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Abstract

We consider a multi-agent scenario where a collection
of agents needs to select a common decision from a
large set of decisions over which they express their pref-
erences. This decision set has a combinatorial struc-
ture, that is, each decision is an element of the Carte-
sian product of the domains of some variables. Agents
express their preferences over the decisions via soft
constraints. We consider both sequential preference
aggregation methods (they aggregate the preferences
over one variable at a time) and one-step methods and
we study the computational complexity of influencing
them through bribery. We prove that bribery is NP-
complete for the sequential aggregation methods (based
on Plurality, Approval, and Borda) for most of the cost
schemes we defined, while it is polynomial for one-step
Plurality.

We consider a multi-agent scenario where a collection of
agents needs to select a decision from a large set of deci-
sions, over which they express their preferences. This set has
a combinatorial structure, i.e., each decision is the combina-
tion of certain features, where each feature has a set of pos-
sible instances. This occurs in many AI applications, such
as combinatorial auctions, web recommender systems, and
configuration systems.

Even if the number of features and instances is small, the
number of possible decisions can be very large. However,
agents may describe their preference in a compact and ef-
ficient way, using a preference modelling/reasoning formal-
ism such as soft constraints (Bistarelli, Montanari, and Rossi
1997), CP-nets (Boutilier et al. 2004), or graphical utility
models (Bacchus and Grove 1995). In this paper we con-
sider fuzzy and weighted soft constraints.

To model preference aggregation, we consider the use of
voting rules (Arrow and K. Suzumura 2002), following two
approaches: a sequential one, where agents vote on each
feature at a time, and a one-step approach, where agents vote
just once over decisions regarding all features.

All the ways to aggregate the preferences of several agents
into one collective decision are subject to attempts of various
entities to influence the result for their good. Single agents,
or a collection of them, may try to manipulate the voting rule
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by misreporting their preferences (Gibbard 1973). Also, the
voting chair can control some of the parameters of the voting
rule (candidates, voters, etc.) (Bartholdi, Tovey, and Trick
1992). Finally, an external agent may try to convince some
of the voters to change their preferences in order to get a col-
lective decision which is more preferred to him (Faliszewski,
Hemaspaandra, and Hemaspaandra 2009). In this paper we
focus on this third way to influence the result, usually called
bribery, and we study its computational complexity. Voting
rules where bribery is computational complex can be con-
sidered resistant to bribery. More precisely, the question we
address is the following one: How computationally complex
is it for the briber to determine whether by paying certain
agents to change their preferences, within a certain budget,
a specified candidate can be made the winner decision? We
measure the computational complexity of the bribery prob-
lem, thus assuming that a computationally complex bribery
problem makes the aggregation resistant to bribery.

In this paper we define several cost schemes to compute
the cost for an agent to satisfy a briber’s request. We show
that the sequential approaches (which are based on voting
rules such as Plurality, Approval, and Borda), are all resis-
tant to bribery for most of the cost schemes, while one-step
Plurality is instead vulnerable to bribery (that is, bribery is
computationally easy).

Many papers on bribery assume that the agents express
their preferences over a small set of candidates (Faliszewski,
Hemaspaandra, and Hemaspaandra 2009; Faliszewski 2008;
Elkind, Faliszewski, and Slinko 2009; Faliszewski et al.
2007). We assume instead agents express compactly their
preferences over a large set of candidates with a combinato-
rial structure. Bribery when agents vote over a large set of
candidates has been considered also in (Mattei et al. 2012b;
2012a; 2013), but preferences were modeled via CP-nets.
and not via soft constraints. Voting with soft constraints has
been also studied in (Dalla Pozza, Rossi, and Venable 2011;
Dalla Pozza et al. 2011), but bribery was not investigated
there.

The paper is a revised and extended version of (Pini, Ven-
able, and Rossi 2013).
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Background
Soft Constraints
A soft constraint (Bistarelli, Montanari, and Rossi 1997)
involves a set of variables and associates a value from a
(partially ordered) set to each instantiation of its variables.
This value is taken from a preference structure (called a c-
semiring) defined by 〈A,+,×, 0, 1〉, where A is the set of
preference values, + induces an ordering over A (where
a ≤ b iff a + b = b), × is used to combine preference
values, and 0 and 1 are resp. the worst and best preference
value. A Soft Constraint Satisfaction Problem (SCSP) is a
tuple 〈V,D,C,A〉 where V is a set of variables, D is the
domain of the variables, C is a set of soft constraints (each
one involving a subset of V ), and A is the set of preference
values.

