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Abstract

Road travel costs are important knowledge hidden in large-
scale GPS trajectory data sets, the discovery of which can
benefit many applications such as intelligent route planning
and automatic driving navigation. While there are previous
studies which tackled this task by modeling it as a regression
problem with spatial smoothness taken into account, they un-
reasonably assumed that the latent cost of each road remains
unchanged over time. Other works on route planning and rec-
ommendation that have considered temporal factors simply
assumed that the temporal dynamics be known in advance
as a parametric function over time, which is not faithful to
reality. To overcome these limitations, in this paper, we pro-
pose an extension to a previous static trajectory regression
framework by learning the temporal dynamics of road travel
costs in an innovative non-parametric manner which can ef-
fectively overcome the temporal sparsity problem. In partic-
ular, we unify multiple different trajectory regression prob-
lems in a multi-task framework by introducing a novel cross-
task regularization which encourages temporal smoothness
on the change of road travel costs. We then propose an ef-
ficient block coordinate descent method to solve the resulting
problem by exploiting its separable structures and prove its
convergence to global optimum. Experiments conducted on
both synthetic and real data sets demonstrate the effective-
ness of our method and its improved accuracy on travel time
prediction.

Introduction
Route planning services, which recommend fastest and most
efficient routes to drivers, are growing in wide popularity in
recent years.These services have clear advantages as they
help facilitate energy-efficient driving, save drivers’ time,
and relieve traffic load on city transportation systems.

Although fastest route search can be viewed as a short-
est path finding problem, existing shortest path finding al-
gorithms cannot be directly used for two reasons. First, the
lengths of road segments cannot be straightforwardly used
as edge weights, as travel costs are decided by many fac-
tors such as road classes and traffic conditions. Second, the
edge weights are by no means static as driving speed pat-
terns may present periodically recurring temporal dynamics,
which varies from road to road, as evidenced by (Yuan et
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al. 2010). For example, downtown areas usually have lower
speed (higher travel cost) during rush hours than usual, while
speed patterns in suburbs remain relatively constant.

Existing works addressing the fastest route search prob-
lem can be divided into two categories. On one hand, there
are works that infer latent travel costs of road segments by
mining historical trajectory data, e.g, (Idé and Sugiyama
2011) formulated a spatial proximity-regularized trajectory
regression problem to learn the potential cost of each road
from trajectory data; (Idé and Kato 2009) applied Gaussian
Process to directly predict the cost of a whole trajectory by
exploiting its similarity with trajectories in the training set.
However, these works unreasonably assumed static travel
costs on each road, while ignoring the potential temporal
dynamics. On the other hand, there are works that integrated
the temporal dynamics of road travel costs into the compu-
tation of the fastest route such as (Kanoulas et al. 2006).
However, they assumed that the temporal dynamics on each
road be known in advance as a piecewise constant function,
which is unrealistic in practice. In a word, the works in these
two categories complement each other, but no previous work
has well leveraged both of their advantages in a principled
and unified framework.

In view of this gap, we propose a novel optimization
framework in this paper which can not only learn the latent
travel costs of road segments from historical trajectory data
but also accounts for temporal dynamics of those costs in
an innovative non-parametric manner, i.e, without assuming
the function form of the temporal dynamics in advance. This
learning task can facilitate many applications such as route
travel time prediction, city traffic dynamics monitoring, etc.
The only assumption we make is that the temporal dynamics
of a road shows relatively stable periodic recurring patterns
over days, which is acceptable in real world traffic.

Without assuming the function form of the temporal dy-
namics in advance, a straightforward approach to our prob-
lem would be to separate the time domain into a series of
fine-grained time slots and then learn costs of roads in each
time slot using only the trajectories falling in that slot. How-
ever, this simple method would suffer from severe over-
fitting caused by the issue of temporal sparsity. In particular,
although large in scale, a trajectory data set usually presents
a skewed temporal distribution, i.e, a number of time slots
might have few trajectories recorded. Moreover, the travel
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costs on different roads might change in different ways over
time, making the problem even more challenging.

