Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

A Simple, but NP-Hard, Motion Planning Problem

Lawrence H. Erickson and Steven M. LaValle
University of Illinois at Urbana-Champaign
Department of Computer Science
201 N. Goodwin Ave.

Urbana, IL 61801

Abstract

Determining the existence of a collision-free path between
two points is one of the most fundamental questions in
robotics. However, in situations where crossing an obstacle is
costly but not impossible, it may be more appropriate to ask
for the path that crosses the fewest obstacles. This may arise
in both autonomous outdoor navigation (where the obstacles
are rough but not completely impassable terrain) or indoor
navigation (where the obstacles are doors that can be opened
if necessary). This problem, the minimum constraint removal
problem, is at least as hard as the underlying path existence
problem. In this paper, we demonstrate that the minimum
constraint removal problem is NP-hard for navigation in the
plane even when the obstacles are all convex polygons, a case
where the path existence problem is very easy.

1 Introduction

In most robotic path planning problems, the goal is to travel
from a starting state to a goal state without colliding with
an obstacle along the way. However, there are many situa-
tions where collision with an obstacle may be inconvenient,
but not insurmountable. The obstacles could be closed doors
that the robot is capable of opening. In outdoor navigation,
the obstacles could be patches of rough terrain that the robot
is capable of crossing, but with a risk of damage. Alter-
nately, it might be desirable to know the smallest set of ob-
stacles that block a path between two points (perhaps a road
is being constructed, and the builders want to do it while de-
molishing as few pre-existing features of the environment as
possible).

With that in mind, a natural question arises: If no
collision-free path from the starting state to the goal state
exists, what is the fewest number of obstacles intersected by
any path from the start to the goal? This problem, intro-
duced by Hauser, is called the minimum constraint removal
problem, as it asks for the minimum number of constraints
(obstacles) that would need to be removed from the envi-
ronment to produce a collision-free path (Hauser 2012). A
sample problem is shown in Figure 1.

Hauser demonstrated that the discrete version of this
problem (in which the environment is represented by a

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1388

Figure 1: An instance of the minimum constraint removal
problem. A path from the start (g5) to the goal (g4) that
intersects the minimum number of obstacles (Oy and Os) is
shown.

graph, with obstacles being subsets of the vertices) is NP-
hard, via a reduction from the minimum set cover problem.
This result is interesting, as the corresponding path existence
problem is very easy to solve in graphs with a breadth-first
search.

The problem of determining the “minimal” or “most im-
portant” reasons why a task cannot be accomplished has
been examined from the perspectives of propositional logic
(Gobelbecker et al. 2010) and linear temporal logic (Cimatti
et al. 2008). One can also view this problem as a gener-
alization of the task of determining the non-existence of a
path between two points (Canny 1987; McCarthy, Bretl, and
Hutchinson 2012; Zhang, Kim, and Manocha 2008).

Since determining the existence of a collision-free
path between two points (the piano-mover’s problem) is
PSPACE-hard in general (Reif 1979), the minimum con-
straint removal problem is also at least that hard. Even
some very restricted versions of the problems remain dif-
ficult. Sokoban is a motion planning game played on a sub-
graph of the square grid, in which the goal is to push mov-
able obstacles into certain goal locations. Sokoban remains



PSPACE-complete (Culberson 1997). Sliding block puzzles
are PSPACE-complete even when all blocks are 1x2 domi-
noes (Hearn and Demaine 2005).

However, there exist situations in which the piano-
mover’s problem is easy. If the robot is navigating in the
plane and the obstacle regions are polygonal sets, then a
straightforward cell decomposition will efficiently reveal the
existence or non-existence of a path from the start to the goal
(Chazelle 1987; LaValle 2006).

In this paper, we demonstrate that the corresponding mini-
mum constraint removal problem is NP-hard, even when the
obstacles are restricted to being convex polygons. This is
done via a reduction from the maximum satisfiability prob-
lem for binary Horn clauses, a special case of MAX2SAT
that remains NP-hard (Jaumard and Simeone 1987). This
augments Hauser’s discrete NP-hardness result. While it is
possible to transform the convex polygon minimum con-
straint removal problem into a discrete, graph-based con-
straint removal problem by associating each connected re-
gion intersected by a particular set of obstacles with a sin-
gle graph vertex, the graphs and obstacles obtained from this
transformation are very restricted (see Figure 2). The graphs
must be planar, and the subgraph induced by the set of ver-
tices intersected by a particular obstacle must be connected
(though other restrictions also apply). The graphs used by
Hauser in the discrete NP-hardness proof are generally non-
planar, and the graphs induced by the set of vertices inter-
sected by an obstacle are not generally connected.

Section 2 formally defines the minimum constraint re-
moval problem. Section 3 describes the maximum satisfi-
ability problem for binary Horn clauses. Section 4 describes
types of obstacles that are used in the reduction. Section 5
describes the gadgets that encode the variables and clauses
of the satisfiability problem. Section 6 explains how to ob-
tain the solution to the maximum satisfiability problem from
the result of the minimum constraint removal problem. Sec-
tion 7 discusses the implications of this NP-hardness result
and lists open problems.

