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Abstract

Lasso-type variable selection has increasingly expanded
its machine learning applications. In this paper, un-
correlated Lasso is proposed for variable selection,
where variable de-correlation is considered simultane-
ously with variable selection, so that selected variables
are uncorrelated as much as possible. An effective iter-
ative algorithm, with the proof of convergence, is pre-
sented to solve the sparse optimization problem. Exper-
iments on benchmark data sets show that the proposed
method has better classification performance than many
state-of-the-art variable selection methods.

In many regression applications, there are too many unre-
lated predictors which may hide the relationship between
response and the most related predictors. A common way to
resolve this problem is variable selection, that is to select a
subset of the most representative or discriminative predictors
from the input predictor set. The central requirement is that
good predictor set contains predictors that are highly cor-
related with the response, but uncorrelated with each other.
Various kinds of variable selection methods have been de-
veloped to tackle the issue of high dimensionality. The main
challenge is to select a set of predictors, as small as possi-
ble, that help the classifier to accurately classify the learning
examples.

The major type of variable selection methods (filter-type)
is independent of classifiers, such as: t-test, F-statistic (Ding
and Peng 2005), ReliefF (Kononenko 1994), mRMR (Peng,
Long, and Ding 2005), and information gain/mutual infor-
mation (Raileanu and Stoffel 2004). Another wrapper-type
of variable selection methods take classifier as a black box
to evaluate subsets of predictors (Kohavi and John 1997).
There also is method of stochastic search for variable se-
lection based on generalized singular g-prior (gsg-SSVS)
(Yang and Song 2010).

Recently, sparsity regularization receives increasing at-
tention in variable selection studies. The well-known Lasso
(Least Absolute Shrinkage and Selection Operator) is a pe-
nalized least squares method with l1-regularization, which is
used to shrink/suppress variables to achieve the goal of vari-
able selection (Tibshirani 1996). Owing to the nature of the

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

l1-norm penalty, the Lasso does both continuous shrinkage
and automatic variable selection simultaneously. As variable
selection becomes increasingly important in modern data
analysis, the Lasso is much more appealing for its sparse
representation. Elastic Net (Zou and Hastie 2005) added l2-
regularization in Lasso to make the regression coefficients
more stable. Group Lasso (Yuan and Lin 2006) was pro-
posed where the covariates are assumed to be clustered in
groups, and the sum of Euclidean norms of the loadings in
each group is utilized. Supervised Group Lasso (SGLasso)
(Ma, Song, and Huang 2007) performed K-means clustering
before Group Lasso.

In this paper, motivated by the previous sparse learning
based research, we propose to add variable correlation into
the sparse-learning-based variable selection approach. We
note that in previous Lasso-type variable selection, vari-
able correlations are not taken into account, while in most
real-life data, predictors are often correlated. Strongly cor-
related predictors share similar properties, and have some
overlapped information. In some cases, especially when the
number of selected predictors is very limited, more informa-
tion needs to be contained in the selected predictors, where
strongly correlated predictors should not be in the model
together. Only one predictor is selected out of the strongly
correlated predictors, so that limited selected predictors will
contain more information.Therefore we need to take into ac-
count the variable correlation in variable selection. To our
knowledge, existing Lasso-type of variable selection meth-
ods have not considered variable correlation.

In the following, we firstly briefly review the normal
Lasso and Elastic Net, then present our formulation of un-
correlated Lasso-type variable selection. An effective itera-
tive algorithm, with its proof of convergence, is presented to
solve the sparse optimization problem. Experiments on two
benchmark gene data sets are performed to evaluate the al-
gorithm. The paper concludes in the last section.

Brief review of Lasso and Elastic Net
Let there be a set of training data {(xi, yi), i = 1, 2, · · · , n},
where xi = (x1i, x2i, · · · , xpi)> ∈ Rp is a vector of pre-
dictors and yi ∈ R is its corresponding response. Formulate
them in matrix form X = [x1,x2, · · · ,xn] ∈ Rp×n and
y = (y1, y2, · · · , yn)> ∈ Rn, then the Lasso (Tibshirani
1996) is a linear regression problem between predictors and
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response, which can be written as

min
β∈Rp

‖y> − β>X‖22 + λ‖β‖1, (1)

where ‖β‖1 is l1-norm of vector β (sum of absolute ele-
ments), ‖β‖1 =

∑p
j=1 |βj |. λ ≥ 0 is a tuning parame-

ter. An intercept term is often omitted from (1) if the re-
sponse and the predictors have been preprocessed by zero
centering. The solution vector of (1) is very sparse (with
few nonzero elements) due to the l1-norm penalty. However,
l1-minimization algorithm is not stable compared with l2-
minimization (Xu, Caramanis, and Mannor 2012).