To tackle these challenges, we propose, based on the
static trajectory regression framework proposed by (Idé and
Sugiyama 2011), a multi-task learning framework with a
novel temporal regularization term that allows information
sharing between neighboring time slots. On one hand, by
treating each time slot as a separate learning task, the frame-
work accounts for road cost change over time, which essen-
tially learns temporal dynamics in a non-parametric manner.
On the other hand, with an appropriate information sharing
between neighboring time slots, the framework effectively
overcomes the temporal sparsity challenge, thus revealing
meaningful temporal dynamic patterns. The intuition is that,
the latent cost of a road usually changes smoothly with ap-
parent “flat intervals” rather than fluctuating arbitrarily. For
example, the “rush hour” represents a flat interval and the
“working hour” represents another. The latent cost in each
interval remains relatively constant but different intervals
might show apparently different costs. To model this intu-
ition, we introduce a cross-task regularization that employs
the idea of fused lasso (Tibshirani et al. 2005) to encourage
sparsity in temporally successive cost differences as a natu-
ral formulation of the observation that there are usually only
a few cost “transitions” along the time domain. In this way,
we essentially address the temporal sparsity challenge by al-
lowing a smooth information flow along the time domain.
From an overall perspective, our framework, which favors
temporal smoothness, learns for each road how to “partition”
the time domain into a few intervals with each interval tak-
ing one relatively unique constant cost. As we shall see later,
although the resulting learning problem is proved convex, it
is non-differentiable and has too many parameters, making it
challenging to solve. To address this challenge, we propose
a block-coordinate descent method which can not only solve
the problem efficiently by exploiting its separable structures,
but also is guaranteed to converge to the global optimum. We
summarize our contributions as follows:

1) We propose the problem of learning temporal dynam-
ics of travel costs on road segments from trajectory data
sets, which can benefit many smart-city applications such as
fastest route recommendations and city traffic monitoring.

2) We propose a multi-task learning framework in time
domain with a novel regularization encouraging temporal
smoothness which can not only uncover the temporal dy-
namics of road costs in a non-parametric manner, but also
overcome the temporal sparsity in trajectory data.

3) We propose an efficient block-coordinate descent algo-
rithm to solve the learning problem which is guaranteed to
converge to the global optimum.

4) We perform extensive experiments on both synthetic
and real data sets to demonstrate the effectiveness and pre-
dictive power of our method.

Problem Formulation
In this section, we review the static trajectory regression
framework in (Idé and Sugiyama 2011) briefly, and then ex-
tend it to a multi-task learning framework in time domain.
We use “road segment” and “link” interchangeably.

Static Trajectory Regression Framework
(Idé and Sugiyama 2011) formulated the task of learning
static road costs from trajectory data as a regression prob-
lem with a penalty encouraging spatial smoothness of costs
over neighboring roads. Let w ∈ RM encode the cost
per distance unit for each link, where M is the number of
links. Suppose there are N trajectories in the data set D,
and the nth trajectory is represented as φn ∈ RM , where
its mth element is the length of the mth link if the tra-
jectory has passed that link, and 0 otherwise. The whole
trajectory set can therefore be encoded in matrix Φ =
(φT1 ,φ

T
2 , ...,φ

T
N )T ∈ RN×M , where the nth row is φTn .

Let vector y ∈ RN record the total time spent on each tra-
jectory, then wTφn is a good approximation of yn because
the total time spent is the sum of the contributions on the
individual links. By assuming a Gaussian noise model

p(yn|φn) = N (yn|wTφn, σ
2) (1)

the total loss to be minimized for learning w is ||y−Φw||22.
To overcome spatial sparsity, i.e, to infer costs of roads with
few passage history, (Idé and Sugiyama 2011) adds a penalty

1

2

M∑
i=1

M∑
j=1

Sij |wi −wj |2 (2)

to impose a soft constraint that spatially close roads tend
to have similar costs, where Sij is the spatial proximity be-
tween link i and link j. (2) can be rewritten as wTLw, where
L is the Laplacian matrix defined as Lij = δij

∑M
k=1 Sik −

Sij . The final optimization problem is:

min
w
||y −Φw||22 + λwTLw (3)

where λ is the penalty factor. This is clearly a kernel ridge
regression problem and can be solved analytically.

