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Abstract

Scaling multiagent reinforcement learning to domains with
many agents is a complex problem. In particular, multiagent
credit assignment becomes a key issue as the system size in-
creases. Some multiagent systems suffer from a global reward
signal that is very noisy or difficult to analyze. This makes
deriving a learnable local reward signal very difficult. Differ-
ence rewards (a particular instance of reward shaping) have
been used to alleviate this concern, but they remain difficult
to compute in many domains. In this paper we present an ap-
proach to modeling the global reward using function approx-
imation that allows the quick computation of local rewards.
We demonstrate how this model can result in significant im-
provements in behavior for three congestion problems: a mul-
tiagent “bar problem”, a complex simulation of the United
States airspace, and a generic air traffic domain. We show
how the model of the global reward may be either learned on-
or off-line using either linear functions or neural networks.
For the bar problem, we show an increase in reward of nearly
200% over learning using the global reward directly. For the
air traffic problem, we show a decrease in costs of 25% over
learning using the global reward directly.

1 Introduction

Reinforcement learning (RL) in large multiagent systems
is a wide area of research with applications ranging from
robocup soccer (Stone, Sutton, and Kuhlmann 2005), to
rover coordination (Agogino and Tumer 2008), to trading
agents (Sherstov and Stone 2005; Wellman et al. 2003),
to air traffic management (Tumer and Agogino 2007). The
challenge of multiagent learning in complex environments
is for each agent to extract a useful reward signal from
the noise of other agents acting within the same environ-
ment. Agents must somehow learn to coordinate among
themselves and develop a joint set of policies to solve the
problem. Agents are usually learning simultaneously, fur-
ther complicating the learning process as the behavior of the
other agents is changing in unpredictable ways.

In some domains, it can be very difficult to analytically
derive a local agent-specific reward signal from the global
signal provided to the agents — the global reward may be a
“black box”, or the system dynamics may just be too com-
plex. Under such conditions, it may still be possible to learn
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an approximate model of the global objective, and then use
that model to derive a local reward function for the agents.

Given a model of the global objective function, we can
create an agent-specific reward signal using difference re-
wards, which are a specific type of shaped reward that en-
courages good agent behavior by rewarding actions that are
closely aligned with the desired overall system behavior,
while still allowing agents to learn from the reinforcement
signal. Difference rewards have been shown to perform very
well in multiagent domains (Agogino and Tumer 2008),
however they have previously suffered from one great dis-
advantage: it has not always been possible to calculate the
value of the difference reward, or even an approximation of
it, generally due to complex system dynamics. A modeling
approach mitigates this difficulty in approximating the dif-
ference reward in complex domains.

The proposed modeling approach takes advantage of
function approximation techniques to approximate the
global reward signal, which we may then use to calculate an
approximate difference reward. We use tabular linear func-
tions (Proper and Tadepalli 2006) — consisting of a num-
ber of tables or neural networks — to model the value of
the global (system) reward. This model may then be used to
calculate the difference reward. We apply this technique to
three multiagent congestion problems of varying complex-
ity. The results show that we can greatly improve perfor-
mance over learning on the system reward directly, and in
some cases even outperform the true model of the reward
signal.

In Section 2 we summarize the basic agent learning ar-
chitecture. In Section 3 we show how we model the differ-
ence reward using the system reward and discuss the func-
tion approximation techniques we used in experiments. In
Section 4 we discuss the congestion problems that we use in
the reported experiments. In Section 5 we report the results.
Finally, in Section 6 we discuss the results and provide di-
rections for future research.

2 Multiagent Learning with Reward Shaping

The algorithm we use for our experiments is a simple rein-
forcement learner, essentially an implementation of stateless
Q-learning (Sutton and Barto 1998). Each agent keeps a vec-
tor providing its estimates of the reward it would receive for
taking each possible action. In any episode, an agent esti-



mates its expected reward for a given action based on ac-
tion values it has developed in previous episodes. We use
e-greedy exploration so agents will explore with a random
action with probability e. Each agent receives reward R and
updates the action value vector using a value function Vj,:

Vi=(-a) - Vi+a R 1

When providing an agent’s reward signal, a reasonable
option is to give each agent the global reward G(z), where
z is a vector of features describing a set of actions or state-
actions pair. However, this reward is not particularly sen-
sitive to an agent’s actions and for large systems, leads to
very slow learning. Previous work has shown that we can
instead provide a difference reward, which can significantly
outperform agents either receiving a purely local reward or
all agents receiving the same global reward (Agogino and
Tumer 2008; Tumer and Agogino 2007). The difference re-
ward, a.k.a. D, is given by:

Dyi(z) = G(z) — Gz — =) 6

where z — z; specifies the state of the system without agent
1. In this instance z is the actions of the agents, and z — 2;
represents the actions of all the agents without agent ¢. Dif-
ference rewards are aligned with the system reward, in that
any action that improves the difference reward will also im-
prove the system reward. This is because the second term
on the right hand side of Equation 2 does not depend on
agent ¢’s actions, meaning any impact agent ¢ has on the
difference reward is through the first term (G) (Tumer and
Agogino 2007). Furthermore, it is more sensitive to the ac-
tions of agent ¢, reflected in the second term of D, which
removes the effects of other agents (i.e., noise) from agent
1’s reward function.

Intuitively, this causes the second term of the difference
reward function to evaluate the performance of the system
without 7, and therefore D measures the agent’s contribution
to the system reward directly.

3 Reward Modeling

For some simple domains, we may be given an equation
for G(z) from which it is possible to directly calculate a
derivation of the difference reward using Equation 2. Un-
fortunately, many domains are not so simple — the global
reward may result from a complex process that cannot be
described by an equation, although some structure may be
known about the reward signal. In the worst case, one sim-
ply has the vector z and some reward signal G(z).

Our approach to solving this problem is to approximate
D via a function approximator based on modeling v(z) ~
G(z). We can then approximate D;(z) ~ v(z) — v(z — 2;).
This solution, while conceptually simple, addresses a major
criticism of difference rewards in the past: that they are dif-
ficult to use if an equation for G(z) is not available. Thus,
this work expands the possible uses of difference rewards
into a large number of new domains. The key property that
distinguishes this approach from standard function approx-
imation is that the structural form of D has a built-in bias
reducer. The subtraction operation ensures systematic errors
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in function approximation are eliminated, particularly if the
two terms (v(z) and v(z — 2;)) are close to one another. In
this paper, we explore using two function approximators to
model G(z): tabular linear functions (TLFs) and neural net-
works. We discuss TLFs below.

3.1 Tabular Linear Functions

In previous work (Proper and Tadepalli 2006), tabular lin-
ear functions (TLFs) were shown to provide a simple, flexi-
ble framework to consider and incorporate different assump-
tions about the functional form of an approximated function
and the set of relevant features. Previously, TLFs have been
used to approximate the value function of an RL agent. In
this work, we use it to approximate the reward model.

A TLF is a sum over several terms. Each term is given
by multiplying a weight and feature value, just as with any
linear function. Unlike standard linear functions, the weight
of each term is given by an arbitrary function — typically a
table — of other discretized (or “nominal”) features.

More formally, a tabular linear function is represented by
Equation 3, which is a sum of n terms. Each term is a prod-
uct of a linear feature ¢; and a weight ;. The features ¢,
need not be distinct from each other. Each weight 6, is a
function of m; nominal features f; 1, ..., fim,-

v(z) = Z 0:(fir(2),- s fim(2)ei(2)  (3)

A TLF using tables to store the value of 6 reduces to a lin-
ear function when there are no nominal features, i.e. when
01,...,0, are scalar values.

When using TLFs in a reinforcement learning algorithm,
each 6; is updated using the following equation:

0i(fin(2), s fim:(2)) < 0i(fi1(2)s- -, fimi(2)) +
a(E(2))Ve,v(z) @)

where Vg, v(z) = ¢;(z) and « is the learning rate. E(z) is
the error of a particular model value for the given features.

4 Congestion Problems

Congestion problems — where system performance depends
on the number of agents taking a particular action — pro-
vide an interesting domain to study the behavior of coopera-
tive multiagent systems. This type of problem is ubiquitous
in routing domains (e.g., on a highway, a particular lane is
not preferable to any other lane, what matters is how many
others are using it) (Kliigl, Bazzan, and Ossowski 2005;
Tumer, Welch, and Agogino 2008). Agents in such a system
often require sophisticated coordination in order to avoid a
“tragedy of the commons” where selfish agents reduce the
reward gained by everyone, including themselves (Hardin
1968). Two such congestion problems are discussed below.