The Elastic Net (Zou and Hastie 2005) adds l2-
minimization term into Lasso objective function, which can
be formulated as

min
β∈Rp

‖y> − β>X‖22 + λ1‖β‖1 + λ2‖β‖22, (2)

where λ1, λ2 ≥ 0 are tuning parameters. Apart from enjoy-
ing a similar sparsity of representation of Lasso, the Elastic
Net encourages a grouping effect, where strongly correlated
predictors tend to be in or out of the model together (Zou
and Hastie 2005).

Predictors with high correlation contain similar prop-
erties, and have some overlapped information. In some
cases, especially when the number of selected predictors
is very limited, more information needs to be contained in
the selected predictors, where strongly correlated predictors
should not be in the model together. Only one predictor is
selected out of the strongly correlated predictors, so that lim-
ited selected predictors will contain more information.

Uncorrelated Lasso
In this section, we consider the variable selection based on
Lasso-type l1-minimization where selected predictors are
uncorrelated as much as possible. Only one predictor of
strongly correlated predictors tend to be in the model while
the others not.

The Formulation
Suppose there are the matrix of predictors with n ob-
servations of p predictors X = [x1,x2, · · · ,xn] =
(xki) ∈ Rp×n and the corresponding response vector y =
(y1, y2, · · · , yn)> ∈ Rn. Suppose response and all p pre-
dictors are preprocessed by normalization of zero mean and
unit variance.

Denote the correlation coefficient matrix of p predictors
R = (rkl) ∈ [−1, 1]p×p, where the (k, l)-th element rkl
is the correlation coefficient between the k and l-th zero-
centered predictors,

rkl =

∑n
i=1 xkixli√∑n

i=1 x
2
ki

√∑n
i=1 x

2
li

. (3)

To let the selected predictors of Lasso-type l1-
minimization be uncorrelated as much as possible, the re-
gression coefficient vector β should satisfy

min
β∈Rp

β>Cβ, (4)

where
C = R�R (5)

is the square correlation coefficient matrix, ckl = r2kl. � is
Hadamard product of matrices. We choose C instead of R
to eliminate the effect of anti-correlation.

Therefore, we combine the above two minimization prob-
lem of Lasso (1) and decorrelation (4), and propose uncorre-
lated Lasso (ULasso) for representation and variable selec-
tion, which is formulated as

min
β∈Rp

‖y> − β>X‖22 + λ1‖β‖1 + λ2β
>Cβ, (6)

where λ1, λ2 ≥ 0 are tuning parameters. Note that correla-
tion coefficient matrix R is semi-positive, then C is semi-
positive. Therefore, Equation (6) is a convex optimization
because all three terms are convex, which indicates that there
exists a unique global optimum solution for minimizing (6)
of ULasso.

By minimizing formula (6), one can obtain regression
coefficients not only as sparse as that of Lasso but also
with nonzero elements corresponding to predictors contain-
ing minimal correlations. If parameter λ2 in (6) is set to be
zero, then ULasso is reduced to normal Lasso. If the original
predictors are all uncorrelated, i.e., C = Ip, then ULasso is
turned into Elastic Net.

Optimization Algorithm
To obtain the global minimization solution of (6), we pro-
pose an iterative algorithm, which can be summarized as in
Algorithm 1. In each iteration step, diagonal matrix M is
calculated with the current β as in formula (7), and then β
is updated based on the just calculated M as in formula (8).
The iteration procedure between (7) and (8) is repeated until
the algorithm converges.

Algorithm 1 Procedure of Uncorrelated Lasso
1: Input: Predictor matrix X ∈ Rp×n and corresponding

response y ∈ Rn (response and all p predictors are zero-
mean and unit variance), initial regression coefficients
β(0) ∈ Rp, tuning parameters λ1, λ2 ≥ 0, maximum
number of iteration tmax or residual bound ε > 0;

2: Compute fixed matrix B = XX> + λ2C, t = 0;
3: Update diagonal matrix

M(t) = diag

(√
|β(t)

1 |,
√
|β(t)

2 |, · · · ,
√
|β(t)
p |
)

; (7)

4: Update regression coefficients

β(t+1) = M(t)

[
M(t)BM(t) +

λ1
2
Ip

]−1
M(t)Xy;

(8)
5: If t > tmax or ‖β(t+1) − β(t)‖ < ε, go to step 6, other-

wise, let t = t+ 1 and go to step 3;
6: Output: The optimal regression coefficients β∗ =
β(t+1).