An instance of the SCSP framework is obtained by choos-
ing a specific preference structure. For instance, a clas-
sical CSP (Rossi, Van Beek, and Walsh 2006) is just an
SCSP where the structure is SCSP = 〈{false, true}, ∨,∧,
false, true〉. Hence, SCSPs generalize CSPs. Choosing
SFCSP = 〈[0, 1], max,min, 0, 1〉 instead means that pref-
erences are in [0,1] and we want to maximize the minimum
preference. This is the setting of fuzzy CSPs (FCSPs), that
we will use in the following examples. We will also consider
the setting of weighted CSPs (WCSPs), where the structure
is SWCSP = 〈R+,min,+,+∞, 0〉, i.e., preferences are in-
terpreted as costs from 0 to +∞, and we want to minimize
the sum of the costs.

The figure below shows the constraint graph of
an FCSP where V = {x, y, z}, D = {a, b} and
C = {cx, cy, cz, cxy, cyz}. Each node models a vari-
able and each arc models a binary constraint, while unary
constraints define variables’ domains. For example, cy
associates preference 0.4 to y = a and 0.7 to y = b. Default
constraints such as cx and cz will often be omitted in the
following examples.

x=a −> 1

x=b −> 1

(y=a,z=a) −> 0.9

(y=a,z=b) −> 0.2

(y=b,z=a) −> 0.2

(y=b,z=b) −> 0.5

(x=a,y=a) −> 0.9

(x=a,y=b) −> 0.8

(x=b,y=a) −> 0.7

(x=b,y=b) −> 0.6

 x

y=a −> 0.4 z=a −> 1

  y z

y=b −> 0.7 z=b −> 1

Solving an SCSP means finding some information about
the ordering induced by the constraints over the set of all
complete variable assignments. In the case of FCSPs and
WCSPs, such an ordering is a total order with ties. In the
example above, the induced ordering has (x = a, y = b,
z = b) and (x = b, y = b, z = b) at the top, with preference
0.5, (x = a, y = a, z = a) and (x = b, y = a, z = a)
just below with 0.4, and all others tied at the bottom with
preference 0.2. An optimal solution, say s, of an SCSP is
then a complete assignment with an undominated preference
(thus (x = a, y = b, z = b) or (x = b, y = b, z = b) in this
example).

While (soft) constraint problems are in general NP-
complete (Rossi, Van Beek, and Walsh 2006), constraint

problems where the connectivity graph has the form of a
tree are polynomial to solve (Dechter 2006). In general con-
straint problem are solved via search. However, constraint
propagation (which is a sort of inference that may reduce
the variables’ domains) may help the search for an opti-
mal solution. Given a variable ordering o, an FCSP is di-
rectional arc-consistent (DAC) if, for any two variables x
and y linked by a fuzzy constraint, such that x precedes y
in the ordering o, we have that, for each a in the domain
of x, fx(a) = maxb∈D(y)(min(fx(a), fxy(a, b), fy(b))),
where fx, fy , and fxy are the preference functions of cx,
cy and cxy . This definition can be generalized to any SCSP
instance by replacing max with + and min with ×. Thus,
for WCSPs max must be replaced with min and min with
sum. DAC applied bottom-up on the tree shape of the prob-
lem is enough to find the preference level of an optimal so-
lution when the problem has a tree-shaped constraint graph
and the variable ordering is compatible with the father-child
relation of the tree. In fact, the optimum preference level
is the best preference level in the domain of the root vari-
able. The tree-like restriction is not the only one to as-
sure tractability. Instead of a tree, we can have a graph
with cycles but with a bounded treewidth. Many classes
of graphs have a bounded treewidth (Bodlaender 1998;
Thorup 1998).