4.1 Multi-night Bar Problem

The multi-night bar problem (shortened to “bar problem”
in this paper) is an abstraction of congestion games (and a
variant of the El Farol bar problem (Arthur 1994)) which has
been extensively studied (Arthur 1994; Jefferies, Hart, and



Johnson 2002). In this version of the congestion problem,
each agent has to determine which day of the week to attend
a bar. The problem is set up so that if either too few agents
attend (boring evening) or too many people attend (crowded
evening), the total enjoyment of the attending agents drop.

The system performance is quantified by a system reward
function G, which is a function of the joint action of all
agents in the system z, and is given by:

~Zday

G(z) = Z Tdqy€ ©

day=1

&)

where n is the number of actions (days), x4, is the total
attendance on a particular day, and C' is a real-valued pa-
rameter that represents the optimal capacity of bar.

Selfish behavior by the agents tends to lead the system
to undesirable states. For example, if all agents predict an
empty bar, they will all attend (poor reward) or if they all
predict a crowded bar, none will attend (poor reward). This
aspect of the bar problem is what makes this a “‘congestion
game” and an abstract model of many real world problems,
ranging from lane selection in traffic, job scheduling across
servers, or data routing.

For this domain, we are fortunate that we can directly cal-
culate the difference reward for the bar problem from Equa-
tion 5. In this domain, the only effect each agent has on the
system is to increase the attendance, %44y, for night & by 1.
This leads to the following difference reward:

DZ<Z)

G(z) — G(z — z;)

—(®gqy; —1)
= Zday;€ °

- (xdayqz - 1)6 c

(6)

where 244y, 18 the total attendance on the day selected by
agent .

We can also apply TLFs to learn the model for the bar
problem, rather than directly calculating it. The true model
is given by Equation 5. The form of the TLF we define for
this problem is:

n

Z 0(Zday)

day=1

F(z) = @

where 6(-) is a table over possible nightly attendances, and
is updated n times (once for each x44,) per episode as per
Equation 4: 8(24ay) < 0(2day) + a(G(z) — F(2)). Equa-
tion 7 thus allows an approximation of G(z) to quickly be
found given relatively few training examples.

4.2 Air Traffic Simulation

A second congestion problem explored in this paper is an
air traffic simulation of the United States national airspace
(NAS). Reinforcement learning and reward modeling has
been applied to air traffic congestion previously (Tumer and
Agogino 2009), however this past work only used a hand-
coded reward model created by the experimenters, rather
than a learned model of the reward as in this paper.

There has been significant research into agent-based
methods for automating air traffic systems (G. Jonker 2007;
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Hill et al. 2005). These solutions typically involve a set of
autonomous agents that try to optimize some overall goal
either through learning or through negotiation. Agent inter-
actions, inspired by economic principles, have been shown
to achieve fairness in air traffic management through an ar-
tificial monetary system that allows for retaliation against
greedy agents (G. Jonker 2007).

One key problem that needs to be addressed with learn-
ing agents is how to derive reward functions for each agent
so that agents do not learn to hinder each other. In other
contexts this has been addressed through a “satisficing” re-
ward that specifically encourages cooperation and penalizes
anti-cooperative behavior (Hill et al. 2005), and difference
rewards where the actions of the agents aim to improve
the system-wide performance criteria (Tumer and Agogino
2007). To date, the most complete path planning, control and
collision avoidance based on agent technology is AgentFly
which achieves reliable air traffic flow control without cen-
tralized planning (Sislak, Samek, and Pechoucek 2008).

One problem that all approaches to managing air traffic
have is that it is impractical to experiment outside of sim-
ulation. Thus, we implement a simulator to test methods of
air traffic control. Existing simulators are unsuitable for our
purpose, being either slow, expensive, closed-source, or hav-
ing other difficulties with obtaining or using it for machine
learning experiments. We have chosen to implement a more
suitable simulator, which we discuss below.

FEATS Simulator We developed FEATS (Fast Event-
based Air Traffic Simulator) to quickly simulate thousands
of aircraft of different characteristics taking off from air-
ports, navigating via waypoints and airways to their desti-
nation airport, and landing. This simulator is optimized for
speed, simulating 26,000 flights/second. Individual simula-
tions require a fraction of a second, allowing efficient exper-
imentation with machine learning techniques.

