+GAC since maxRPWC is stronger than
GAC. On the other hand, let us assume a CN P which
is PWC and a value (z,a) of P which is not maxRPWC.
This means (by definition) that there exists a constraint ¢
involving x such that either (z,a) has no support on ¢, or
(z,a) has no maxRPWC-support on ¢. However, because

P is PWC, the reason why (z, a) is not maxRPWC is nec-
essarily that (x,a) has no support on ¢. In other words,
(z,a) is not GAC. We deduce that PWC+GAC is stronger
than PWC+maxRPWC, and finally that PWC+GAC and
PWC+maxRPWC are equivalent. ll

Proposition 3 The consistency level achieved by Algorithm
FPWC-STRY is incomparable to maxRPWC and PWC.

The proof is omitted (due to lack of space). We now an-
alyze the worst-case time and space complexities of eSTR,
the basic filtering procedure associated with each table con-
straint in FPWC-STR.

Proposition 4 The worst-case time complexity? of one call
to eSTR is O(rd + max(r, g)t) where r denotes the arity
of the constraint, ¢ the size of its table and g the number of
intersecting constraints.
Proof: Recall that the worst-case time complexity of STR
is O(rd+rt) (Lecoutre 2011). The application of eSTR on a
constraint c is identical to that of STR except for the calls to
isPWconsistent and updateCtr in lines 7 and 14 of
Algorithm 1, respectively. In both functions, the algorithm
iterates over the set of g constraints intersecting with ¢, and
for each one performs a constant time operation. Hence, the
complexity of eSTR is O(rd + maz(r,g)t)). R

One may be surprised by the fact that the worst-case time
complexity of eSTR is close to that of STR, although a
stronger filtering is achieved. However, the difference can
be emphasized when we consider the maximum number of
repeated calls to the function e STR for a given constraint c.
For STR, this is O(rd) because after each removal of a value
(for a variable in the scope of c¢), one call eSTR(c) is pos-
sible. For eSTR, this is O(max(rd,t)) because one call is
possible after each value deletion but also after each loss of a
PW-support for a tuple in table(c). Note that when we con-
sider FPWC-STRY, for eSTR we have O(rd) as for STR:
this is the reason why we introduce this variant. Overall,
our intuition is that for many problems, the number of re-
peated calls to the filtering procedure of the same constraint
is limited.

Proposition 5 The worst-case space complexity of eSTR
for handling one constraint is O(n + max(r, g)t).

Proof: Recall that the worst-case space complexity of STR
is O(n+rt) per constraint (Lecoutre 2011). Each additional
eSTR structure is O(t) per intersecting constraint, giving
O(gt). 1

It is possible to reduce the memory requirements in two
ways. First, by replacing the at most eg sets of counters with
e sets, one for each constraint, in order to reduce the size of
ctr and ctr Link. Second, by using a hash function to map
each tuple 7 € table(c) to its associated counters in ctr]c|.
This would make the use of ctrIndexes obsolete.

To emphasize the difference between FPWC—-STR and
FPWC-STRY, let us consider the CN P depicted in Fig-
ure 2. There are five variables {1, ..., 25} with domain
{0,1}, one variable z¢ with domain {0}, and three posi-
tive table constraints c;, co and c3 (with their allowed tuples

2We omit to consider lines 20-21 because they concern propa-
gation (and were hidden in the description of STR).

580

Cl: {XIJ XZJ XB} CZ:{XZr Xar X4r XE} CE: {thr XSJ’ Xﬁ}

00O 00O0O 010
101 0110 100
110 1 001

Figure 2: A CN that is maxRPWC but not FPWC.

shown). One can check that P is maxRPWC. For exam-
ple, the value (z1,0) admits (0,0,0) as support on ¢; and
(0,0,0,0) as PW-support of (0,0,0) in table(cz). How-
ever P is not PWC. Indeed, the tuple (0, 0,0, 0) in table(cs)
has no PW-support in table(cs). Consequently, FPWC—STR
deletes this tuple, and (z1,0) when c; is processed. Now,
with FPWC-STRY, if constraint c; is processed first in our
example then no value deletion can be made. This is be-
cause when ¢; is processed, the tuple (0,0, 0) in table(cy)
admits (0,0, 0,0) as PW-support in table(cz). When co is
later processed, the tuple (0, 0, 0, 0) is removed but no value
for variables in scp(cq) can be deleted. This means that the
propagation queue is left unchanged. Therefore, ¢; will not
be processed again, and value (z1,0) will not be deleted.
Hence, the pruning power of FPWC-STR" cannot be char-
acterized precisely because it depends on the ordering of the
propagation queue.