Note that in the input data of Algorithm 1, response and
all p predictors are preprocessed by regularization of zero-
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mean and unit variance. However, as discussed later, only
the zero centering for each predictors is essential for Algo-
rithm 1. Regularization of unit variance for predictors is used
to balance among predictors which have different scales and
variations, so that all predictors are treated equally when
performing variable selection after Algorithm 1. Preprocess-
ing of zero-mean and unit variance for response is optional,
which is just adopted to simplify the prediction. In two-class
case, decision bound of prediction can be simply set as zero.

Justification
In this section, we will see that Algorithm 1 does converge
to the unique global optimum solution of ULasso minimiza-
tion problem (6). Let L(β) denote the objective function of
ULasso in (6). Since L(β) is a convex function of regression
coefficients β, therefore, we only need to prove the objective
function value L(β) is non-increasing along each iterations
in Algorithm 1, which is summarized in Theorem 1.

Theorem 1 The objective function value L(β) in ULasso
minimization problem (6) is non-increasing, L(βt+1) ≤
L(βt), along with each iteration of formulae (7) and (8) in
Algorithm 1.

To prove the Theorem 1, we need the help of the following
two Lemmas, which are needed to be proved firstly.

Lemma 2 Define an auxiliary function

G(β) = ‖y> − β>X‖22 + λ1

p∑
j=1

β2
j

2|β(t)
j |

+ λ2β
>Cβ. (9)

Along with the {β(t), t = 0, 1, 2, · · ·} sequence obtained in
Algorithm 1, the following inequality holds,

G(β(t+1)) ≤ G(β(t)). (10)

Proof Since all three terms in auxiliary function G(β) are
semi-definite programming (SDP) problems, we can obtain
the global optimal solution ofG(β) by taking the derivatives
and let them equal to zero.

Making use of M(t) denotation in (7), the auxiliary func-
tion G(β) can be rewritten as

G(β) = ‖y> − β>X‖22 +
λ1
2
β>(M(t))−2β + λ2β

>Cβ.

(11)
Take the derivative of (11) with respect to β, and we get

∂G(β)

∂β
= 2XX>β − 2Xy +

λ1
2

2(M(t))−2β + λ22Cβ.

(12)
By setting ∂G(β)

∂β = 0, we obtain the optimal solution of
auxiliary function

β∗ =

[
XX> +

λ1
2

(M(t))−2 + λ2C

]−1
Xy (13)

=

[
B +

λ1
2

(M(t))−2
]−1

Xy

= M(t)

[
M(t)BM(t) +

λ1
2
Ip

]−1
M(t)Xy.(14)

The solution (14) gives the global optima of G(β). Thus
G(β∗) ≤ G(β) for any β. In particular, G(β∗) ≤ G(β(t)).
Comparing (8) with (14), β(t+1) = β∗. This completes the
proof of Lemma 2.

It is important to note that we use Eq.(14) instead of the
seemingly simpler Eq.(13). This is because as iteration pro-
gresses, some elements of β could become zero due to the
sparsity of l1-penalty. This causes the failure of inverse op-
erator of M(t) in Eq.(13). Thus Eq.(13) is ill defined. How-
ever, matrix M(t) is well-defined. Thus Eq.(14) is well-
defined, which is chosen as the updating rule (8) in Algo-
rithm 1.

Lemma 3 The {β(t), t = 0, 1, 2, · · ·} sequence obtained by
iteratively computing (7) and (8) in Algorithm 1 has the fol-
lowing property

L(β(t+1))− L(β(t)) ≤ G(β(t+1))−G(β(t)). (15)

Proof Setting ∆ = (L(β(t+1))− L(β(t)))− (G(β(t+1))−
G(β(t))), substitute (6) and (9) in it,

∆ = (λ1‖β(t+1)‖1 − λ1‖β(t)‖1)−λ1 p∑
j=1

(β
(t+1)
j )2

2|β(t)
j |

− λ1
p∑
j=1

(β
(t)
j )2

2|β(t)
j |


= −λ1

2

p∑
j=1

1

|β(t)
j |
{−2|β(t+1)

j ||β(t)
j |+ 2|β(t)

j |
2 +

(β
(t+1)
j )2 − (β

(t)
j )2}

= −λ1
2

p∑
j=1

1

|β(t)
j |

(
|β(t+1)
j | − |β(t)

j |
)2

≤ 0. (16)

This completes the proof of Lemma 3.