Aircraft are routed via A* search over sequences of fixes
(2D locations in space) towards their destinations. Some of
these fixes are “meter fixes”, or locations at which aircraft
may be slowed down as they approach, analogous to traffic
lights in a traffic control simulation (Bazzan 2005). As in
(Tumer and Agogino 2007) we choose to make meter fixes,
rather than aircraft, into learning agents. We manage traffic
by controlling aircraft separation distances — called “Miles
in Trail” (MIT) separations — at meter fixes surrounding ten
of the nations busiest airports (see Table 1). Each airport has
a capacity of aircraft it can accept over any given 15-minute
window. By increasing MIT separation at the meter fixes

Airport Agents Cap Flights ‘ Airport Agents Cap Flights

ATL 6 20 300 JFK 5 11 165
CVG 6 18 270 LAX 13 21 315
DEN 8 30 450 MEM 5 20 300
DFW 10 30 450 MIA 7 17 255
IAH 8 18 27 ORD 9 20 300

Table 1: Airports, number of agents per airport, airport ca-
pacity, and number of flights assigned to each airport for
each episode of the air traffic simulation.



Monitored  Total airports  Agents Fixes Edges Flights Km perside Area(sq. km) Time (seconds)
10 100 129 1000 11353 3585 3000 9,000,000 0.13
20 200 232 2000 23001 7125 4242 18,000,000 0.37
40 400 395 4000 35683 14295 6000 36,000,000 0.94

Table 2: Monitored airports (airports around which agents were placed), total airports, number of agents (metered fixes) in
simulation, number of fixes, number of edges in the airspace graph, number of flights per simulation, kilometers per side of
simulated airspace, area of simulated airspace, and time required per simulation for each simulated airspace domain.

surrounding an airport, air traffic coming into that airport
can be delayed and spikes or “rushes” in air traffic can be
moderated, allowing aircraft to land safely. However, doing
this may cause costly delays so this is a tactic that should be
used to the minimum amount required to allow all planes to
land safely. This balancing of airport congestion and aircraft
delays creates a complex multiagent control problem.

Each agent (meter fix) has four actions: to delay either
0, 10, 20, or 30 nautical miles in trail. A “delay” of 0 indi-
cates that aircraft are permitted to fly right through the fix
with no delay. Larger values require aircraft to slow down
if they must do so to follow a proceeding aircraft by a suf-
ficient margin. For this paper, each episode is a single sim-
ulated “rush” of aircraft from all over the national airspace
to the various airports modeled in our simulation. We mod-
eled 10 airports, 77 agents (meter fixes), and 3075 separate
aircraft per simulation. The number of aircraft was scaled
according to the capacity of each airport (see Table 1). In
order to test air traffic control at even larger scales, we also
created a “generic” air traffic domain artificially generated
using experimenter-supplied parameters (Table 2).

We used a linear combination of terms for measured con-
gestion and delay to calculate the global (system) reward of
the air traffic domain as follows:

G(z) = =(B(2) + aC(2)), ®
where B(z) is the delay penalty for all aircraft in the system,
and C'(z) is the total congestion penalty. The relative impor-
tance of these two penalties is determined by the value of «,
a congestion cost, which we set to 5 (providing an effective
tradeoff between congestion and delay). B(z) is calculated
by simply taking the sum of minutes of delay suffered by all
aircraft at the meter fixes. C'(z) is given by:

cz) =3 /T Okys — ) (ks — )2t (9)

peP

where P is the set of airports monitored by the simulation,
kp.¢ is the number of aircraft that have landed in the past
15 minutes (a rolling time window), ¢, is the capacity of
airport p as defined by the FAA, and O(-) is an indica-
tor function that equals 1 when its argument is greater or
equal to zero, and has a value of zero otherwise. Thus C/(z)
penalizes states where airports become over-capacity. The
quadratic penalty provides strong feedback to return the air-
port to FAA mandated capacities. We use an integral over
time due to the fact that our simulation occurs in real time.

4.3 Neural Network Approximation

The true difference reward for the air traffic problem is im-
possible to calculate, as we do not know how to analytically
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determine what the effects on B(z) and C(z) are of remov-
ing an agent from the system. However, we can approximate
D, (z) using neural networks. All neural networks were ran-
domly initialized and learned via backpropogation. Inputs
were scaled between 0 and 1; outputs were scaled between
0 and 1 using the cumulative distribution function.