Experimental Results

We ran experiments on benchmark problems from the CSP
Solver Competition®. We tried the following classes that in-
clude table constraints with non-trivial intersections: ran-
dom problems, forced random problems, aim-100 and aim-
200, Dubois, positive table constraints, and BDD. We
compared algorithms STR2, maxRPWC+, FPWC-STR2,
FPWC—-STR2"Y (for abbreviation the latter two will be called
eSTR2 and eSTR2" hereafter). All four were implemented
within a CP solver written in Java and tested on an Intel Core
15 of 2.40GHz processor and 4GB RAM. A cpu time limit
of 6 hours was set. Search used the dom/ddeg heuristic for
variable ordering and lexicographical value ordering. We
chose dom/ddeg as opposed to dom/wdeg because the deci-
sions made by the latter are influenced by the ordering of the
propagation queue making it harder to objectively compare
the pruning efficiency of the algorithms.

Table 1 shows the mean cpu times (in secs) obtained by
the tested algorithms on each problem class for initialization
and preprocessing. Also, it shows the mean cpu times and
numbers of nodes obtained by backtracking algorithms that
apply the propagation methods throughout search. During
initialization, the data structures of an algorithm are initial-
ized, while preprocessing includes one run of a propagation
algorithm. In Table 2 we present results from selected in-
stances focusing on the search effort. Search results from

3http://www.cril.univ-artois.fr/CPAIOS/

Table 1: Mean cpu times for initialization (i), preprocessing
(p), search (s), and mean numbers of visited nodes (n).

Problem Class STR2 maxRPWC+| eSTR2™ eSTR2
Random-fcd i 0.02 0.3 0.67 0.69

p 0.1 0.2 0.09 0.13

s 150 182 81 127
#Inst=50 n 147,483 45,634 42,134 41,181
Random i 0.02 0.3 0.63 0.62

p 0.09 0.2 0.08 0.14

S 226 327 143 214
#Inst=50 n 257,600 85,913 80,057 79,789
Positive table-8 | i 0.08 1.8 76 85

p 0.3 0.4 0.9 1.7

S 15 1,575 47 51
#Inst=20 n 52,313 10,039 4,818 2,571
Positive table-10| i 0.006 0.3 12.2 16.2

p 0.07 1,847 0.03 0.04

S 0.4 1,699 0.03 0.04
#Inst=20 n 1,110 0 0 0
BDD i 0.24 9.3 mem mem

p 14 6.2 - -

s 30 8.5 - -
#Inst=10 n 19,139 11 - -
Dubois i 0.01 0.04 0.01 0.02

p 0 0.002 0.002 0

S 2,026 6,750 1,084 1,972
#Inst=8 n|1,008,184,658| 401,069,394 401,069,394 |419,586,728
Aim-100 i 0.11 0.29 0.20 0.21

p 0.002 0.04 0.012 0.003

s 6,390 3,899 674 186
#Inst=10 n| 643,784,411 | 34,062,529 | 32,918,683 | 4,530,698
Aim-200 i 0.39 0.58 0.32 0.33

p 0.004 0.1 0.01 0.02

S 14.5 13 34 1.5
#Inst=10 n| 479,073 88,541 75,209 16,034

Aim-200 were obtained using dom/wdeg for variable order-
ing because this class is hard for dom/ddeg.