Voting Rules
A voting rule allows a set of voters to choose one among a
set of candidates. Voters need to submit their vote, that is,
their preference ordering (or part of it) over the set of can-
didates, and the voting rule aggregates such votes to yield a
final result, usually called the winner. In the classical setting
(Arrow and K. Suzumura 2002), given a set of candidates C,
a profile is a collection of total orderings (or parts of them)
over the set of candidates, one for each voter. Given a pro-
file, a voting rule maps it onto a single winning candidate (if
necessary, ties are broken appropriately). In this paper, we
will often use a terminology which is more familiar to multi-
agent settings: we will sometimes call the voters “agents” ,
the candidates “solutions”, and the winning candidate “deci-
sion” or “best solution”. Some widely used voting rules, that
we will study in this paper, are: Plurality, where each voter
states a single preferred candidate, and the candidate who
is preferred by the largest number of voters wins; Borda,
where given m candidates, each voter gives a ranking of all
candidates, the ith ranked candidate gets a score of m − i,
and the candidate with the greatest sum of scores wins, and
Approval, where given m candidates, each voter approves
between 1 and m − 1 candidates, and the candidate with
most votes of approval wins.

Sequential Preference Aggregation
Assume to have a set of agents, each one expressing its
preferences over a common set of objects via an SCSP
whose variable assignments correspond to the objects. Since
the objects are common to all agents, all the SCSPs have
the same set of variables and the same variable domains but
they may have different soft constraints, as well as different
preferences over the variable domains. In (Dalla Pozza,
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Rossi, and Venable 2011) this is the notion of soft profile,
which is a triple (V,D, P ) where V is a set of variables
(also called issues), D is a sequence of |V | lexicographically
ordered finite domains, and P a sequence of m SCSPs over
variables in V with domains in D. A soft profile consists
of a collection of SCSPs over the same set of variables,
while a profile (as in the classical social choice setting) is a
collection of total orderings over a set of candidates. A fuzzy
profile (resp., weighted profile) is a soft profile with fuzzy
(resp., weighted) soft constraints. An example of a fuzzy
profile where V = {x, y}, Dx = Dy = {a, b, c, d, e, f, g},
and P is a sequence of seven FCSPs, is shown in the figure
below.

x

y

(x=a,y=a)−>1

(x=b,y=b)−>0.9

(x=a,y=b)−>0.7

(x=b,y=a)−>0.5

(x=a,y=b)−>1

(x=b,y=a)−>0.9

(x=d,y=d)−>1

P4
y

x

all other tuples−>0

(x=a,y=b)−>1

(x=c,y=c)−>1

(x=b,y=a)−>0.9

P3

x

y
all other tuples−>0

x

y

(x=a,y=b)−>1

(x=b,y=a)−>0.9

(x=e,y=e)−>1

P5

all other tuples−>0

x

y

(x=f,y=f)−>1

(x=a,y=b)−>0.9

(x=b,y=a)−>1

P6

all other tuples−>0 y

x

(x=g,y=g)−>1

(x=a,y=b)−>0.9

(x=b,y=a)−>1
all other tuples−>0

P7

P1,P2

all other tuples−>0

The idea proposed in (Dalla Pozza, Rossi, and Venable
2011) to aggregate the preferences in a soft profile in order
to compute the winning variable assignment is to sequen-
tially vote on each variable via a voting rule, possibly us-
ing a different rule for each variable. Given a soft profile
(V,D, P ), assume |V | = n, and consider an ordering of the
variables O = 〈v1, . . . , vn〉 and a corresponding sequence
of local voting rules R = 〈r1, . . . , rn〉. The sequential pro-
cedure is a sequence of n steps, where at each step i, we
perform the following tasks. All agents are asked for their
preference ordering over the domain of variable vi, yielding
profile pi over such a domain. To do this, the agents achieve
DAC on their SCSP, considering the ordering O. Then, the
voting rule ri is applied to profile pi, returning a winning
assignment for variable vi, say di. If there are ties, the first
one following the given lexicographical order will be taken.
Finally, the constraint vi = di is added to the preferences
of each agent and DAC is achieved to propagate its effect
considering the reverse ordering of O.