For the air traffic problem, we learned a model of G(z)
by decomposing it into a linear function of nonlinear terms,
each of which we learned separately using a neural network,
i.e. a TLF using several neural networks instead of tables:

v(z) = Y (0% (2) + 0%(2p)) (10)

peP

where z, are the actions for the agents surrounding air-
port p, 6% (-) is a neural network approximating Bj,(z)

aea, Ba(z), the sum of delays over all aircraft approach-

ing p, and 67, (-) is a neural network approximating C,(z) =
J7©(kpt — ¢p)(kps — cp)?dt, the congestion penalty for
a single airport. Each of the 2|P| networks has an input
node for each action taken by the n, agents (meter fixes)
surrounding that airport, n,, + 1 hidden units, and 1 output,
with a learning rate of 1.0. We train each network separately
using B, (z) or C,(z) as appropriate for each airport p, al-
lowing a more accurate approximation than training on only
G(z). Note that a meter fix may control incoming traffic to
more than one airport. The action taken by such an agent is
given as input to several of the neural networks.

Given this approximation of G(z), we can now estimate
D;(z) = v(z) — v(z — z;), where we set z — z; to indi-
cate that agent ¢ takes a “default” action (in this case, setting
its “Miles in Trail” value to zero, as imposing no delay on
aircraft is a reasonable default action).

S Experimental Results

We performed three sets of experiments with various combi-
nations of reinforcement learning on local, global, and dif-
ference rewards for the bar problem and air traffic simula-
tion. For each domain, we experimented with strategies for
approximating G(z) (and thus D(z)). 20 points were plot-
ted for each result, each point the average of 200 (for the bar
problem) or 50 (for the air traffic domain) episodes. We ad-
ditionally averaged results over 30 runs for all experiments.
Error bars are shown and were calculated using the sample
standard error of the mean o//n where n is the number
of runs, however in most cases they are so small they dis-
appear. Many experiments were conducted by learning the
reward model “offline” (prior to training the agents) via ran-
domly generated examples, as opposed to “online” (trained
via examples observed by the agents during learning).
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Figure 1: Comparison of rewards, function approximation
techniques, and training method for the bar problem. Offline
learning with TLFs worked very well, actually outperform-
ing knowledge of the true model.

5.1 Bar Problem

The results of our experiments in the multi-night bar prob-

lem may be seen in Figure 1. We experimented with a week

of 7 days, 168 agents, C' = 6, « = .1, and ¢ = .05. Plots

for local, global, and difference rewards are shown, along

with several approximations of D(z). Local reward was cal-
e day;

culated by simply using L;(z) = Zgay,e— © . Global and
difference rewards were calculated as seen in Equations 5
and 6, and approximations of D using Equation 7. For com-
parison purposes, we also use a simple neural network to ap-
proximate D, with 7 inputs (one for each day’s attendance),
14 hidden units, and 1 output, with a learning rate of 1.5. In
addition, we also experimented with learning the model both
on- and off-line by training the TLF with 100,000 randomly
generated examples of actions and their resulting global re-
wards. The TLF performed significantly better than neural
network approximation, due to the fact that the form of the
approximation (Equation 7) is very close to the true model
(Equation 5). The neural network does not have the advan-
tage of generalizing between days: each day is a separate
input for which different weights must be learned. The ad-
ditive decomposition of the TLF is also correctly biased:
the true model also uses an additive decomposition (Equa-
tion 5). The neural network does not share this advantage.

As expected, training either the TLF or the neural network
offline significantly improved performance. In fact, agents
using a TLF converged faster than agents using the true
model! The reason for this may be seen in Figure 2, which
graphs the response of the model for attendance for a sin-
gle day. The true model follows the expected curve defined
by Equation 5. The TLF follows this curve very closely, un-
til attendance grows over about 40 agents, at which point it
forms a long second “hump”. This hump makes the learned
approximation a ‘“shaped” approximation that encourages
swift formation of a good policy by encouraging agents to
group themselves into a single day.
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Figure 2: Comparison of the true and learned models for
the bar problem. The model learned offline is very accu-
rate for values up to about 50 agents, but has a long “hump”
for larger values. The model learned online also shows two
humps, one near the expected location of 6 agents and one

farther along near the 144 agent position.

5.2 Air Traffic Simulation

We performed experiments testing local, global, and differ-
ence rewards for FEATS as described in Section 4.2. Each
episode simulated a single traffic “rush” from start to finish.
The actions taken by the meter fixes controlled the delay
each aircraft suffered as it was routed through that fix.

We used TLFs with neural networks approximating each
term (Section 4.3) to estimate G(z) and thus D;(z). We train
each network offline using 10,000 randomly-generated ex-
amples. Samples were generated non-uniformly: a bias was
introduced favoring lower-valued actions, which we expect
to be more common in the true solution.

