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Abstract

Answer set programs with external source access may intro-
duce new constants that are not present in the program, which
is known as value invention. As naive value invention leads to
programs with infinite grounding and answer sets, syntactic
safety criteria are imposed on programs. However, traditional
criteria are in many cases unnecessarily strong and limit ex-
pressiveness. We present liberal domain-expansion (de-) safe
programs, a novel generic class of answer set programs with
external source access that has a finite grounding and allows
for value invention. De-safe programs use so-called term
bounding functions as a parameter for modular instantiation
with concrete—e.g., syntactic or semantic or both—safety cri-
teria. This ensures extensibility of the approach in the future.
We provide concrete instances of the framework and develop
an operator that can be used for computing a finite grounding.
Finally, we discuss related notions of safety from the literature,
and show that our approach is strictly more expressive.

1 Introduction
Answer Set Programming (ASP) is a declarative program-
ming approach which due to expressive and efficient systems
like CLASP, DLV, and SMODELS, has been gaining popular-
ity for many applications (Brewka, Eiter, and Truszczyński
2011). Current trends in computing, such as context aware-
ness or distributed systems, raised the need for access to
external sources in a program, which, e.g., on the Web ranges
from light-weight data access (e.g., XML, RDF, or data bases)
to knowledge-intensive formalisms (e.g., description logics).

To cater for this need, HEX-programs (Eiter et al. 2005)
extend ASP with so-called external atoms, through which the
user can couple any external data source with a logic program.
Roughly, such atoms pass information from the program,
given by predicate extensions, into an external source which
returns output values of an (abstract) function that it com-
putes. This convenient extension has been exploited for many
different applications, including querying data and ontolo-
gies on the Web, multi-context reasoning, or e-government,
to mention a few (Eiter et al. 2011). It is highly expressive as
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external sources may introduce new constants not present in
the program, which is called value invention.

Naive support of value invention leads to programs with
infinite groundings and answer sets. E.g., the program

Π=

{
r1 : t(a). r3 : s(Y )← t(X),&cat [X, a](Y ).

r2 : dom(aa). r4 : t(X)← s(X), dom(X).

}
where &cat [X, a](Y ), returning in Y , as expected, the string
in X with a appended, has an infinite grounding. However,
only rules using a and aa are relevant for program evaluation.
Note that external sources are largely black boxes to the
reasoner. Thus the set of relevant constants for grounding
might be intuitively clear, but not formally. Predetermining
is in general not possible. To ensure that a finite portion of
the grounding of the program is sufficient, i.e., has the same
answer sets (which we call finite restrictability), existing
approaches impose strong syntactic safety restrictions on
programs, as in Eiter et al. (2006) or Calimeri, Cozza, and
Ianni (2007). As it turns out, they limit expressiveness often
unnecessarily, i.e., programs may not fulfil traditional safety
conditions while they are clearly finitely restrictable, as the
program Π above.

Our overall objective is thus to introduce a more liberal no-
tion of safety that still ensures finite restrictability. However,
rather than to merely generalize an existing notion, we aim
for a generic notion at a conceptual level that may incorporate
besides syntactic also semantic information about sources.
Briefly, our contributions are as follows:
• We introduce the notion of liberal domain-expansion (de-)
safety, which is parameterized with term bounding functions
(TBFs) (Section 3). The latter embody criteria which en-
sure that only finitely many ground instances of a term in a
program matter. The notion provides a generic framework
in which TBFs can be modularly exchanged and combined,
which offers attractive flexibility and future extensibility.
• We then provide concrete TBFs, which exploit like tra-
ditional approaches syntactic structure, but also semantic
properties of the program, hinging on cyclicity and meta-
information (Section 4); this allows to cover the program Π
above. Thanks to modularity, the TBFs can be fruitfully
combined into a single, more powerful TBF.
• We provide an optimized operator which can be used for
computing a finite grounding of de-safe programs (Section 5).

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

267



• We implement de-safety in the open-source system
DLVHEX and model, as a simple showcase, a pushdown au-
tomaton in a HEX-program exploiting de-safety. The program
can be flexibly extended to perform parsing under additional
constraints, as for instance in RNA string analysis (Section 6).
• Finally, we discuss related work and show that our approach
is more liberal, and conclude the paper (Sections 7 and 8).

2 Preliminaries
We start with basic definitions and introduce HEX-programs;
for details and background see Eiter et al. (2005). The signa-
ture consists of mutually disjoint sets P of predicates, X of
external predicates, C of constants, and V of variables. Note
that C may contain constants that do not occur explicitly in a
HEX program and can even be infinite.

A (signed) ground literal is a positive or a negative formula
Ta resp. Fa, where a is a ground atom of form p(c1, . . . , c`),
with predicate p ∈ P and constants c1, . . . , c` ∈ C, abbrevi-
ated p(c). An assignment A is a consistent set of literals. We
make the convention that if an assignment does not explicitly
contain Ta or Fa for some atom a, i.e. the assignment is
partial, then a is false w.r.t. A.

Syntax. HEX-programs generalize (disjunctive) extended
logic programs under the answer set semantics (Gelfond and
Lifschitz 1991) with external atoms of the form &g [X](Y),
where &g ∈ X , X = X1, . . . , X` and eachXi ∈ P∪C∪V is
an input parameter, and Y = Y1, . . . , Yk and each Yi ∈ C∪V
is an output term.

Each p∈P has arity ar(p)≥ 0 and each &g ∈X has in-
put arity ar I(&g)≥ 0 and output arity ar O(&g)≥ 0. Each
input argument i of &g (1≤ i≤ ar I(&g)) has type const or
pred, denoted τ(&g , i), where τ(&g , i) = pred ifXi ∈ P
and τ(&g , i) = const otherwise.

A HEX-program (or program) consists of rules r of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn ,

where each ai is an (ordinary) atom and each bj is either an
ordinary atom or an external atom, and k + n > 0.