From Lemma 2 and Lemma 3, we have,

L(β(t+1))− L(β(t)) ≤ G(β(t+1))−G(β(t)) ≤ 0, (17)

which is to say

L(β(t+1)) ≤ L(β(t)). (18)

This completes the proof of Theorem 1. Therefore, Algo-
rithm 1 converges to the global optimal solution of minimiz-
ing (6) of ULasso.

Variable Selection
When the global optimal solution β∗ = (β∗1 , β

∗
2 , · · · , β∗p)>

of ULasso objective function (6) is obtain by Algorithm
1, small regression coefficients β∗j are treated as zero for
variable selection. Denote the filtered coefficients be β̂ =

(β̂1, β̂2, · · · , β̂p)>,

β̂j = { β
∗
j , if |β∗j | > εµ

0, if |β∗j | ≤ εµ
, (19)

where ε > 0 is a small constant and µ =
∑p
j=1 |β∗j |/p is ab-

solute mean coefficient. Suppose there are k nonzero filtered
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coefficients |β̂j1 | ≥ |β̂j2 | ≥ · · · ≥ |β̂jk | > 0, then those pre-
dictors indexed by {j1, j2, · · · , jk} are selected out.

In cases where different number of predictors need to be
selected out, one should tune parameters λ1 and λ2 in ob-
jective function (6) to obtain different sparsity of filtered
regression coefficients β̂. A suboptimal but much simpler
method of selecting q predictors is just picking out those pre-
dictors indexed by {j1, j2, · · · , jq}, which are correspond-
ing to the q biggest absolute filtered regression coefficients
{β̂j1 , β̂j2 , · · · , β̂jq}.

Prediction Bound: Two-Class Case
Suppose q predictors {xj1 , xj2 , · · · , xjq} are selected out,
then the regression coefficients between q selected predic-
tors and response needs to be recalculated with normal
least-square method. Denote selected predictor vector x′ =
(xj1 , xj2 , · · · , xjq )>, its corresponding observation matrix
X′ = [x′1,x

′
2, · · · ,x′n]. The coefficients β′ of regression

equation y> = β′>X′ is re-estimated as

β̂′ = (X′X′>)−1X′y. (20)

The response of new observed predictor vector x′ =
(xj1 , xj2 , · · · , xjq )> can be predicted by

ŷ = β̂′>x′. (21)

When response y is label information of two classes y ∈
{−1, 1}, the Bayesian optimal decision bound can be ob-
tained as follows. Let all training samples of the two classes
estimate their responses via formula (21), and denote the
means and standard deviations of the estimated responses
of the two classes be ȳ1, ȳ2 and σ1, σ2. Then, at Bayesian
optimal decision bound b, the probability density of the two
classes should be equal, p(b|ȳ1, σ1) = p(b|ȳ2, σ2), which is
equivalent to (b − ȳ1)/σ1 = (ȳ2 − b)/σ2. This gives the
Bayesian optimal decision bound b,

b =
σ2ȳ1 + σ1ȳ2
σ1 + σ2

. (22)

For new observed predictor vector x′, its response ŷ is pre-
dicted by (21). If ŷ < b, then make decision that x′ belongs
to class 1; otherwise, class 2.

Intercept Term
If predictors are not zero centered, then the intercept term
t can not be omitted from the objective function (6) of
ULasso. The formal objective function with intercept term
t of ULasso, for any predictors X = [x1,x2, · · · ,xn] =
(xji) ∈ Rp×n and response y = (y1, y2, · · · , yn)> ∈ Rn
without preprocessing, can be written as

min
β∈Rp

‖y> − t1>n − β>X‖22 + λ1‖β‖1 + λ2β
>Cβ, (23)

where 1n is an n-dimensional vector with all one entry.
Similar to previous method, an auxiliary function is con-

structed

G(t, β) = ‖y>−t1>n −β>X‖22+
λ1
2
β>M−2β+λ2β

>Cβ,

(24)

where diagonal matrix M is defined as in (7). Taking the
derivative ofG(t, β) with respect to t and β, and letting them
equal to zero, one can obtain

t=
1

n
(y> − β>X)1n, (25)

β=

[
XX> +

λ1
2
M−2 + λ2C

]−1
X(y − t1n). (26)