Trajectory Regression Framework with Temporal
Dynamics
Being unaware of time-dependence, the static framework is
not suitable in the presence of temporal dynamics in road
costs. To tackle this problem, we propose a multi-task ap-
proach to integrate temporal dynamics of road costs into the
framework. Instead of using a single vector w to represent
the static link costs, we allow for temporally dynamic link
costs by dividing the entire time domain (usually a day) into
K fine-grained slots ordered by time, and introduce a sepa-
rate cost vector for each time slot. Let vector wk ∈ RM en-
code the cost per distance (unit cost) of each link in time slot
k. All parameters can therefore be represented as a M ×K
matrix W = (w1,w2, ...,wK). The mth row wm describes
how the cost on link m changes in a day. W captures both
temporal variation and spatial variation by its columns and
rows, respectively. This modeling is motivated by two con-
cerns. First, as there is no domain knowledge for the func-
tion form of the cost temporal dynamics, the only way that
is faithful to reality is to represent such temporal dynamics
as a discrete cost sequence over time and learn it in a non-
parametric manner. Second, as costs on different links might
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change in different ways in a day, each link should have its
own representation of temporal dynamics.

To derive the objective function, we divide the whole tra-
jectory set D into D1, ...,DK , where Dk contains only tra-
jectories whose time spans fall in slot k. Trajectories that
span multiple time slots are split accordingly. Let Φk ∈
RNk×M represent trajectories in Dk which has Nk trajec-
tories, and let yk ∈ RNk encode the total travel time on
each trajectory in Dk. Due to the low sampling rate prob-
lem and the GPS recording noises that often occur in data
collection procedure, the travel time over individual links
cannot be reliably obtained in most cases, thus we only use
the total travel time over each trajectory in the training set
so as to neutralize the various noises. The total loss for time
slot k is then ||yk−Φkwk||22. Similar to (Idé and Sugiyama
2011), we add a penalty wT

k Lwk for each time slot to en-
courage spatial smoothness on link costs, where L is the
Laplacian matrix encoding link spatial proximity. We also
add a penalty ||wk||22 to regularize the magnitude of wk.

We now propose a novel temporal regularization to over-
come temporal sparsity problem that exploits the inherent
temporal smoothness in traffic flow. Intuitively, the travel
cost on a link usually changes smoothly due to the smooth
evolution of traffic flow in real world. Thus, a typical cost
temporal dynamics usually has only a few “transitions”, i.e,
it appears in the form of a few intervals where the cost within
each interval remains relatively constant. To capture two
characteristics of link cost temporal dynamics, that is, keep-
ing smooth within an interval as well as having only a few
transitions, we add to the objective the following temporal
regularization term, which is a variant of the fused lasso:

M∑
m=1

( K∑
k=2

|wm
k −wm

k−1|
)2

(4)

where the scalar wm
k is Wmk.

∑K
k=2 |wm

k −wm
k−1| is the l1

norm on the successive cost differences w.r.t the mth link,
known as the fused lasso of wm. Due to the usage of l1
norm, this regularization tends to drive most successive cost
differences to zeros and retain only a few non-zeros, thus
achieving the effect of learning for each link a cost tem-
poral dynamics roughly as a piecewise constant function.
Note that we are learning cost temporal dynamics in a non-
parametric manner without assuming piecewise constancy
in advance; we only identify near-piecewise smoothness as
an intuitive characteristics of link cost temporal dynamics
and encode it as a soft constraint in the optimization frame-
work. We do not use l2 norm to penalize successive cost
differences as doing so tends to produce “wiggly” cost dy-
namics which is not robust to observation noises and will po-
tentially hurt generalization performance. In the outer layer,
we aggregate all link-specific fused lasso quantities using l2
norm instead of using l1 norm again for the concern that l2
norm shrinks all quantities by the same magnitude, which
meets our demand of treating each link equally, while us-
ing l1 norm tends to drive most links to have constant costs
over the entire time domain and hence defeats our purpose
of tracking temporal dynamics of link costs.