The head of r is H(r) = {a1, . . . , an} and the body is
B(r) = B+(r) ∪ notB−, where B+(r) = {b1, . . . , bm} is
the positive body, B−(r) = {bm+1, . . . , bn} is the negative
body, and notS = {not b | b ∈ S}. For any rule, set of
rules O, etc., let A(O) and EA(O) be the set of all ordinary
and external atoms occurring in O, respectively.

Semantics. The semantics of a HEX-program Π is defined
via its grounding grnd(Π) (over C) as usual, where the value
of a ground external atom &g [p](c) w.r.t. an interpretation A
is given by the value f&g(A,p, c) of a k+l+1-ary Boolean
oracle function f&g (Eiter et al. 2005). The input parame-
ter pi ∈ p is monotonic if, f&g(A,p, c) ≤ f&g(A′,p, c)
whenever A′ increases A only by literals Ta where a has
predicate pi; otherwise, pi is nonmonotonic.

Satisfaction of (sets of) literals, rules, programs etc. O
w.r.t. A (denoted A |= O, i.e., A is a model of O) extends
to HEX in the obvious way. An answer set of Π is any
model A of the FLP-reduct (Faber, Leone, and Pfeifer 2011)
ΠA = {r ∈ grnd(Π) | A |= B(r)} of Π w.r.t. A whose

positive part (i.e., {Ta ∈ A}) is subset-minimal; the set of
all answer sets of Π is denoted by AS(Π).

Safety. A program is safe, if each variable in a rule r occurs
also in a positive body atom in B+(r). However, due to
external atoms we need additional safety criteria.
Example 1 Let &cat [X, a](Y ) be true iff Y is the string
catenation of X and a. Then Π = {s(a). s(Y ) ←
s(X),&cat [X, a](Y )} is safe but not finitely groundable. 2

Thus the notion of strong safety was introduced in Eiter et
al. (2006), which limits the output of cyclic external atoms.
Definition 1 (External Atom Dependencies) Let Π be a
HEX-program and a = &g [X](Y) be an external atom in Π.
• If b= p(Z) ∈

⋃
r∈ΠH(r), then a depends external mono-

tonically (resp. nonmonotonically) on b, denoted a→e
m b

(resp. a→e
n b), if Xi = p for some monotonic (resp. non-

monotonic) parameter Xi ∈X (= X1, .., X`).
• If {a, p(Z)} ⊆ B+(r), some Xi ∈X occurs in Z, and
τ(&g , i) = const, then &g [X](Y)→e

m p(Z).
• If {a, &h[V](U)} ⊆ B+(r), some Xi∈X occurs in U,

and τ(&g , i) = const, then &g [X](Y)→e
m &h[V](U).

Definition 2 (Atom Dependencies) For a program Π and
(ordinary or external) atoms a, b, we say:

(i) a depends monotonically on b, denoted a→m b, if:
• some rule r ∈ Π has a ∈ H(r) and b ∈ B+(r); or
• there are rules r1, r2 ∈ Π such that a ∈ B(r1) and
b ∈ H(r2) and a unifies with b; or
• some rule r ∈ Π has a ∈ H(r) and b ∈ H(r).

(ii) a depends nonmonotonically on b, denoted a →n b,
if there is some rule r ∈ Π such that a ∈ H(r) and
b ∈ B−(r).

The following definition represents these dependencies.
Definition 3 (Atom Dependency Graph) The atom depen-
dency graph ADG(Π ) = (VA, EA) of a program Π has as
nodes VA the (nonground) atoms occurring in non-facts r
(i.e., k 6= 1 or n > 0) of Π and as edges EA the dependency
relations→m,→n,→e

m,→e
n between these atoms in Π.

This allows us to introduce strong safety as follows.
Definition 4 (Strong Safety) An atom b= &g [X](Y) in a
rule r of a HEX-program Π is strongly safe w.r.t. r and Π, if
either there is no cyclic dependency over b in ADG(Π ), or
every variable in Y occurs also in a positive ordinary atom
a ∈ B+(r) not depending on b in ADG(Π).

A program Π is strongly safe, if every external atom in a
rule r ∈ Π is strongly safe w.r.t. r in Π.
Example 2 (cont’d) In the program Π of Example 1,
&cat [X, a](Y ) is not strongly safe because it is in a cycle
and no ordinary body atom contains Y . To make the pro-
gram strongly safe, one can add a domain predicate as in
Π′ = {s(a); s(Y )← s(X),&cat [X, a](Y ), dom(Y )}. 2

We can now introduce strong domain-expansion safety.
Definition 5 (Strong Domain-expansion Safety) A pro-
gram Π is strongly domain-expansion safe, if it is safe and
each external atom in a rule r is strongly safe w.r.t. r and Π.
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Strong domain-expansion safety of a program Π guaran-
tees that for some finite subset Π′ ⊆ grnd(Π), the answer
sets of Π′ and Π coincide on positive literals (in symbols,
Π′ ≡pos Π); we call this property finite restrictability of Π.

3 Liberal Safety Criteria
Strong domain-expansion safety is overly restrictive, as it
also excludes programs that clearly are finitely restrictable.

Example 3 Reconsider the program Π from Section 1. It is
not strongly domain-expansion safe because Y in r3 does
not occur in an ordinary body atom that does not depend
on &cat [X, a](Y ). However, Π is finitely restrictable as the
cycle is “broken” by dom(X) in r4. 2

In this section, we introduce a new notion of liberal
domain-expansion safety which incorporates both syntac-
tic and semantic properties of the program at hand. In the
following, domain-expansion safety (de-safety) refers to lib-
eral domain-expansion safety, unless we explicitly say strong
domain-expansion safety. Compared to the latter, this gives
us a larger class of programs which are guaranteed to have a
finite grounding that preserves all answer sets. Unlike strong
de-safety, liberal de-safety is not a property of entire atoms
but of attributes, i.e., pairs of predicates and argument po-
sitions. Intuitively, an attribute is de-safe, if the number of
different terms in an answer-set preserving grounding (i.e. a
grounding which has the same answer sets if restricted to the
positive atoms as the original program) is finite. A program
is de-safe, if all its attributes are de-safe.