From (25), we can get

X(y − t1n) = X(y − 1

n
1n1

>
n (y −X>β))

= X((In −P)y + PX>β)

= X̃y + XPX>β, (27)

where P = 1
n1n1

>
n , it satisfies P2 = P and (In − P)2 =

In −P.
X̃=̂X(In −P) = X− x̄1>n (28)

is the zero-centered predictor matrix.
Now replace (27) into (26), and we obtain

β∗ =

[
X(In −P)X> +

λ1
2
M−2 + λ2C

]−1
X̃y

=

[
X̃X̃> +

λ1
2
M−2 + λ2C

]−1
X̃y

= M

[
MB̃M +

λ1
2
Ip

]−1
MX̃y, (29)

where B̃ = X̃X̃> + λ2C. Comparing (29) with (8), we
can see that the iteration procedure of ULasso with intercept
term is similar to Algorithm 1, which needs to convert pre-
dictor matrix X to zero-centered X̃ as (28) before iteration,
then alternately update M and β as (7) and (29). As the iter-
ation procedure converges, the intercept term t is estimated
as (25), or

t∗ = ȳ − β∗>x̄, (30)

where ȳ =
∑n
i=1 yi and x̄ =

∑n
i=1 xi are average response

and average predictor vector of training samples.

Coefficient Initialization
From Theorem 1 we know that Algorithm 1 can converges
to the global optimal solution from any nonzero initial coef-
ficient β(0). However, different coefficient initialization may
affect the convergence speed of Algorithm 1.

To evaluate the effect of different initial coefficient β(0)

on the convergence speed of Algorithm 1, we design five
initial coefficient β(0): first, all p entries are uniform random
number between 0 and 1; second, all p entries are Gaussian
random number of zero-mean and unit-variance; third, all p
entries are equal to 1

p ; fourth, least square coefficient β(0) =

(XX>+ λ2C)−1Xy; and fifth, ridge regression coefficient
β(0) = (XX> + Ip)

−1Xy.
These five coefficient initializations are tested on Colon

Cancer Data ((Alon et al. 1999)). Figure 1 shows the vari-
ation of objective function value along with each iteration
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Figure 1: Effect of different initial regression coefficient.

steps when different initial coefficient is adopted in Algo-
rithm 1. From the figure we can see that Algorithm 1 con-
verges very quickly, whatever the initial coefficient. The
lines corresponding to the first three initializations are very
similar and converge almost the same time. Initialization
with least square coefficient is a little slower than other
initializations. The fastest convergence is corresponding to
the initialization with ridge regression coefficient, since it is
closer to the optimal solution.

Experiments
We evaluate the effectiveness of the proposed uncorrelated
Lasso (ULasso) on two well known data sets: the Colon
Cancer Data (Alon et al. 1999) and the Leukemia Dataset
(Golub et al. 1999). The performance in variable selection
and classification accuracy of the ULasso will be compared
with other methods.

Colon Cancer Data
Alon et al. used Affymetrix Oligonucleotide Array to
measure expression levels of 40 tumor and 22 normal
colon tissues for 6500 human genes (Alon et al. 1999).
These samples were collected from 40 different colon
cancer patients, in which 22 patients supplied both nor-
mal and tumor samples. A subset of 2000 genes based
on highest minimal intensity across the samples was se-
lected, which can be downloaded from http:// microar-
ray.princeton.edu/oncology/affydata/. These data are pre-
processed by taking a base 10 logarithmic of each expres-
sion level, and then each tissue sample is standardized to
zero mean and unit variance across the genes.

Since this dataset does not contain test set, leave-one-out
cross validation (LOOCV) is usually adopted to evaluate the
performance of the classification methods for a selected sub-
set of genes. The external LOOCV procedure is performed
as follows: 1) omit one observation of the training set; 2)
based on the remaining observations, reduce the set of avail-
able genes to the top 200 genes as ranked in terms of the
t statistic; 3) the q most significant genes were re-chosen
from the 200 genes by the proposed ULasso algorithm; and

Figure 2: External LOOCV classification accuracy of
ULasso on Colon Cancer Data.

4) these q genes were used to classify the left out sample.
This process was repeated for all observations in the training
set until each observation had been picked out and classified
exactly once.

Based on the LOOCV strategy, the classification perfor-
mance of our method, with different q genes selected out,
is plotted in Figure 2. From the figure, we can see that the
performances of all three methods, Lasso, Elastic Net and
ULasso, become better as more genes are picked out for
classification. When the number of genes becomes large,
the classification performances begin to saturate. When the
number of genes is fixed, the performance of Elastic Net is
comparable to Lasso. However, the proposed ULasso show
consistent superiority over the Lasso and Elastic Net.