After all n steps have been executed, the winning assign-
ments are collected in the tuple 〈v1 = d1, . . . , vn = dn〉,
which is declared the winner of the election. This is denoted
by SeqO,R(V,D, P ). An example of how the sequential
procedure works can be found in (Dalla Pozza et al. 2011).
A similar sequential procedure has been considered in (Lang
and Xia 2009), when agents’ preferences are expressed via
CP-nets.

Winner Determination
We consider two main approaches: sequential and one-step.
For the sequential approach, we employ the sequential pro-
cedure described above with Plurality, Approval and Borda
rules. We have an ordering O over the variables and we con-
sider each variable in turn in such an ordering. At each step,

each agent provides some information about the considered
variable, say X , which depends on the voting rule we use:
in Sequential Plurality (SP) every agent provides one best
value for X , in Sequential Approval (SA) all best values for
X , while in Sequential Borda (SB) a total order (possibly
with ties) over the values of X , along with the preference
values for each domain element. We then choose one value
for the considered variable, as follows: with SP and SA we
choose the value voted by the highest number of agents, with
SB we select the value with best score, where the score of a
value is the sum of its preferences over all the agents. Note
that ”best” means maximal in the case of fuzzy constraints
and minimal in the case of weighted constraints. Once a
value is chosen for a variable, this value is broadcasted to all
agents, who fix X to this value in their soft constraints and
achieve DAC in the reverse ordering w.r.t. O. We continue
with the next variable, and so on until all variables have been
handled.

The alternative to a sequential approach is a one-step ap-
proach, where each agent votes over decisions regarding all
variables, not just one at a time. A possible voting rule to use
is what we call One-step Plurality (OP), where each agent
provides an optimal solution of his SCSP, and we select the
solution which is provided by the highest number of agents.
We don’t consider one-step Approval since voting could re-
quire exponential time since each agent may have an expo-
nential size set of optimals.

In this paper we will study the resistance to bribery for
SP, SA, SB, and OP when agents’ preferences are expressed
via (possibly different) tree-shaped fuzzy or weighted CSPs.
This is an interesting problem since winner determination
for these rules is computationally easy.

Theorem 1 Winner determination takes polynomial time
for SP, SA, SB, and OP when agents’ preferences are tree-
shaped fuzzy or weighted CSPs.

Proof: The fact that we are considering tree-shaped soft
constraint problems ensures that voting, in all these cases,
can be done in polynomial time by achieving DAC. Winner
determination is then polynomial as well, since it just re-
quires a number of polynomial steps which equals the num-
ber of variables. For OP, computing an optimal solution
is polynomial on tree-shaped soft constraint problems, so
voting is polynomial. Determining the winner requires just
counting the number of votes for each of the voted candi-
dates (which are in polynomial number), so it is polynomial
as well. 2

An approach like OP is less satisfactory than the sequen-
tial approaches in terms of ballot expressiveness: since the
number of solutions may be exponentially large with respect
to the number of agents, there is an exponential number of
solutions which are not voted by any agent. However, if we
want agents to be able to compute their vote in polynomial
time, we need to set a bound (that is 1 for OP) to the number
of solutions they can vote for. So there is trade-off between
easiness of computing votes and ballot expressiveness.
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The Bribery Problem
We now define formally the bribery problem in our sce-
nario, where agents express their preferences via fuzzy and
weighted soft constraints. We recall that bribery is an at-
tempt to modify the result of the election where there is an
outside agent, called the briber, that wants to affect the re-
sult of the election by paying some voters to change their
votes, while being subject to a limitation of its budget. In
defining bribing scenarios in our context, it is thus neces-
sary to decide what the briber can ask an agent to do (for
example, just making a certain candidate optimal, or chang-
ing more of its preference ordering) and how costly it is for
the briber to submit a certain request. The cost usually rep-
resents the effort the agent has to make to satisfy the briber’s
request. If we use Plurality to determine the winner, either
in its sequential or one-step version, the most natural request
a briber can have for an agent is to ask the agent to make a
certain solution (or a certain value in the sequential case) op-
timal in his soft constraint problem. In order to do this, the
agent can modify the preference values inside its variable
domains and/or constraints.