Our notion of liberal de-safety is designed in an extensible
fashion, i.e., such that several safety criteria can be easily in-
tegrated. For this we parameterize our definition of de-safety
by a term bounding function (TBF), which identifies variables
in a rule that are ensured to have only finitely many instan-
tiations in the answer set preserving grounding. Finiteness
of the overall grounding follows then from the properties
of TBFs. Concrete syntactic and semantic properties are
realized in our definitions of concrete TBFs (cf. Section 4).

For an ordinary predicate p∈P , let p�i be the i-th at-
tribute of p for all 1 ≤ i ≤ ar(p). For an external pred-
icate &g ∈ X with input list X in rule r, let &g [X]r�T i
with T ∈ {I, O} be the i-th input resp. output attribute of
&g [X] in r for all 1 ≤ i ≤ arT (&g). For a ground pro-
gram P , the range of an attribute is, intuitively, the set of
ground terms which occur in the position of the attribute.
Formally, for an attribute p�i we have range(p�i,Π) =
{ti | p(t1, . . . , tar(p)) ∈ A(Π)}; for an attribute &g [X]r�T i
we have range(&g [X]r�T i,Π) = {xTi | &g [xI](xO) ∈
EA(Π)}, where xs = xs1, . . . , x

s
ars(&g).

Example 4 Some attributes of the program Π from Section 1
are t�1, &cat [X, a]r3�I2 and &cat [X, a]r3�O1. Furthermore,
range(t�1,Π) = {a}.

We use the following monotone operator to compute by
fixpoint iteration a finite subset of grnd(Π) for a program Π:

GΠ(Π′) =
⋃
r∈Π

{rθ | ∃A ⊆ A(Π′),A 6|= ⊥,A |= B+(rθ)},

whereA(Π′) = {Ta,Fa | a ∈ A(Π′)} \ {Fa | a← . ∈ Π}
and rθ is the ground instance of r under variable substitu-
tion θ : V → C. Note that in this definition, A might be
partial, but by convention we assume that all atoms which
are not explicitly assigned to true are false. That is, GΠ

takes a ground program Π′ as input and returns all rules
from grnd(Π) whose positive body is satisfied under some
assignment over the atoms of Π′. Intuitively, the operator
iteratively extends the grounding by new rules if they are
possibly relevant for the evaluation, where relevance is in
terms of satisfaction of the positive rule body under some
assignment constructible over the atoms which are possibly
derivable so far. Obviously, the least fixpoint G∞Π (∅) of this
operator is a subset of grnd(Π); we will show that it is finite
if Π is de-safe according to our new notion. Moreover, we
will show that this grounding preserves all answer sets be-
cause all rule instances which are not added have unsatisfied
bodies anyway.
Example 5 Consider the following program Π:

r1 : s(a). r2 : dom(ax ). r3 : dom(axx ).
r4 : s(Y )← s(X),&cat [X,x](Y ), dom(Y ).

The least fixpoint of GΠ is the following ground program:

r′1 : s(a). r′2 : dom(ax ). r′3 : dom(axx ).
r′4 : s(ax )← s(a),&cat [a, x](ax), dom(ax).
r′5 : s(axx )← s(ax),&cat [ax, x](axx), dom(axx).

Rule r′4 is added in the first iteration and rule r′5 in the second.
Towards a definition of de-safety, we say that a term in a

rule is bounded, if the number of substitutions in G∞Π (∅) for
this term is finite. This is abstractly formalized using term
bounding functions (TBFs).
Definition 6 (Term Bounding Function (TBF)) A term
bounding function b(Π, r, S,B) maps a program Π, a
rule r ∈ Π, a set S of already safe attributes, and a set B of
already bounded terms in r to an enlarged set of bounded
terms b(Π, r, S,B) ⊇ B, such that every t ∈ b(Π, r, S,B)
has finitely many substitutions in G∞Π (∅) if (i) the at-
tributes S have a finite range in G∞Π (∅) and (ii) each term
in terms(r) ∩B has finitely many substitutions in G∞Π (∅).

Intuitively, a TBF receives a set of already bounded terms
and a set of attributes that are already known to be de-safe.
Taking the program into account, the TBF then identifies and
returns further terms which are also bounded.

Our concept yields de-safety of attributes and programs
from the boundedness of variables according to a TBF. We
provide a mutually inductive definition that takes the empty
set of de-safe attributes S0(Π) as its basis. Then, each it-
eration step n ≥ 1 defines first the set of bounded terms
Bn(r,Π, b) for all rules r, and then an enlarged set of de-
safe attributes Sn(Π). The set of de-safe attributes in step
n+ 1 thus depends on the TBF, which in turn depends on the
domain-expansion safe attributes from step n.
Definition 7 ((Liberal) Domain-expansion Safety) Let b
be a TBF. The set of bounded terms Bn(r,Π, b) in a
rule r ∈ Π in step n ≥ 1 is defined as Bn(r,Π, b) =⋃

j≥0Bn,j(r,Π, b) where Bn,0(r,Π, b) = ∅ and for j ≥ 0,
Bn,j+1(r,Π, b) = b(Π, r, Sn−1(Π), Bn,j).
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The set of domain-expansion safe attributes S∞(Π) =⋃
i≥0 Si(Π) of a program Π is iteratively constructed with

S0(Π) = ∅ and for n ≥ 0:

• p�i∈Sn+1(Π) if for each r∈Π and atom p(t1, . . . ,
tar(p)) ∈ H(r), ti ∈ Bn+1(r,Π, b), i.e., ti is bounded;
• &g [X]r�Ii∈Sn+1(Π) if each Xi is a bounded vari-

able, or Xi is a predicate input parameter p and
p�1, . . . , p�ar(p) ∈ Sn(Π);

• &g [X]r�Oi∈Sn+1(Π) if and only if r contains an ex-
ternal atom &g [X](Y) such that Yi is bounded, or
&g [X]r�I1, . . . ,&g [X]r�Iar I(&g) ∈ Sn(Π).