The top classification accuracy and the corresponding
number of genes of the proposed ULasso are compared
with the following classification methods: SVM (Furey et
al. 2000), LogitBoost (Dettling and Bhlmann 2003), MAVE-
LD (Antoniadis, Lambert-Lacroix, and Leblanc 2003), gsg-
SSVS (Yang and Song 2010), Supervised group Lasso
(SGLasso) (Ma, Song, and Huang 2007), Lasso (Tibshirani
1996) and Elastic Net (Zou and Hastie 2005). The summary
is presented in Table 1. It is clear from the comparison that
the proposed ULasso is better than the other popular classi-
fication methods using only moderate number of genes.

Method No. of genes LOOCV accuracy
SVM 1000 or 2000 0.9032
LogitBoost, optimal 2000 0.8710
MAVE-LD 50 0.8387
gsg-SSVS 10/14 0.8871
SGLasso 19 0.8710
Lasso 6 0.8710
Elastic Net 13 0.8710
ULasso 12 0.9355

Table 1: Top LOOCV accuracy and corresponding number
of genes on Colon Cancer Data.
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Figure 3: Classification accuracy of ULasso on Leukemia
training set.

Leukemia Dataset
The leukaemia data consist of 7129 genes and 72 sam-
ples (Golub et al. 1999), which can be downloaded from
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. In the
training data set, there are 38 samples, among which 27 are
type 1 leukaemia (acute lymphoblastic leukaemia, ALL) and
11 are type 2 leukaemia (acute myeloid leukaemia, AML).
The remaining 34 samples constitute test set, among which
20 are ALL and 14 are AML.

The preprocess method suggested by (Dudoit, Fridlyand,
and Speed 2002) is taken for the data: 1) thresholding:
floor of 100 and ceiling at 16, 000; 2) filtering: retain genes
with max(gene)/min(gene) > 5 and (max(gene) −
min(gene)) > 500, where max(gene) and min(gene) refer
to the maximum and minimum expression levels of a partic-
ular gene across samples respectively; and 3) base 10 loga-
rithmic transformation. The filtering resulted in 3571 genes.
The gene expression data are further preprocessed to have
mean zero and variance one across samples.

The gene selection procedure of our ULasso and other
methods is trained on the training set. When a subset of
genes are selected out for each methods, classification is per-
formed both in training set and test set. Figure 3 and Figure
4 show the classification accuracy results of ULasso, com-
pared with Lasso and Elastic Net, on Leukemia training and
testing sets when different number of genes are selected.
From the figures we can see that all of the three methods
perform excellent on training set (all classify correct). On
test set, Elastic Net is comparable to Lasso with the same
number of genes selected out. Our proposed ULasso consis-
tently outperforms the other two methods.

Then the top classification results of the proposed ULasso
is compared with SVM (Furey et al. 2000), weighted vot-
ing machine (WVM) (Golub et al. 1999), MAVE-LD (An-
toniadis, Lambert-Lacroix, and Leblanc 2003), gsg-SSVS
(Yang and Song 2010), Lasso (Tibshirani 1996) and Elas-
tic Net (Zou and Hastie 2005). The classification accuracy
on training set and test set, and the corresponding number of

Figure 4: Classification accuracy of ULasso on Leukemia
testing set.

genes are summarized in Table 2. From the table we can see
that the proposed ULasso outperforms other methods with
moderate number of genes.

Method No. of genes Training Test
accuracy accuracy

SVM 25∼2000 0.9474 0.8824∼0.9412
WVM 50 0.9474 0.8529
MAVE-LD 50 0.9737 0.9706
gsg-SSVS 14 0.9737 0.9706
Lasso 21 1.0000 0.9118
Elastic Net 26 1.0000 0.9118
ULasso 22 1.0000 1.0000

Table 2: Top accuracy and corresponding number of genes
on Leukemia Dataset.

Conclusion
Lasso-type variable selection is learned with constrains
of de-correlation, which is named uncorrelated Lasso
(ULasso), so that the variables selected out are uncorrelated
as much as possible. An effective iterative algorithm and
its corresponding analysis, with proof of convergence, are
proposed to solve ULasso. Experiments on two well known
gene datasets show that the proposed ULasso has better clas-
sification performance than many state-of-the-art variable
selection methods.
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