We define in several ways the cost of a briber’s request,
which is to make a certain solution A optimal1:

• Cequal: The cost is fixed (without loss of generality, we
will assume it is 1), no matter how many changes are
needed to make A optimal;

• Cdo: The cost is the distance from the preference value
of A, denoted by pref(A), to the preference value of
an optimal solution of the SCSP of the agent, denoted
by opt. If we are dealing with fuzzy numbers and we
may prefer to have integer costs, the cost is defined as
Cdo = (opt − pref(A)) ∗ l, where l is the number of
different preference values allowed. For example, if the
fuzzy preferences have 2 digits of precision, we have 100
different preferences and we will, thus, have l = 100.
With weighted constraints, where preference values are
costs, Cdo = pref(A) − opt, since opt is the smallest
cost associated to any solution.

• Cdon: The cost is determined by considering both Cdo

and the minimum number of preference values, say t, as-
sociated to subparts (aka tuples) of A in the constraints,
that must be modified in order to make A optimal. With
fuzzy constraints the cost is defined as Cdon = ((opt −
pref(A)) ∗ l ∗M) + t, while with weighted constraints
the cost is defined as Cdon = ((pref(A)− opt)∗M) + t,
where M is a large integer which must be greater than
2n − 2 and 1 ≤ t ≤ 2n − 1, where n is the number of
variables. The role of M is to ensure a higher bribery cost
for a less preferred candidate. We omit the details about
the bounds of M due to lack of space. The upper bound
of t is 2n − 1 since, in a tree-shaped fuzzy problem, we
will have n unary soft constraints over the domains of the
variables and n − 1 binary soft constraints. Thus each
solution has 2n− 1 subparts in the constraints.

1In the names of the cost schemes do stands for distance from
the optimal preference, n for the number of preference values that
must be changed to make A optimal, and w for weighted cost.

• Cdow: The cost is computed similarly to Cdon, but each
preference value to be modified is associated with a cost
proportional to the change required on that preference.
Let us denote by ti any tuple of A with preference ≤
opt. For fuzzy constraints, the cost is Cdow = ((opt −
pref(A)) ∗ l ∗M) +

∑
ti

(opt− pref(ti)) ∗ l: where the
role of M is similar to the one in Cdon but now its lower
bound now depends also on the number of preference lev-
els. M must be greater than l(2n−2)−1. We omit details
due to lack of space.
For weighted constraints, we define Cdow = ((pref(A)−
opt) ∗ M) +

∑
ti

(pref(ti) − opt). However,∑
ti

(pref(ti) − opt) = pref(A) − opt, thus Cdow =
((pref(A)− opt) ∗ (M + 1)). So Cdow induces basically
the same costs as Cdo.

These cost schemes provide a measure of the number and
magnitude of local changes needed in the compact prefer-
ence structure for implementing the briber’s request.

With the sequential approaches to determine a winner (SP,
SA, and SB), it is also reasonable to consider cost schemes
where the voter charges a cost for each modification re-
quired for each variable. We consider the cost scheme Ck,
which takes the minimum Kemeny distance between the
ordering induced by the preferences on the domain of a
variable X and any ordering implementing the request of
the briber. The Kemeny distance between two orderings is
the number of pairs on which they differ (Kemeny 1959).
More formally, given a set of candidates Ω and two order-
ings o1 = (a1, . . . , an) and o2 = (b1, . . . , bn) over Ω,
the Kemeny distance between o1 and o2, say k(o1, o2) is∑n

i,j=1, i<j |(sgn(ai − aj)− sgn(bi − bj)|.
We are now ready to define formally our bribery problem.

Definition 2 Given a voting rule V and a cost scheme C,
we denote by (V,C)-Bribery the problem of determining if
it is possible to make a preferred candidate win, when voting
rule V is used, by bribing agents and by spending less than
a certain budget according to cost scheme C.

Determining the cost to respond to a briber’s request is
easy for all cost schemes.

Theorem 3 Given a tree-shaped fuzzy or weighted CSP and
an outcome A, determining the cost to make A an optimal
outcome is in P for Cequal, Cdo, Cdon, and Cdow.