Our final optimization problem is given as follows:

min
W

K∑
k=1

(
||yk −Φkwk||22 + αwT

k Lwk + βwT
k wk

)
+λ

M∑
m=1

( K∑
k=2

|wm
k −wm

k−1|
)2

(5)

where wk and wm denote the kth column and the mth row
of W, respectively. α, β, λ are penalty factors set by tun-
ing. (5) can be viewed as an extension of (3) to a multi-task
setting where multiple time slot-specific trajectory regres-
sion tasks are coupled by a regularization term encouraging
temporal smoothness. The first part in (5) is separated by
time slots where each fits link costs to a time slot-specific
trajectory data set, whereas the second part is separated by
road segments with each encouraging temporal smoothness
on one link. However, the whole objective function is not
separable, making it challenging to solve, which we shall
discuss in the next section.

Learning Algorithm
We now discuss how to solve (5) effectively. Denote the
objective in (5) as f = f0 + λ

∑M
m=1 fm where f0 =∑K

k=1

(
||yk − Φkwk||22 + αwT

k Lwk + βwT
k wk

)
, fm =(∑K

k=2 |wm
k − wm

k−1|
)2

. Despite its convexity, it is chal-
lenging to solve because of its high-dimension and the non-
differentiable nature of fm. To tackle this, we adopt a block
coordinate descent method which can not only solve it effi-
ciently but also is guaranteed to converge to global optimum.

Block coordinate descent (BCD) (Bertsekas 1999)
method partitions variables into blocks and only updates one
block with all other blocks fixed at each iteration. The con-
vergence of BCD to global optimum requires that the ob-
jective be differentiable as well as satisfy certain convexity-
related properties (Bertsekas 1999). If the objective is non-
differentiable, it might occur that at certain non-stationary
point, no further decrease of the objective can be made by
only updating one block (Auslender 1976). However, if the
non-differentiable part is separable and the block partition-
ing agrees with that separable structure, BCD is guaranteed
to converge to global minimum provided the objective satis-
fies certain regularity properties (Tseng 2001). For our prob-
lem, since the non-differentiable part in (5) is separated by
rows of matrix W, we view each row wm as a block and
adopt cyclic BCD to solve this problem. Specifically, in each
iteration, we update one row of W, say wm, while keeping
other rows fixed at current values by solving subproblem (6):

min
wm

K∑
k=1

(
||ymk − xmkw

m
k ||22 + cmkw

m
k + qmwm2

k

)
+λ
( K∑
k=2

|wm
k −wm

k−1|
)2

(6)

where ymk = yk − Φ
(−m)
k w

(−m)
k (Φ(−m)

k is Φk with the
mth column removed, and w

(−m)
k is wk with the mth el-

ement removed), xmk is the mth column of Φk, cmk =
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2α
∑
m′ 6=m Lmm′wm′

k , and qm = αLmm + β. In (6), all
wm′(m′ 6= m) are fixed at the current values. We then use
the optimal point wm? of (6) to update the current wm in W
and proceed to update wm+1 in a similar way. Algorithm 1
summarizes the steps for solving problem (5).

Algorithm 1: BCD for solving (5)
Input : {Φk}k=1...K , {yk}k=1...K , L, α, β, λ
Output: W

1 Initialize W to W0 ;
2 for r=1 to R do // R: total iteration number
3 for m=1 to M do
4 compute ymk,xmk, cmk, qm for all k using the

current W;
5 update wm by solving subproblem (6), that is,

replace the mth row of W with the optimal
point wm? of (6);

6 end
7 end

There are two challenges to address in this algorithm.
First, is it guaranteed that the W sequence generated con-
verges to the global optimum W? of (5); second, how to
solve subproblem (6) which has a non-differentiable and
non-separable part fm to get wm?.

We firstly prove that Algorithm 1 is guaranteed to con-
verge to the global optimum of (5). Our major idea is to
firstly prove that the objective in (5) satisfies certain proper-
ties required in (Tseng 2001) by the following lemmas, and
then directly make use of Theorem 4.1 in (Tseng 2001) to
conclude our desired convergence property.

Lemma 1: Suppose W is initialized as W0 ∈ RM×K++ ,
and f(W0) < +∞, then the sublevel set {W|f(W) ≤
f(W0)} is closed and bounded.