A program Π is (liberally) domain-expansion safe, if it is
safe and all its attributes are domain-expansion safe.

An example is delayed until we have introduced concrete
TBFs in Section 4. However, the intuition is as follows.
In each step, the TBF first provides further terms that are
bounded (given the information assembled in previous iter-
ations), exploiting e.g. syntactic or semantic criteria. This
possibly makes additional attributes de-safe (cf. the condi-
tions for Sn(Π) in Definition 7 above), which in turn may
cause further terms to become bounded in the next iteration
step.

One can show that S∞(Π) is finite, thus the inductive
definition can be used for computing S∞(Π): the iteration
can be aborted after finitely many steps. We first note some
desired properties.
Proposition 1 The set S∞(Π) is finite.

Proof (Sketch). There are only finitely many ordinary and
external predicates with finite (input and output) arity. 2

Moreover, de-safe attributes have a finite range in G∞Π (∅).
Proposition 2 For every TBF b and n ≥ 0, if α ∈ Sn(Π),
then the range of α in G∞Π (∅) is finite.

Proof (Sketch). The proof uses a double induction, following
the mutual dependency of Sn(Π) and Bn(r,Π, b). The outer
induction shows that Sn+1(Π) are de-safe, using as (outer)
induction hypothesis that Sn(Π) are de-safe. This allows
for proving that for all t ∈ Bn+1(r,Π, b) the set of ground
instances of r in G∞Π (∅) contains only finitely many different
substitutions for t. This is again done by induction: We show
for each j ≥ 0, if t ∈ Bn+1,j+1(r,Π, b), then there are only
finitely many substitutions for t in G∞Π (∅), assuming that
it already holds for all t ∈ Bn+1,j(r,Π, b) (inner induction
hypothesis). This essentially follows from the properties of
TBFs. For the induction step of the outer induction, the dif-
ferent cases in the definition of liberal de-safety are exploited
to show the desired property. 2

Corollary 1 If α ∈ S∞(Π), then range(α,G∞Π (∅)) is finite.

This means that such attributes occur with only finitely
many arguments in the grounding computed by GΠ. This
result implies that also the whole grounding G∞Π (∅) is finite.
Corollary 2 If Π is a de-safe program, then G∞Π (∅) is finite.

Proof (Sketch). Since Π is de-safe by assumption, a ∈
S∞(Π) for all attributes a of Π. Then by Corollary 1, the
range of all attributes of Π in G∞Π (∅) is finite. But then there

exists also only a finite number of ground atoms in G∞Π (∅).
Therefore the grounding is finite. 2

As follows from these propositions, S∞(Π) is also finitely
constructible. Note that the propositions hold independently
of a concrete TBF, because the properties of TBFs are suffi-
ciently strong. This allows for a modular exchange or combi-
nation of the TBFs, as long as the preconditions of TBFs are
satisfied, without changing the definition of de-safety.

4 Concrete Term Bounding Functions
We now introduce concrete term bounding functions that
exploit syntactic and semantic properties of external atoms
to guarantee boundedness of variables. By our previous
result, this ensures also finiteness of the ground program
given by G∞Π (∅).

1. Syntactic Criteria. We first identify syntactic properties
that can be exploited for our purposes.
Definition 8 (Syntactic Term Bounding Function) We de-
fine bsyn(Π, r, S,B) such that t ∈ bsyn(Π, r, S,B) iff

(i) t is a constant in r; or
(ii) there is an ordinary atom q(s1, . . . , sar(q)) ∈ B+(r)

such that t = sj , for some 1 ≤ j ≤ ar(q) and q�j ∈ S;
or

(iii) for some external atom &g [X](Y) ∈ B+(r), we have
that t = Yi for some Yi ∈ Y, and for each Xi ∈ X,{
Xi ∈ B, if τ(&g , i) = const,

Xi�1, . . . , Xi�ar(Xi) ∈ S, if τ(&g , i) = pred.

Intuitively, (i) a constant is trivially bounded because it is
never substituted by other terms in the grounding. Case (ii)
states that terms at de-safe attribute positions are bounded;
more spcifically, the fact that an attribute q�j (where 1 ≤
j ≤ ar(q)) is de-safe, and thus has a finite range in G∞Π (∅),
implies that the term at this attribute position is bounded.
Case (iii) essentially expresses that if the input to an external
atom is finite, then also its output is finite.
Lemma 3 Function bsyn(Π, r, S,B) is a TBF.
Proof (Sketch). If t is in the output of bsyn(Π, r, S,B), then
one of the the conditions holds. If condition (i) holds, then t
is a constant, thus there is only one instance. If condition (ii)
holds, then t occurs as value for q�j, which has a finite range
by assumption. If condition (iii) holds, then t is output of an
external atom such that its input is finite. Thus there are only
finitely many oracle calls with finite output each. 2

Example 6 (cont’d) Consider Π from Example 5. We get
S1(Π) = {dom�1,&cat [X,x]r4�I2}, as B1(r2,Π, bsyn) =
{ax}, B1(r3,Π, bsyn) = {axx} andB1(r4,Π, bsyn) = {x}
(by item (i) in Definition 8), i.e., the derived terms in all rules
that have dom�1 in their head are known to be bounded.
In the next iteration, we get B2(r4,Π, bsyn) = {Y } (by
item (ii) in Definition 8) as dom�1 is already known to be
de-safe. Since we also have B2(r1,Π, bsyn) = {a}, the
terms derived by r1 and r4 are bounded, hence s�1 ∈ S2(Π).
Moreover, &cat [X,x]r4�O1 ∈ S2(Π) because Y is bounded.
The third iteration yields &cat [X,x]r4�I1 ∈ S3(Π) because
X ∈ B3(r4,Π, bsyn) due to item (ii) in Definition 8. Thus,
all attributes are de-safe. 2
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dom�1 s�1 &catr4�I1

&catr4�O1

&catr4�I2

Figure 1: Attribute dependency graph for Π in Example 5

2. Semantic Properties. We now define a TBF exploiting
meta-information about external sources in three properties.

The first property is based on malign cycles in attribute
dependency graphs, which are the source of any infinite value
invention. For space reasons, we omit here lengthy formal
definitions and focus on an intuitive understanding.