Proof: We can check if A is already optimal in polynomial
time by first computing the optimal preference opt and then
checking if it coincides with the preference of A, denoted
pref(A). If so, the cost is 0. Otherwise, with Cequal the cost
is always 1. To compute the cost according to Cdo, Cdon,
and Cdow, we need to compute opt, the numbers of tuples of
A with preference worse than opt, and the distance of their
preferences from opt. These components can be computed
in polynomial time for tree-shaped problems. 2

Theorem 4 Given a tree-shaped fuzzy or weighted CSP, one
of its variables X , and a set of values in the domain of X ,
say VX , determining the minimum cost to make all values in
VX optimal in the domain of X takes polynomial time for
Ck.
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Proof: Both fuzzy and weighted preferences induce a total
order with ties over the values in the domain of X . In order
to make all values in VX optimal the cheapest thing to do,
according to Ck, is to change their preferences to the optimal
one. This, in fact minimizes the number of inverted pairs
and thus the Kemeny distance between the old and the new
ordering.

Bribery results for SP, SA, and SB
Theorem 5 (V,C)-Bribery is NP-complete (and also W[2]-
complete with parameter being the budget) for V ∈
{SP, SA, SB} and C ∈ {Cequal, Cdo}.
Proof: We provide a polynomial reduction from the OP-
TIMAL LOBBYING (OL) problem (Christian et al. 2007). In
this problem, we are given an m × n 0/1 matrix E and a
0/1 vector ~x of length n where each column of E repre-
sents an issue and each row of E represents a voter. We
say E is a binary approval matrix with 1 corresponding to
a “yes” vote and ~x is the target group decision. We then
ask if there a choice of k rows of the matrix E such that
these rows can be edited so that the majority of votes in
each column matches the target vector ~x. This problem is
shown to be W [2]-complete with parameter k. By giving
a polynomial reduction from OL to our bribery problem,
we show that our problem is NP-complete (actually W [2]-
complete with parameter being the budget B). Given an
instance (E, ~x, k) of OL, we construct an instance of (V-
Cdo)-Bribery, where V ∈ {SP, SA, SB}, containing con-
straints with only independent binary variables. The number
of variables, n, is equal to the number of columns in E. For
each row of E, we create a voter with the preferences over
the n variables as described in the row of E. In particu-
lar, for each variable the value indicated in the row will be
associated with preference 1 while the other value will be
associated with preference 0. Thus, each voter has a unique
most preferred solution with preference 1 and all other com-
plete assignments have preference 0. We set the preferred
outcome A = ~x. This means that according to Cdo, all vot-
ers not voting for A have the same cost to be bribed, which
is (opt − pref(A)) ∗ 2 = (1 − 0) ∗ 2 = 2. Finally, we set
the budget B = 2k. With Cequal, the cost is always 1 if A
is not already voted for. We note that since we have only
two values for each variable, SP, SA and SB coincide with
sequential majority, thus A wins the election if and only if
there is a selection of k rows of E such that ~x becomes the
winning agenda of the OL instance.

Since both fuzzy and weighted CSPs generalize CSPs, the
result holds also for such classes of soft constraints. 2

Theorem 6 (V,C)-Bribery is NP-complete for V ∈ {SP,
SA, SB} and C ∈ {Cdon, Cdow} if M > n ∗ m, where
n is the number of variables and m the number of voters.

To prove this result we can use a reduction similar to the
one described for Thm. 5 from the OPTIMAL LOBBYING
PROBLEM. We omit details due to lack of space.

Theorem 7 (SA,Ck)-Bribery is NP-complete, while
(SP,Ck)-Bribery and (SB,Ck)-Bribery are in P assuming
ties are broken in favor of the briber.

Proof: The first result follows from NP-completeness of
bribery for Approval in the single variable case (Faliszewski
2008; Elkind, Faliszewski, and Slinko 2009). The other re-
sults can be shown as follows. By definition of SP and SB,
an outcome wins if and only if its projection on each variable
is the winner of the local election. After a local election, the
result is fixed and propagated in all the SCSPs. Thus, it is
enough to prove that bribery is in P at each step. Bribery
with Plurality has been shown to be in P in (Faliszewski
2008) even with non-uniform costs. This, together with the
fact that computing the cost is polynomial for Ck (Theorem
4), and that ties are broken in favor of the briber, allows us
to conclude for SP. A similar proof works for Borda. 2

Bribery results for OP
Bribery is computationally easy for OP. To show this we
need to compute n cheapest alternative candidates for an
agent to vote for. We first study this task. We assume that
each agent has a linear ordering over the variables.