Lemma 2: f is convex on W.
By these lemmas, we are ready to show the following:
Theorem 1: The sequence {Wr}r=1...R generated by the

block-coordinate descent method in Algorithm 1 converges
to the global optimum W? of (5).

The proofs of these lemmas and theorems can be found
in appendix. Now we proceed to the method of solving sub-
problem (6). As its non-differentiable part is not separable,
coordinate descent method cannot be used as it may get
stuck at non-stationary point. Our method is to convert (6)
to an equivalent QP (quadratic program) as in (7) (the proof
of the obvious equivalence is omitted to save space):

min
wm,t,θ+

,θ−

K∑
k=1

(
||ymk − xmkw

m
k ||22 + cmkw

m
k

+qmwm2
k

)
+ λt2

s.t wm
k −wm

k−1 = θ+
k−1 − θ−k−1 ∀k = 2...K

θ+
k ≥ 0,θ−k ≥ 0 ∀k = 1...K − 1

−t ≤ 1T (θ+ + θ−) ≤ t
t ≥ 0 (7)

where θ+,θ− ∈ RK−1 and t is a scalar. (7) is a small-scale
QP and hence can be solved by standard convex solver such
as cvx, which is guaranteed to find the optimum of (6).

In summary, the whole learning algorithm is to run Algo-
rithm 1 in a sufficient number of outer iterations until con-
vergence, and in each outer iteration, solve M subproblems
(6) by solving problem (7). We call our method DTRTS
(Dynamic Trajectory Regression regularized by Temporal
Smoothness) for subsequent reference.

Experiments
We conduct experiments to evaluate our framework on both
synthetic and real-world trajectory data sets. The synthetic
experiment, where the ground truth is provided, aims to
demonstrate the high accuracy of our model in uncovering
latent temporal dynamics of road costs, while the experi-
ments on real-world data show the existence of smoothly
changing road costs in real traffic, and that the accuracy of
travel time prediction can be improved when such smooth-
ness is explicitly taken into account.

Experiments on Synthetic Data
The goal of the synthetic experiment is to compare the tem-
poral dynamics of road segments uncovered by our frame-
work with the ground-truth to evaluate the effectiveness
of our method. To that end, we firstly generate temporally
changing costs for each link in a real-world road network in
a manner that encourages both spatial and temporal smooth-
ness, and then generate a set of trajectories and decide their
travel time using those costs with random noises added. In
particular, we use a region in Beijing as our road network
containing 1501 nodes and 2372 edges, and then perform
the following steps. First, we divide the time domain (6:00-
23:00) into 34 equal time slots with each being half an hour
and generate a set of smooth temporal dynamics typical in
real world such as “[slot 1-3: 60; slot 4-7: 30; slot 8-22:
50; slot 23-26: 20; slot 27-34: 60]” (congested in both early
and late rush hours) and “[slot 1-34: 30]” (strict speed limit
without temporal variation), where the values here (say, 60)
mean speed (km/h), which can be seen as the reciprocal of
unit cost. Second, we select 4-6 subregions as seed regions,
and for each of them, assign a cost temporal dynamics ran-
domly picked up to each link in that seed region. Gaussian
noises are added to the cost in each time slot before each
link-specific assignment is done in a seed region. Third, we
propagate the cost temporal dynamics from seed regions to
other unassigned road segments in a spatially and temporally
smooth manner, that is, each time when a link propagates its
cost temporal dynamics to one of its neighbors, it slightly
adjusts the length of each smooth interval by moving the
interval adjacency positions a bit; also, it adjusts the mean
value of each time interval (the speed value in the previous
example) by adding a Gaussian noise and then perturbing the
cost in each time slot around the new mean. The final cost
temporal dynamics for each link is obtained by computing
the weighted average of all temporal dynamics that particu-
lar link receives from its neighbors with the weight inversely
proportional to its hops from the seed region generating that
temporal dynamics.
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Figure 1: Cost temporal dynamics fitting results of some se-
lected roads

Next, to generate a set of trajectories, we partition the re-
gion into four grids. To generate one trajectory, we randomly
pick up two nodes from two randomly picked grids as source
and destination and then generate a reasonable path connect-
ing them. We then pick up a time point as the starting time
point for this trajectory, and estimate the travel time it has
spent on passing each link by using the pre-determined road
temporal dynamics with Gaussian noise added. After that,
we partition each trajectory into several subtrajectories such
that each of them falls into one single time slot and estimate
its total duration. In the last, we group all subtrajectories in
the same time slot together, forming 34 sets of trajectories,
where each trajectory is recorded as a sequence of road seg-
ment ids labeled only with its total travel time.