The attribute dependency graph GA(Π) has as nodes the
attributes of Π and its edges model the information flow
between the attributes. For instance, if for rule r we have
p(X)∈H(r) and q(Y)∈B+(r) such thatXi =Yj for some
Xi ∈X and Yj ∈Y, then we have a flow from q�j to p�i.
Example 7 (cont’d) The attribute dependency graph
GA(Π) of program Π from Example 5 is shown in Figure 1.

Definition 9 (Benign and Malign Cycles) A cycle K in
GA(Π) is benign w.r.t. a set of safe attributes S, if there exists
a well-ordering ≤C of C, such that for every &g [X]r�Oj 6∈ S
in the cycle, f&g(A, x1, . . . , xm, t1, . . . tn) = 0 whenever
• some xi for 1≤ i≤m is a predicate parameter,

&g [X]r�Ii 6∈S is in K, (s1, . . . , sar(xi))∈ ext(A, xi),
and tj 6≤C sk for some 1 ≤ k ≤ ar(xi); or
• some xi for 1≤ i≤m is a constant input parameter,

&g [X]r�Ii 6∈ S is in K, and tj 6≤C xi.
A cycle in GA(Π) is called malign w.r.t. S if it is not benign.

Intuitively, a cycle is benign if external atoms never deliver
larger values w.r.t. to their yet unsafe cyclic input. As there
is a least element, this ensures a finite grounding.
Example 8 (cont’d) The cycle in GA(Π) (dashed lines in
Figure 1) is malign w.r.t. S = ∅ because there is no well-
ordering as required by Definition 9. Intuitively, this is be-
cause the external atom infinitely extends the string.

If we replace &cat [X,x](Y ) in Π by &tail [X](Y ), i.e.,
we compute the string Y from X with the first character
removed, then the cycle in the adapted attribute dependency
graph becomes benign using < over the string lengths as
well-ordering. 2

Two other properties involve meta-information that directly
ensures an output attribute of an external source is finite.
Definition 10 (Finite Domain) An external predicate &g ∈
X has the finite domain property w.r.t. output argument
i ∈ {1, . . . , ar O(&g)}, if {yi | x ∈ (P ∪ C)ar I(&g),y ∈
Car O(&g), f&g(A,x,y) = 1} is finite for all assignments A.

Here, the provider of the external source explicitly states
that the output at a certain position in the output tuple is finite.
This is perhaps the most direct way to ensure boundedness
of the respective term.
Example 9 An external atom &md5 [S](Y ) computing the
MD5 hash value Y of a string S is finite domain w.r.t. the (sin-
gle) output element, as its domain is finite (yet very large). 2

While the previous properties derive boundedness of an
output term of an external atom from finiteness of its input,
we now reverse the direction. An external atom may have
the property that only a finite number of different inputs can
yield a certain output, which is formalized as follows.
Definition 11 (Finite Fiber) An external predicate &g ∈
X has the finite fiber property, if {x | x∈ (P∪C)ar I(&g),
f&g(A,x,y) = 1} is finite for every A and y ∈ Car O(&g).
Example 10 Let &square[X](S) be an external atom that
computes the square number S of X . Then for a given S,
there are at most two distinct values for X . 2

The three properties above lead to the following TBF.
Definition 12 (Semantic Term Bounding Function) We
define bsem(Π, r, S,B) such that t ∈ bsem(Π, r, S,B) iff

(i) t is captured by some attribute α in B+(r) that is not
reachable from malign cycles in GA(Π) w.r.t. S, i.e., if
α= p�i then t=ti for some p(t1, . . . , t`)∈B+(r), and
if α= &g [X]r�T i then t=XT

i for some &g [XI](XO)
∈B+(r) where XT =XT

1 , . . . , X
T
ar (&g); or

(ii) t=Yi for some &g [X](Y)∈B+(r), where &g has the
finite domain property in i; or

(iii) t∈X for some &g [X](Y)∈B+(r), where U ∈B for
every U ∈Y and &g has the finite fiber property.

This TBF is directly motivated by the properties introduced
above.
Lemma 4 Function bsem(Π, r, S,B) is a TBF.
Proof (Sketch). If t is in the output of bsyn(Π, r, S,B), then
one of the the conditions holds. If condition (i) holds, then
there is no information flow from malign cycles wrt. S to t.
Such cycles are the only source of infinite groundings: the
attributes in S have a finite domain by assumption. For
the remaining attributes in the cycle, the the well-ordering
guarantees that only finitely many different values can be
produced. If condition (ii) holds, then the claim follows from
finiteness of the domain of the external atom. If condition
(iii) holds, there are only finitely many substitutions for t
because the output of the respective external atom is bound
by precondition of TBFs and the finite fiber ensures that there
are only finitely many different inputs for each output. 2

For an attractive framework it is important that a certain
degree of flexibility is achieved in terms of composability
of TBFs. The following proposition allows us to construct
TBFs modularly from multiple TBFs and thus ensures future
extensibility by, e.g., customized application-specific TBFs.
Proposition 3 If bi(Π, r, S,B), 1 ≤ i ≤ `, are TBFs, then
b(Π, r, S,B) =

⋃
1≤i≤` bi(Π, r, S,B) is a TBF.