Theorem 8 Computing a set of k cheapest outcomes is in P,
in a tree-shaped fuzzy CSP according to Cequal, Cdo, Cdon,
and Cdow in a weighted CSP according to Cdo, Cdow, and
Cequal, when k is given in unary.

Proof: The cost of an outcome according to Cdo is an in-
teger proportional to the distance between the preference of
the outcome and the preference of an optimal outcome. In
order to compute k cheapest solutions, we assume to have
a linear order over the variables and the values in their do-
mains. For tree-shaped fuzzy CSPs, it has been shown in
(Brafman et al. 2010) that, given such linear orders and an
outcome s, it is possible to compute, in polynomial time, the
outcome following s in the induced lexicographic lineariza-
tion of the preference ordering over the outcomes. The pro-
cedure that performs this is called Next. Thus, in order to
compute k cheapest according to Cdo, we compute the first
optimal outcome according to the linearization and then we
generate the set of k cheapest candidates by applying Next
k− 1 times (each time on the outcome of the previous step).
Similarly, computing the k best solutions of a weighted CSP
can be done in polynomial time by using the procedure sug-
gested in (Rollon, Flerova, and Dechter 2011). The result
for Cdow in weighted CSPs follows immediately from the
fact that, for weighted CSPs, Cdow is proportional to Cdo.
If we consider Cequal, an agent will not charge the briber
for changing his vote to another optimal candidate and will
charge a fixed cost to change his vote in favor of any other
(non-optimal) candidate. Thus any of the above procedures
can be used (although, if k exceeds the cardinality of the set
of optimal solutions, the remaining ones could, in principle,
be generated randomly in a much faster way). For Cdon and
Cdow in fuzzy CSPs, the proof is based on a polynomial time
algorithm, KCheapest. It takes in input a tree-shaped fuzzy
CSP P , an integer k, and a cost scheme C. It returns a set
of k solutions of P . It first finds k optimal solutions of P ,
or all optimal solutions if they are less than k. If the num-
ber of solutions found is k, it stops, otherwise it looks for
the remaining top solutions within non-optimal solutions by
using an auxiliary weighted CSP (omitted for lack of space)
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where the weights are defined by considering the adopted
cost scheme. By construction, the returned solutions of the
algorithm are the k-cheapest according to the selected cost
scheme (or all the solutions if the k exceeds the total number
of solutions) and thus we conclude. 2

To show that bribery with OP is easy, we adapt to the case
of an exponential number of candidates the proof shown in
(Faliszewski 2008) for bribery when voting with plurality
in single variable elections with non-uniform cost schemes.
The algorithm requires the enumeration of all candidates as
part of the construction of the flow network. In our model,
the number of candidates can be exponential in the size of
the input, so we cannot use that construction directly. How-
ever, we show that a similar technique works by considering
only a polynomial number of candidates.

Theorem 9 (OP,C)-Bribery is in P for C ∈ {Cequal, Cdo,
Cdon, Cdow} when agents vote with tree-shaped fuzzy CSPs
and for C ∈ {Cequal, Cdo, Cdow} when agents vote with
tree-shaped weighted CSPs.

Proof: We consider all r ∈ {1, . . . , n} and ask if the
bribers’ favorite candidate A can be made a winner with ex-
actly r votes without exceeding its budget B. If there is at
least one r such that this is possible, then it means that the
answer to the bribery problem is yes, otherwise it is no. We
show that, for each r, the corresponding decision problem
can be solved in polynomial time. This means that the over-
all bribery problem is in P. To solve the decision problem
for a certain r, we transform this problem to a minimum-
cost flow problem (Ahuja, Magnanti, and Orlin 1993). The
network has a source s, a sink t, and three “layers” of nodes.

The first layer has one node for each voter v1, . . . , vn.
There are also n edges (s, vi), with capacity 1 and cost 0.