We then apply our framework to see if it can uncover the
latent temporal dynamics for link using the synthetic data.
The regularization parameters λ, α and β are tuned by cross
validation, and their impact on model performance is omit-
ted due to page limit. We evaluate both the consistency with
the ground-truth and the smoothness of the learned tempo-
ral dynamics. The metric for consistency evaluation is root
mean square error (RMSE), and the metric for smoothness
evaluation is the mean (average) absolute value of successive
cost differences (MASD), which is used for the temporal
regularization in (5). We firstly visualize the learning results
for 4 selected links in Figure 1, where the blue solid curves
are the ground truth and the red crosses are the learned ones.
It shows that the temporal dynamics learned has well cap-
tured the local smooth profiles of the underlying temporal
dynamics. We then plot the link count distribution for each
metric in Figure 2, which clearly shows that the learning re-
sults for most links achieve high consistency with the ground
truth and good local smoothness, as evidenced by their small
RMSE and MASD values.

Experiments on Real Data
For the experiment on real data, we show the existence of
smoothly changing cost temporal dynamics in city traffic
and demonstrate that the performance of trajectory travel
time prediction can be greatly improved by explicitly cap-
turing such temporal characteristics in the model.

Figure 2: Consistency and smoothness of the learning results

For our experiment, we use a taxi trajectory data set col-
lected from Shanghai, China, and select one week’s data
containing about 16500 trajectories covering 1000 taxis. We
select a downtown area in Shanghai with an area of 108km2,
and only retain trajectories that have passed that region. We
then perform the same preprocessing steps as done in the
synthetic experiment including dividing time slots and split-
ting trajectories to prepare the input to our framework.

In the absence of ground-truth, we evaluate the accuracy
of travel time prediction for test trajectories using the tem-
poral dynamics learned by performing 5-fold cross valida-
tion on the time-partitioned trajectory data set. In particular,
we compare the prediction accuracy of our method DTRTS
with two baselines: STR (Static Trajectory Regression) and
NDTR (Naive Dynamic Trajectory Regression). STR ig-
nores the presence of temporal dynamics in road segment
costs and simply learns a static cost for each road segment,
which is a degeneration of our method to the framework in
(Idé and Sugiyama 2011). At another extreme, by setting λ
to 0 in (5), NDTR separates the time domain into 34 time
slots and then learns link costs in each time slot using only
the trajectories falling in that slot, which has ignored the cor-
relations between travel costs in neighboring time slots. The
comparison of our method with these two baselines aims to
show that to improve the accuracy of travel time prediction,
it is crucial to capture the temporal variation of travel costs
in real-world road networks while at the same time encour-
aging temporal smoothness to overcome sparsity problem.

To empirically justify the temporal sparsity inherent in the
data set, we select one day and two small regions and show
the number of passed trajectories in each time slot in Figure
3. The insufficiency of trajectories in many time slots does
not mean that few vehicles passed the regions in those time
slots, but that the passed taxis recorded are rare. This sparsity
makes it essential to exploit trajectories in neighboring time
slots in a principled way to encourage temporal smoothness.