As may be seen in Figure 3, the estimated D(z) signif-
icantly outperforms using either local or global rewards to
learn. We also tested learning using the estimated G(z) and
found that performance was almost identical to learning with
the true G(z). Thus we believe that for purposes of learning,

0 T T T
Global reward ==

Local reward
Difference reward estimated via neural network =——@=—
Global reward estimated via neural network =——&-—
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Performance (G(z))
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200 300 400 500
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Figure 3: Comparison of rewards for the NAS simulation.
The approximated difference reward outperforms other ap-
proaches, while the approximated global reward show that

the neural network approximation used is very accurate.
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Figure 4: Results for 400 total airports and 395 agents in
the generic air traffic domain. At the largest scales, global
reward converges increasingly slowly, while difference re-
ward continues to do well. This simulation is roughly four

times the size of the true NAS.

the estimation of G(z) (and thus D(z)) is very accurate.

Note that the graphs do not include the costs for offline
training, as this training was not computationally significant
compared to the time required to learn the policy, and was
re-used for all 30 runs. Thus the costs for training are greatly
amortized in this domain.

5.3 Generic Air Traffic Experiments

To test how well our methods scale to very large numbers
of agents, we scaled up our experiments by using a set of
generic air traffic domains created using the parameters de-
scribed in Table 2. Each test was averaged over 30 runs,
with a learning rate o« = .1, exploration rate e = .1, 1000
episodes, and the settings for various experiments as shown
in Table 2. These experiments were otherwise similar to
those performed in the previous section.

As may be see in Figures 4 and 5, the performance of the
estimated difference reward outperforms any other method
at all scales. As the scale of each test increases, the dif-
ference reward performs increasingly better in comparison
to other methods due to the growing difficulty agents have
with extracting a learnable reinforcement signal from an
ever more noisy global reward. Local reward performs con-
sistently poorly: it does not allow for coordination between
agents, which is critical in this domain. The estimated global
reward does well in comparison to the true global reward at
all scales, but performance does degrade slightly at higher
scales as the difficulty of the modeling problem increases.

The performances graphed in Figure 5 are divided by
the number of agents at each scale, so this graph compares
the final performance of individual agents. We can see that
increasing the scale harms performance no matter the re-
ward given, as would be expected due to the increasingly
noisy and complex environment. However, difference re-
wards handle increases in scale far better than any other
method, despite the fact that it is using a learned model
rather than the “true” difference reward.

Notably, the time required to compute a single episode
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Figure 5: Comparison of scaling results for different num-
bers of agents (Table 2). The y-axis shows the average global
performance obtained during the last 50 of 1000 time steps,
divided by the number of agents. The estimated difference
reward outperforms other methods at all scales, doing pro-

portionately better as the number of agents increase.

of a simulation using the difference rewards scales nearly
linearly in the number of agents (Table 2). Any extra time
required is due to the size of the simulation (extra edges and
fixes requiring more calculation).

6 Discussion

We have shown that although calculating D;(z) for some
multiagent domains may be impractical or impossible, it
may still be possible to estimate D;(z) by learning a reward
model of G(z) using a variety of function approximators.

We found that a sufficiently accurate model of G/(z) does
in fact allow us to estimate D;(z) well enough to obtain im-
proved behavior over learning on either the local or global
rewards. Further, as the number of agents increase, we show
that using this model gives an increasing improvement over
alternatives. We believe that for most applications, it will be
necessary to learn the model offline in order to obtain suffi-
cient data, however it remains a possibility of future work to
show that learning a model online can eventually do nearly
as well as having the true model. In the case of air traffic con-
trol, a vast database of states and actions already exists, or
may be generated via sufficiently sophisticated simulations.
This makes learning a model of the reward function offline
a practical approach for many domains. Overhead of either
approach was negligible compared to the cost of simulation.

We have also shown that in some cases, a learned model
can converge faster than the true model. This is because an
approximate model can shape the reward in such a way as
to encourage faster convergence. In the case of the bar prob-
lem, the TLF learned to create a small “hump” in the model
that encourages agents to densely populate a single day at
the bar. Once this has happened, the normal difference re-
ward signal takes over and convergence continues.

Future work includes continued experiments with model
learning and the addition of states to our air traffic simu-
lation, allowing agents to learn how to manage and route
traffic by dynamically adapting to changing conditions.
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