For the second layer of nodes, for each voter in the given
profile, we add in this second layer nodes corresponding to
A, to all the candidates with at least one vote (at most n),
and to the n non-voted cheapest candidates for this voter,
according to the cost scheme, thus adding at most 2n + 1
candidates for each voter. Intuitively, this second layer mod-
els the profile modified by the bribery, where each voter can
change its vote or also maintain the previous one. The im-
portant point is that the non-voted candidates that we do not
include in the second layer can be avoided since not using
them does not increase the cost of the bribery. Providing n
non-voted candidates for each voter is enough, since there
are n voters and in the worst case each of them has to vote
for a different candidate. For each node Sij in the second
layer corresponding to voter vi, we add an edge from vi to
Sij with capacity +∞ and cost equal to the cost of brib-
ing vi to vote for the candidate corresponding to node Sij .
Finding such candidates, and the cost for the voter to vote
for them, takes polynomial time, no matter the cost scheme.
Finding the voted candidates is easy since finding the opti-
mal outcome in tree-shaped fuzzy or weighted CSPs takes
polynomial time. Finding the n cheapest non-voted candi-
dates, can be done by applying the procedures described in
previous section. In general, it is sufficient to compute the
2n cheapest candidates in order to make sure we have at least
n non-voted candidates. Moreover, given a voter, comput-

ing the cost for such a voter to vote for one of the candidates
is easy for both voted and non-voted candidates as shown in
Theorem 3.

In the third layer of the network, we add a node for each
candidate who already appears somewhere in the network
(up to n2 + n + 1). One of these nodes represents A. These
third layer nodes are the nodes that enforce the constraint
that no candidate besides A can receive more than r votes.
These nodes have an edge from the nodes of the second layer
representing the same candidate, with zero cost and infinite
capacity. The output link from each of the third layer nodes
to the sink has capacity r. The cost is 0 for the edge from A
to the sink, while for all other candidates it is a large integer
M to force as much flow through the node A as possible.

If we had included nodes for all the candidates in the sec-
ond layer, we would have used a network equivalent to the
one used in the proof of Theorem 3.1 in (Faliszewski 2008),
which shows that there is a minimum cost flow of value n
if and only if there is a way to solve the bribery problem.
However, since we have a number of candidates which is
superpolynomial in the size of the input, we would not have
a polynomial algorithm. By including only the cheapest n
alternative candidates for each voter, along with A and all
the voted candidates, the result still holds. In fact, assume
there is a minimum-cost flow in the larger network which
goes through one of the nodes which we omit. This means
that a voter has been forced to vote for another, more expen-
sive, non-voted candidate since all its cheapest candidates
had already r votes each. However, this is not possible,
since we have only a total of n − 1 votes that can be given
by the other voters, and we provide n non-voted candidates.
We will build, at worst, n networks with O(n2) nodes and
O(n3) edges. Since minimum-cost feasible flow problem
can be solved in polynomial time in the number of nodes
and edges using for example the Edmonds-Karp algorithm
(Ahuja, Magnanti, and Orlin 1993), the overall running time
of this method is polynomial. 2

Conclusions and Future Work
We defined the bribery problem when agents vote with tree-
shaped fuzzy or weighted CSPs introducing several cost
schemes to evaluate the cost of the bribery’s request. We
studied the resistance to bribery for sequential procedures
(SP, SA, and SB) and one-step Plurality (OP) according to
these cost schemes. Our complexity results are summarized
in Table 1. It is clear that sequential approaches should be
preferred. Moreover, when a problem is polynomial for SC-
SPs, it is also so for CSPs. Thus, OP is easy to bribe when
agents vote with CSPs, and the same holds for SP and SB
with Ck. In this paper we considered some widely used vot-
ing rules, that take preference orderings as input, so the nu-
merical information contained in the soft constraints is not
exploited. We plan to investigate voting rules that exploit
also such information, as well as the applicability of the
bribery results in preference optimization and compilation.
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SP SA SB OP
Cequal NP-c NP-c NP-c P
Cdo NP-c NP-c NP-c P
Cdon NP-c* NP-c* NP-c* P/ ?
Cdow NP-c* NP-c* NP-c* P
Ck P NP-c P –

Table 1: NP-c* stands for NP-complete with the restriction on M,
– means not applicable, X/Y means that the result for fuzzy CSPs
(X) and the result for weighted CSPs (Y ) are different.
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