As expected, eSTR2 and its weak version typically have
much higher initialization times than STR2 and are usually
slower during preprocessing. They are particularly expen-
sive on classes of problems which include intersections on
large sets of variables, as is the case with the BDD and
Positive-table classes. BDD instances consist of constraints
with arity 18 that intersect on as many as 16 variables. In
addition, the constraints are very loose. As a result, e STR2
(and eSTR2"™) exhausts all of the available memory when
trying to build its data structures.

Regarding the cost of our algorithms during initialization
and preprocessing compared to maxRPWC+, results vary.
For example, on the Positive table classes maxRPWC+ is
much faster during initialization. However, our algorithms
are many orders of magnitude faster during the preprocess-
ing of Positive table-10 instances which are usually proven
unsatisfiable by these algorithms without search.

Comparing e STR2 to e STR2"™ with respect to search ef-
fort, we can make two observations: First, the extra filter-
ing of eSTR2 does pay off on some classes as node counts
are significantly reduced (Aim-100) while on other classes it

581

Table 2: Cpu times (t) in secs and nodes (n).

Instance STR2 maxRPWC+| eSTR2Y eSTR2
rand-3-20-20 60 t 130 102 37 66
-632-fcd-8 n 128,221 33,924 27,490 27,272
rand-3-20-20 60 t 430 183 43 80
-632-fcd-26 n| 534,012 38,556 26,531 26,489
rand-3-20-20-60 t 450 536 187 220
-632-19 n| 462,920 129,618 121,199 120,795
rand-3-20-20-60 t 670 295 74 137
-632-26 n| 827,513 64,665 45,268 45,426
rand-8-20-5-18 t 17 753 30 26
-800-7 n 17,257 3,430 1,001 626
rand-8-20-5-18 t 19 1,568 52 55
-800-11 n 67,803 7,920 3,299 1,279
rand-10-20-10-5 t 0.4 208 0.02 0.02
-10000-1 n 1,110 0 0 0
rand-10-20-10-5 t 0.4 1,687 0.03 0.02
-10000-6 n 1,110 0 0 0
bdd-21-133-18-78-6 | t 30 1.5 - -

n 20,582 0 - -
dubois-22 t 315 734 96 182

n| 129,062,226 | 41,538,898 | 41,538,898 | 40,037,032
dubois-27 t 8,404 28,358 4,448 8,492

n|4,206,712,146|1,651,070,290 | 1,651,070,290| 1.808,444,072
aim-100-1-6-sat-2 |t 423 0.16 0.02 0.02

n| 29,181,742 100 100 100
aim-100-2-0-sar-3 |t 2,447 0.3 0.14 0.05

n| 177,832,989 111 111 100
aim-200-2-0-sat-1 |t 57 0.7 0.6 0.1

n| 2,272,993 1,782 9,847 200
aim-200-2-0-sat-4 |t 30 0.7 0.4 0.2

n| 987,160 1,965 4,276 499

does not (Random). Second, the much higher time com-
plexity bound of eSTR2 is not really visible in practice.
eSTR2"Y is faster than eSTR2 on average, but the differ-
ences are not very significant.

Comparing our algorithms to STR2 it seems that there
are problem classes where they can be considerably more
efficient. This is definitely the case with the Aim classes
where e STR2™ and eSTR2 can outperform STR2 by sev-
eral orders of magnitude on some instances, being one order
of magnitude faster on average in the Aim-100 class. Also,
there can be significant differences in favor of e STR2™ on
instances of other classes, such as Random, Random-forced,
and Dubois. On the other hand, if we consider the per-
formance of the algorithms during both initialization and
search, STR2 is better than the proposed methods on Pos-
itive table problems and of course BDD.

Finally, comparing our algorithms to maxRPWC+ it is
clear that they are superior as they are faster on all the tested
classes (except BDD). The differences in favor of e STR2
and eSTR2" can be very large. For example in the Positive
table classes they are faster by orders of magnitude.

Conclusion

In this paper, we have introduced a new higher-order consis-
tency algorithm for table constraints that enforces full pair-

wise consistency. It is based on an original combination of
two techniques that have proved their worth: simple tabular
reduction and tuple counting. This algorithm, and its weak
variant, have been shown to be highly competitive on many
problems with intersecting constraints.