To illustrate the results, we randomly pick 25% of trajec-
tories from the test set and plot the comparison between their
recorded and predicted travel time in Figure 4, where the 45◦
line represents a perfect agreement. The Pearson correlation
coefficients of DTRTS, STR and DTR are 0.9057, 0.7363
and 0.8557, respectively. We can see that our method, which
tracks temporal dynamics while at the same time encourag-
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Figure 3: Empirical evidence for temporal sparsity

Figure 4: Comparison of 3 methods on travel time prediction

ing temporal smoothness, clearly outperforms the other two.
The performance of STR degrades as the trajectory length
increases. This is because long trajectories normally span
multiple time slots but STR is unaware of temporal dynam-
ics. DTR shows a poorer generalization performance than
DTRTS because it is trying to fit too many parameters with-
out imposing effective temporal regularization. Next, we
compare three methods in how their prediction RMSE (in
minutes) on test set change as the training proceeds in Figure
5. The result clearly shows that DTRTS gives the best per-
formance. STR converges very soon when prediction perfor-
mance is still poor, partly because the region we selected for
experiment is a prosperous downtown region, whose traffic
flow shows high variation over time.

Related Work
Traffic mining-based fastest route computation Many
approaches have been proposed to recommend fastest route
by mining knowledge from historical vehicle trajectories.
For example, (Gonzalez et al. 2007) derived inductive rules
from augmented historical traffic database describing how
various contexts decide road speed patterns. This approach
is infeasible in most cases as such a database is hard to ob-
tain in practice. (Idé and Sugiyama 2011) formulated the
task of learning road travel costs from trajectory data sets
as a ridge regression problem with the regularization term

Figure 5: Comparison of 3 methods on the convergence of
their travel time prediction performance

encouraging spatial smoothness. However, its ignorance of
the presence of temporal variation of road travel costs in re-
ality makes it somewhat impractical. (Yuan et al. 2010) built
a time-dependent landmark graph by mining from histori-
cal traffic data for fast route computation. However, it lacks
effective mechanism to propagate the learned knowledge
along spatial or temporal dimension, making it vulnerable
to spatial or temporal sparsity that might occur in real-world
data sets. Our work aims to overcome these limitations.

Shortest path search on time-dependent graphs With
temporal variation considered, fastest route computation is
modeled as a time-dependent shortest path search problem.
While numerous works (Kanoulas et al. 2006; Orda and
Rom 1990; Nachtigall 1995) have proposed efficient algo-
rithms to tackle this problem, most of them unrealistically
used prior knowledge of the temporal functions of edge
weights. Our work aims to compensate this drawback by
learning the temporal dynamics from historical traffic data.

Multi-task learning Multi-task learning aims to over-
come data sparsity problems in multiple domains by allow-
ing information sharing among each other. The key step is to
model the commonality among different tasks in an appro-
priate way, which is highly application-dependent. There are
theoretical works that capture the commonality in model pa-
rameters (Evgeniou and Pontil 2004), feature representation
(Argyriou, Evgeniou, and Pontil 2008), and task relation-
ships (Zhang and Yeung 2010). Our work treats each time
slot as a separate domain and aims to capture the common-
ality linking multiple model parameters. Such commonality
is local temporal smoothness in our scenario, which has not
been modeled before. For this reason, we propose our own
method to model such specific commonality.

Lasso-based penalized techniques Encouraging tempo-
ral smoothness amounts to encouraging sparsity of succes-
sive parameter differences. In statistics, lasso (Fu 1998) is
a technique widely used to encourage sparsity in parame-
ter estimation. A variation of lasso called fused lasso (Tib-
shirani et al. 2005) was proposed to encourage sparsity of
successive parameter differences, which clearly meets our
demands in modeling local temporal smoothness. However,
their solutions cannot be directly used as multiple fused las-
sos are coupled by regression square loss in our objective.
Hence we resort to block coordinate descent method (Tseng
2001) to solve our problem effectively and efficiently.
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Conclusion and Future Work
In this paper, we propose a multi-task framework to learn
temporal dynamics of road travel costs from historical tra-
jectory data, which can serve many smart city applications.
To capture the periodic temporal variation in travel costs,
we extend a static trajectory regression framework to a
multi-task one by regarding each fine-grained time slot as
a separate task. To overcome the temporal sparsity problem,
we introduce a novel cross-task regularization motivated by
fused-lasso to encourage temporal smoothness, based on the
observation that the traffic flow usually changes smoothly
over time. We then propose an efficient block coordinate de-
scent algorithm to solve the optimization problem and prove
its convergence to global optimum. Experiments on syn-
thetic data show our model’s ability in effectively uncover-
ing the cost temporal dynamics and experiments on real data
demonstrate our model’s good generalization performance.
For future work, it would be interesting to extend the frame-
work to detect abnormal traffic events, capture traffic vari-
ation between different time periods(e.g, weekdays, week-
ends), and take various contexts (e.g, weather, holidays) into
consideration.
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Appendix: Proof of Lemmas/Theorems
Proof of Lemma 1. We first show that the sublevel set S =
{W|f(W) ≤ f(W0)} is bounded. Assume on the contrary
that it is not bounded, then, there must exist a unit direction
V ∈ RM×K(||V||F = 1) such that ∀λ > 0, λV ∈ S,
i.e., ∀λ > 0, f(λV) ≤ f(W0). However, the expression
of f(λV) has a term