Proof (Sketch). For t ∈ b(Π, r, S,B), t ∈ bi(Π, r, S,B) for
some 1 ≤ i ≤ `. Then there are only finitely many substitu-
tion for t in G∞Π (∅) because bi is a TBF. 2

In particular, a TBF which exploits syntactic and semantic
properties simultaneously is

bs2(Π, r, S,B) = bsyn(Π, r, S,B) ∪ bsem(Π, r, S,B),

which we will use subsequently.
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5 Finite Restrictability
We now make use of the results from above to show that de-
safe programs are finitely restrictable in an effective manner.

Proposition 4 Let Π be a de-safe program. Then Π is finitely
restrictable and G∞Π (∅) ≡pos Π.

Proof (Sketch). We construct the grounding grndC(Π) as
the least fixpoint G∞Π (∅) of GΠ(X), which is finite by Corol-
lary 2. The set C is then given by the set of constants
appearing in grndC(Π). It remains to show that indeed
grndC(Π) ≡pos grndC(Π). We show the more general
proposition grndC(Π) ≡pos grndC′(Π) for any C ′ ⊇ C.
(⇒) One can show that for any A ∈ AS(grndC(Π)),
the bodies of all additional rules in r ∈ grndC′(Π) are
unsatisfied, thus A is a model of grndC′(Π). Moreover,
fgrndC(Π)A = fgrndC′(Π)A

′
, thus it is an answer set.

(⇐) For any A ∈ AS(grndC′(Π)), its restriction A′ to
the atoms in grndC(Π) is an answer set of grndC(Π). If
A′ is again extended to grndC′(Π) by setting all additional
atoms to false, this yields another model of grndC′(Π). Then
minimality of answer sets implies A = A′. 2

This proposition holds independently of a concrete term
bounding function. However, too liberal functions are ex-
cluded by the preconditions in the definition of TBFs.

Although the design of an algorithm which actually com-
putes a finite grounding is ongoing work and our of the scope
of this paper, we briefly sketch optimizations of the ground-
ing operator as basis for an efficient algorithm. The operator
GΠ is exponential in the number of ground atoms as it con-
siders all assignments A ⊆ A(Π′) in every step. As this
compromises efficiency, a better alternative is

RΠ(Π′) =
⋃
r∈Π

{
rθ | {Ta | a ∈ A(Π′)} |= B+(rθ)

}
.

Intuitively, instead of enumerating exponentially many
assignments it simply maximizes the output of external atoms
by setting all input atoms to true, which is possible due to
monotonicity.

Proposition 5 Let Π be a de-safe program such that each
nonmonotonic input parameter to external atoms occurs only
in facts. Then G∞Π (∅) = R∞Π (∅).

Proof (Sketch). The proposition follows from monotonicity
of all external atoms in all atoms except facts because the
assignment A′ maximizes the external atom output. 2

Thus, for such programs we may compute a sufficient finite
subset of grnd(Π) using instead GΠ the more efficient RΠ.

Example 11 (cont’d) In Example 5, &cat [X,x](Y ) is
monotonic, hence we can use RΠ for restricted grounding. 2

The operator can also be optimized in a different way. Ex-
ternal atoms that are not relevant for de-safety can be removed
from the fixpoint iteration without affecting correctness of the
grounding. For each r ∈ Π, let r̄ = H ← B be any rule such
that r = H ← b1, . . . , bh, B where b1, . . . , bh ∈ EA(r), i.e.,
r̄ results from r by possibly dropping external atoms from
B+(r), and let Π̄ = {r̄ | r ∈ Π}.

We then define the following monotone operator:

QΠ(Π′) =
⋃
r∈Π

{rθ | ∃A ⊆ A(Π′),A 6|= ⊥,A |= B+(r̄θ)}.

The intuition is that removing atoms from rule bodies
makes rule applicability (possibly) more frequent, which
may result in a larger (but still finite) grounding. As this
grounding is a superset of the one computed by GΠ(Π′), it is
still answer set preserving.
Proposition 6 For every program Π, Q∞Π (∅) ⊆ grnd(Π) is
finite and Q∞Π (∅) ≡pos G∞Π (∅).
Proof (Sketch). Since Π̄ is still de-safe by assumption,
G∞

Π̄
(∅) is still finite by Proposition 4. Moreover, since

Q∞Π (∅) ⊇ G∞Π (∅), AS(Q∞Π (∅)) ⊇ AS(G∞Π (∅)). 2

Example 12 (cont’d) In the program in Example 5, the ex-
ternal atom &cat [X,x](Y ) is not needed to establish de-
safety, hence we might drop it during fixpoint iteration. 2

The combination of the optimizations is especially valu-
able. One can first eliminate external atoms with nonmono-
tonic input other than facts and check then rule body satisfac-
tion as in RΠ. If an external atom b is strongly safe w.r.t. to
the according rule and the program, then it is very often (as in
Example 5) not necessary for establishing de-safety and b is
a candidate for being removed. That is, the traditional strong
safety criterion is now used as a weak criterion, which is not
strictly necessary but may help reduce grounding time.

6 Implementation and Application
We implemented the framework and the concrete TBFs from
above in the open-source solver DLVHEX. The system pro-
vides an interface to external source developers, which al-
lows for specifying the semantics of the source, and meta-
information which is used for deciding de-safety.

We stress that the main goal of this paper and the imple-
mentation was not performance enhancement of the ground-
ing procedure, but checking liberal de-safety of programs.
Thus, in context of this work the only reasonable benchmark
experiment would measure the overhead introduced by the
checking algorithm, which we disregard because the costs
are neglectable compared to grounding and solving. The de-
velopment of an actual grounding algorithm is ongoing work,
but is based on (an optimization of) the operators introduced
in this paper.

Obvious applications that need recursion through external
atoms and thus benefit from our result are, e.g., recursive
access of web resources and recursive query processing. We
discuss here a different one in advanced parsing.
Example: Pushdown Automaton. We model a pushdown
automaton in a HEX-program, which can be of use if context-
free languages must be parsed under further constraints that
cannot be easily expressed in the production rules; the HEX-
program may be extended accordingly, where the declarative
nature of HEX is versatile for parsing and constraint checking
in parallel as opposed to a generate-and-filter approach.