References

Bessiere, C., and Régin, J. 1997. Arc consistency for general
constraint networks: preliminary results. In Proceedings of
1JCAI’97, 398—404.

Bessiere, C.; Hebrard, E.; Hnich, B.; Kiziltan, Z.; and
Walsh, T. 2008. SLIDE: A useful special case of the CARD-
PATH constraint. In Proceedings of ECAI’'08, 475-479.

Bessiere, C.; Stergiou, K.; and Walsh, T. 2008. Domain
filtering consistencies for non-binary constraints. Artificial
Intelligence 172(6-7):800-822.

Briggs, P., and Torczon, L. 1993. An efficient representation
for sparse sets. ACM Letters on Programming Languages
and Systems 2(1-4):59—-69.

Cheng, K., and Yap, R. 2010. An MDD-based gener-
alized arc consistency algorithm for positive and negative
table constraints and some global constraints. Constraints
15(2):265-304.

Debruyne, R., and Bessiere, C. 2001. Domain filtering
consistencies. Journal of Artificial Intelligence Research
14:205-230.

Gent, L.; Jefferson, C.; Miguel, I.; and Nightingale, P. 2007.
Data structures for generalised arc consistency for exten-
sional constraints. In Proceedings of AAAI’07, 191-197.

Hoda, S.; van Hoeve, W.; and Hooker, J. 2010. A system-
atic approach to MDD-based constraint programming. In
Proceedings of CP’10, 266-280.

Janssen, P.; Jégou, P.; Nouguier, B.; and Vilarem, M. 1989.
A filtering process for general constraint-satisfaction prob-
lems: achieving pairwise-consistency using an associated
binary representation. In Proceedings of IEEE Workshop
on Tools for Artificial Intelligence, 420-427.

Jégou, P. 1993. On the consistency of general constraint
satisfaction problems. In Proceedings of AAAI’93, 114-119.

Karakashian, S.; Woodward, R.; Reeson, C.; Choueiry, B.;
and Bessiere, C. 2010. A first practical algorithm for high
levels of relational consistency. In Proceedings of AAAI' 10,
101-107.

Lecoutre, C., and Szymanek, R. 2006. Generalized arc
consistency for positive table constraints. In Proceedings
of CP’06, 284-298.

Lecoutre, C.; Cardon, S.; and Vion, J. 2011. Second-order
consistencies. Journal of Artificial Intelligence Research
(JAIR) 40:175-219.

Lecoutre, C.; Likitvivatanavong, C.; and Yap, R. 2012. A
path-optimal GAC algorithm for table constraints. In Pro-
ceedings of ECAI’12, 510-515.

Lecoutre, C. 2011. STR2: optimized simple tabular reduc-
tion for table constraints. Constraints 16(4):341-371.

582

Lhomme, O., and Régin, J. 2005. A fast arc consistency
algorithm for n-ary constraints. In Proceedings of AAAI’0S5,
405-410.

Mairy, J.; Van Hentenryck, P.; and Deville, Y. 2012. An opti-
mal filtering algorithm for table constraints. In Proceedings
of CP’12,496-511.

Mohr, R., and Henderson, T. 1986. Arc and path consistency
revisited. Artificial Intelligence 28:225-233.

Mohr, R., and Masini, G. 1988. Good old discrete relax-
ation. In Proceedings of ECAI’88, 651-656.

Montanari, U. 1974. Network of constraints : Fundamental
properties and applications to picture processing. Informa-
tion Science 7:95-132.

Paparrizou, A., and Stergiou, K. 2012. An efficient higher-
order consistency algorithm for table constraints. In Pro-
ceedings of AAAI'12, 535-541.

Samaras, N., and Stergiou, K. 2005. Binary encodings of
non-binary CSPs: algorithms and experimental results. JAIR
24:641-684.

Ullmann, J. 2007. Partition search for non-binary constraint
satisfaction. Information Science 177(18):3639-3678.