∑K
k=1 λ

2VT
?kV?k = λ2||V||F (V?k

denotes the kth column of V and ||V||F denotes the Frobe-
nius norm of V). Since ||V||F = 1 > 0, we must have
λ2||V||F > f(W0) provided λ >

√
f(W0). In addition,

all other terms in f(λV) are non-negative by their construc-
tion, so f(λV) > f(W0) when λ >

√
f(W0), resulting in

an contradiction. Therefore S is bounded.
Then we show that S is closed. According to the defini-

tion of closed set, we only need to prove that S′ = \S =
{W|f(W) > f(W0)} is open. Assume on the contrary
that S′ is not open, then, there exists a point X ∈ S′ which
is not an interior point, that is, there exists a unit direc-
tion V such that ∀δ > 0, X + δV /∈ S′. Or equivalently,
(i)f(X) > f(W0), and (ii)∀δ > 0, f(X + δV) ≤ f(W0).
But this is impossible because, suppose f(X) = θ >
f(W0), due to the continuity of f(W), we must have that
limδ→0 f(X + δV) = f(X) = θ > f(W0), which contra-
dicts (ii). Therefore, S is closed.

Proof of Lemma 2. f = f0+λ
∑M
m=1 fm. f0 is a quadratic

form of W, and by the positivedefiniteness of ΦT
kΦk and

Laplacial matrix L, it is easy to see that f0 is convex
on W. Next we consider

∑M
m=1 fm. We introduce matrix

A ∈ RK×(K−1) where Akk = −1 and Ak+1,k = 1 for
all k = 1...K − 1, and all other elements are 0. Also de-
note em ∈ RM as a basis vector with the mth element
being 1 and all other elements being 0. Then,

∑M
m=1 fm

can in fact be rewritten as
∑M
m=1 ||(WA)Tem||21. Note

that ||(WA)Tem||1 is convex on W because it is the l1
norm(convex function) of an affine transformation of W ac-
cording to (Boyd and Vandenberghe 2004). Also we have
||(WA)Tem||1 is non-negative. Then, by the conclusion
in Example 3.14(page 87)(Boyd and Vandenberghe 2004),∑M
m=1 ||(WA)Tem||21 is a convex function on W. There-

fore, f is the non-negative weighted sum of two convex
functions, and hence is convex on W according to (Boyd
and Vandenberghe 2004)

Proof of Theorem 1. By Lemma 1, S = {W|f(W) ≤
f(W0)} is closed (1). Obviously, f is continuous in do-
main S (2). By Lemma 2, we know that f is convex on
W, hence f is convex(also puedoconvex) in (wm,wm′) for
every m,m′ ∈ {1, 2, ...,M}, that is, f is puedoconvex on
every pair of blocks of W where the blocks are partitioned
by rows of W as before (3). The domain of f0 is RM×K ,
which is obviously open. Also, f0 is differentiable on its do-
main (5). Then, by Lemma 3.1 in (Tseng 2001), we have that
f is regular at every W ∈ S, where the regularity is defined
in (Tseng 2001) (6). Combining (1), (2), (3), (6), and mak-
ing use of Theorem 4.1(a) in (Tseng 2001), we conclude that
the W sequence generated by the block coordinate descent
method in algorithm 1 will converge to a stationary point of
f . Also by Lemma 2, the only stationary point of f on its do-
main is its global minimum, so we conclude that algorithm
1 will converge to the global minimum of f .
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