For instance, consider RNA sequences over the alphabet
{a, g, c, u} and suppose we want to accept all sequences ww′
such that w′ is the complementary string of w, where (a, u)
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and (g, c) are complementary pairs. Because complementary
strings within one sequence influence the secondary structure
of an RNA molecule, this duality is important for its proper
function (Zuker and Sankoff 1984). This language is easily
expressed by the production rules

{S → aSu, S → uSa, S → gSc, S → cSg, S → ε}

with start symbol S. Now suppose that we want to check in
addition the occurrence of certain subsequences, e.g., because
they have a known function. A concrete example would be
a promotor sequence, which identifies the starting location
of a new gene and might be used to separate coding and
non-coding sequences. Modeling this in the production rules
makes the grammar considerably more complex. Moreover,
we might want to keep the grammar independent of concrete
subsequences but import them from a database. Then it might
be useful to model the basic language as automaton in a logic
program and check side conditions by additional constraints.

Recall that a pushdown automaton is a finite-state machine
with an additional stack, cf. Sipser (2012); formally, it is a
tuple (Q,Σ,Γ, δ, q0, Z, F ), where Q is a finite set of states,
Σ is a finite input alphabet, Γ is a finite stack alphabet, δ ⊆
Q×(Σ∪{ε})×Γ×Q×Γ∗ is the transition relation, q0 ∈ Q
is the initial state, Z ∈ Γ is the initial stack symbol, and
F ⊆ Q is the set of final states. The transition relation
maps the current state, an input symbol and the topmost stack
symbol to a successor state and a finite word over the stack
alphabet, which is pushed onto the stack after removing the
topmost symbol. We assume for simplicity that there are
no ε-transitions, i.e., δ ⊆ Q × Σ × Γ × Q × Γ∗; such an
automaton is easily obtained from a normalized grammar, if
one is not interested, as in our example, in the empty word.

We use the following external atoms:

• &car [S ](H ,T ) splits S into first symbol H and rest T ;

• &cat [A,B ](C ) joins A and B to C;

• & inc[I](I1 ) increments the integer I to I1 = I+1;

• & len[S](L) returns the length L of string S.
Then the automaton can be modelled as follows:

str(Word , 0)← input(Word). (1)
str(R, I1 )← str(W , I ),&car [W ](C ,R),& inc[I ](I1 ). (2)
char(C , I )← str(W , I ),&car [W ](C ,R). (3)
in(start , z, 0). (4)
in(NewState,NewStack ,NewPos)← (5)

in(State,Stack ,Pos), char(Pos,Char),

&car [Stack ](SChar ,SRest),

transition(State,Char ,SChar ,NewState,Push),

&cat [Push,SRest ](NewStack),& inc[Pos](NewPos).

accept ← input(W ),& len[W ](L), in(S , z,L),final(S). (6)
← not accept . (7)

An atom in(state, stack , step) encodes that when pro-
cessing symbol pos , the machine is in state state with stack
content stack . Rules (1)-(3) split the input string into char-
acters, and the remaining ones model the automaton. The
program starts in the initial state start with the initial stack

symbol z as stack content (fact (4)). Transition rule (5) splits
the current stack content into its topmost symbol SChar and
its rest SRest and uses the predicate transition to (nondeter-
ministically) determine the successor state and the string to
push onto the stack. The rules (6)-(7) ensure that the input
is accepted if eventually a final state is reached such that the
input has been completely processed and the stack content
is z. Side conditions can now be modeled, e.g., by additional
constraints which restrict the stack content, or by additional
body atoms in the transition rule.

The program is not strongly safe as all external atoms occur
in cycles and their output is not bounded by ordinary atoms
from outside. However, it is de-safe if we exploit semantical
information. String splitting with &car yields ε or a shorter
string, i.e., a well-ordering exists. Hence the output terms of
&car are safe by Proposition 4 due to Definition 12(i). Each
transition step pushes a finite word onto the stack, and only
finitely many steps happen (as no ε-transitions occur); hence
only finitely many stack contents are possible, i.e., &cat has
a finite output domain. Thus the output terms are safe due
to Definition 12(ii). The domain of & inc is finite for the
same reason, which bounds NewPos . Hence, all variables
are bounded and all attributes are domain-expansion safe.
Further Applications. We now briefly discuss other appli-
cations which exploit de-safety.

Declarative processing of recursive data structures, such
as trees or lists, can easily violate traditional safety crite-
ria. However, in a concrete program the use of the external
sources may satisfy syntactic or semantic conditions such that
finiteness of the grounding is still guaranteed. For instance,
if a list is only subdivided but not recursively extended, then
there is a well-ordering as defined above and the grounding
may be finite. Additional application-specific safety criteria
can be straightforwardly integrated into our framework by
customized term bounding functions.

Another application is route planning. Importing a com-
plete street map into the logic program a priori might be too
expensive due to the large amount of data. The alternative
is to query direct connections between nodes in a recursive
fashion. But if the set of nodes is not known in advance, then
such queries do not satisfy traditional strong safety. However,
since maps are finite, our notion of de-safety helps ensuring
the existence of a finite grounding.

7 Related Work
Our notion of liberal de-safety using bs2 compares to the
traditionally used strong de-safety and to other formalizations
Strong Safety. One can now show that (liberal) de-safety is
strictly less restrictive than strong de-safety.
Proposition 7 Every strongly de-safe program Π is de-safe.

Proof (Sketch). One can show that all attributes a of a
strongly safe program are de-safe. This is done by induction
on the number j of malign cycles wrt. ∅ in GA(Π) from
which a is reachable. One can then show both for the base
case j = 0 and for the induction step j 7→ j+1 that whenever
one of the conditions of strong safety applies for an external
atom, then the properties of syntactic and semantic TBFs
guarantee that the corresponding attributes are de-safe. 2
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The converse does not hold, as there are de-safe programs
that are not strongly safe, cf. Example 3.
VI-Restricted Programs. Calimeri et al. (2007) intro-
duced the notion of VI-restrictedness for VI programs, which
amount to the class of HEX-programs in which all input
parameters to external atoms are of type const. Their no-
tion of attribute dependency graph is related to ours, but our
notion is more fine-grained for attributes of external pred-
icates. While we use a node &g [X]r�T i for each external
predicate &g with input list X in a rule r and T ∈ {I, O},
1≤ i≤ arT (&g), Calimeri et al. use just one attribute &g�i
for each i∈{1, . . . , ar I(&g)+ar O(&g)} independent of X.
Thus, neither multiple occurrences of &g with different input
lists in a rule, nor of the same attribute in multiple rules are
distinguished; this collapses distinct nodes in our attribute
dependency graph into one. Using bs2 , we can show:

Proposition 8 Every VI-restricted program Π is de-safe.

Proof (Sketch). The key idea is to redefine the definitions of
blocking and savior attributes inductively, such that the step
in which an attribute becomes blocked or savior is identified
by an integer; this is not the case in the original definitions
in Calimeri, Cozza, and Ianni (2007). Then the rest of the
proof is an induction on the step number in which an attribute
becomes blocked or savior. One can then show that for each
such attribute, the syntactic and semantic TBFs guarantee
that it will be declared de-safe in finitely many steps. 2

The converse does not hold, as there are de-safe VI-
programs (due to semantic criteria) that are not VI-restricted.
Logic Programs with Function Symbols. Syrjänen (2001)
defined ω-restricted logic programs, which allow function
symbols under a level mapping to control the introduction
of new terms with function symbols to ensure decidability.
Calimeri et al. (2007) observe that such programs Π can be
rewritten to VI-programs F (Π) using special external predi-
cates that compose/decompose terms from/into function sym-
bols and a list of arguments, such that F (Π) is VI-restricted.
As every VI-restricted program, viewed as a HEX-program,
is by Proposition 8 also de-safe, we obtain:

Proposition 9 If Π is ω-restricted, then F (Π) is de-safe.

Proof (Sketch). By Theorem 7 in Calimeri, Cozza, and
Ianni (2007) F (Π) is VI-restricted, and thus by Proposition 8
also de-safe using bsynsem(Π, r, S,B). 2

Since de-safety is strictly more liberal than VI-restricted-
ness, it is also more liberal than ω-restrictedness.

More expressive variants of ω-restricted programs are λ-
restricted (Gebser, Schaub, and Thiele 2007) and argument-
restricted programs (Lierler and Lifschitz 2009). They can
be captured within our framework as well, but argument-
restricted programs Π exist such that F (Π) is not de-safe
w.r.t. bs2 . The reason is that specific properties of the external
atoms for term (de)composition are exploited (while our
approach uses general external sources). However, tailored
TBFs can be used (which shows the flexibility of our modular
approach).

Similarly, i.e., by means of dedicated external atoms
for (de)composing terms and a specialized TBF, so-called

FD programs (Calimeri et al. 2008) map into our frame-
work. Finitary programs (Bonatti 2004; 2002) and FG pro-
grams (Calimeri et al. 2008), however, differ more fundamen-
tally from our approach and cannot be captured as de-safe
w.r.t. appropriate TBFs, as they are not effectively recogniz-
able (and the former, in general, not even finitely restrictable).

Term Rewriting Systems. A term rewriting system is a set
of rules for rewriting terms to other terms. Termination is
usually shown by proving that the right-hand side of every
rule is strictly smaller than its left-hand side (Zantema 1994;
2001). Our notion of benign cycles is similar, but different
from term rewriting systems the values do not need to strictly
decrease. While terms that stay equal may prevent termina-
tion in term rewriting systems, they do not harm in our case
because they cannot expand the grounding infinitely.

Other Notions of Safety. Related to our semantic proper-
ties are Sagiv and Vardi (1989), Ramakrishnan et al. (1987),
and Krishnamurthy et al. (1996). They exploit finiteness of at-
tributes (cf. item (ii) in Definition 12) in sets of Horn clauses
and derive finiteness of further attributes using finiteness de-
pendencies. This is related to item (iii) in Definition 12 and
item (iii) in Definition 8. However, they do this not for model
building but for query answering over infinite databases.

Less related to our work are Cabalar et al. (2009), Lee et
al. (2008), and Bartholomew and Lee (2010), which extend
safety, resp. argument restrictedness, to arbitrary first-order
formulas with(out) function symbols under the stable model
semantics, rather than generalizing the concepts.

8 Conclusion

We presented a framework for obtaining classes of HEX-
programs (ASP programs with external sources) that allow
for finite groundings sufficient for evaluation over an in-
finite domain (which arises by value invention in calls of
external sources). It is based on term bounding functions
(TBFs) and enables modular exchange and enhancement of
such functions, and combining hitherto separate syntactic and
semantic criteria into a single notion of liberal domain ex-
pansion safety. Our work pushes the classes of HEX-program
with evaluation via finite grounding considerably, leading to
strictly larger classes than available via well-known criteria
for answer set programs over infinite domains. We provided
two concrete TBFs that capture syntactic criteria similar to
but more fine-grained than ones in Calimeri et al. (2007),
and semantic criteria related to Sagiv and Vardi (1989) and
Ramakrishnan et al. (1987), but targeting model generation
(not query answering). An implementation for DLVHEX is
available.

Issues for ongoing and future work are the identification
of further TBFs and suitable well-orderings of domains in
practice. Of particular interest are external atoms that provide
built-in functions and simulate, in a straightforward manner,
function symbols. On the implementation side, further re-
finement and optimizations are an issue, as well as a library
of TBFs and a plugin architecture that supports creating cus-
tomized TBFs, to make our framework more broadly usable.
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