2 Problem Formulation

A point robot navigates in R?. Let {O1,0s,...,0,,} be
a set of m obstacles. Each obstacle is a convex polygonal
subset of R?. It is acceptable for obstacles to be degenerate
1-gons (points) or 2-gons (line segments). It should be noted
that either type of degenerate polygon can be simulated by
a non-degenerate polygon that is sufficiently small (in the
case of 1-gons) or sufficiently thin (in the case of 2-gons).
Let g5 € R? be the starting point. Let q;, € R? be the goal
point.

Let y be a continuous path from ¢, to q,. We will treat
y as a set of points, as the parameterization of the path is
irrelevant. The cover of y is the set of obstacles that intersect
y. A minimum constraint removal path y* is a path whose
cover has a minimal size among all paths from ¢, to ¢4. A
minimum constraint removal S* is the cover of a minimum
constraint removal path.

1389

Figure 2: [top] The environment from Figure 1 with each
connected region intersected by a particular set of obstacles
assigned a graph vertex. Since movement within a single
region does not intersect any new obstacles, the minimum
constraint removal problem for this obstacle set can be trans-
formed into a discrete problem. [bottom] The graph for the
discrete minimum constraint removal problem. The num-
bers next to a vertex denote the obstacles intersecting that
vertex.

3 Maximum Binary Horn Clause
Satisfiability

A clause is a disjunction of literals. A Horn clause is a
clause that contains at most one positive literal. A binary
clause is a clause that contains exactly two literals. The de-
cision problem about the satisfiability of a conjunction of
Horn clauses (HORNSAT) is solvable in linear time (Dowl-
ing and Gallier 1984). However, the corresponding maxi-
mization problem “Given a set of n Horn clauses, what is
the maximum number that can be simultaneously satisfied?”
(MAXHORNSAT) is NP-hard. Similarly, the decision prob-
lem about the satisfiability of a conjunction of binary clauses
(2SAT) is in P, but the corresponding maximization problem
(MAX2SAT) is also NP-hard.

The maximization problem remains NP-hard even if all



clauses are required to be both Horn and binary (Jaumard
and Simeone 1987). This version of the problem is referred
to as MAX2HORNSAT. We will reduce MAX2HORNSAT
to the planar minimum constraint removal problem with
convex polygonal obstacles. To do this, we will use an in-
put MAX2HORNSAT problem to design a start point, goal
point, and set of obstacles. The solution to the minimum
constraint removal problem using that start point, goal point,
and set of obstacles can quickly be transformed into the so-
lution to the input MAX2HORNSAT problem. The number
of clauses of the input problem will be represented by ¢, and
the number of variables will be represented by /.

4 Obstacle Weighting

While the penalty for entering one obstacle is the same as
the penalty for entering any other obstacle, an obstacle of
weight k£ can be simulated by placing &k standard obstacles
on the same set of points. The reduction uses three different
obstacle weights.

o Low-weight obstacles - These obstacles have unit weight.
In figures, low-weight obstacles will be represented by
grey lines and grey squares.

o Medium-weight obstacles - These obstacles have a weight
of a + 1, where a is the number of low-weight obstacles.
In figures, medium-weight obstacles will be represented
by dotted lines.

o High-weight obstacles - These obstacles have a weight of
b(a+1)4a-+1, where a is the number of low-weight ob-
stacles, and b is the number of medium-weight obstacles.

All obstacles used in the reduction are squares and line
segments.

The obstacle sets that we use will leave a path from g, to
qg4 that does not cross a high-weight obstacle. Since the cost
of crossing a high-weight obstacle is greater than the cost of
crossing all low and middle-weight obstacles combined, no
minimum constraint removal path will cross a high-weight
obstacle. Similarly, each path from g, to g, that avoids high-
weight obstacles must cross at least ¢ medium-weight obsta-
cles, and there exists at least one path that crosses exactly
¢ medium-weight obstacles. Since the cost of crossing a
medium-weight obstacle is higher than the cost of crossing
all the low-weight obstacles, each minimum constraint re-
moval path will cross exactly ¢ medium-weight obstacles.

5 Gadgets

In order to force the robot to take a predictable route, a path
leading from ¢, to g4 will be outlined with high-weight ob-
stacles. In the figures, this path is shown in black. Portions
of this path will be blocked by low-weight and medium-
weight obstacles. Since the cost of intersecting a high-
weight obstacle is higher than the cost of intersecting all of
the low and medium-weight obstacles combined, there is no
reason for the robot to leave the outlined path.

The input MAX2HORNSAT problem will be encoded as
a minimum constraint removal problem through the use of
gadgets. Gadgets are sets of obstacles that represent portions
of the input problem. There are three primary gadgets that

1390

will be used to encode the MAX2HORNSAT problem. One
type of gadget is used to assign values to the variables, one
type of gadget is used to represent clauses containing one
positive and one negative literal, and one type of gadget is
used to represent clauses containing two negative literals.
Gadgets that establish the variables and clauses for the
MAX2HORNSAT problem take the form of loops in the
path from ¢, to g,. These loops force the robot to choose
one of two routes to get to q,. In the variable gadgets, the
route chosen determines whether the variable is set to true
or false. In the clause gadgets, the routes represent the two
possible variable assignments that satisfy the clause.

5.1 Variable Gadgets

These gadgets exist to assign true or false values to vari-
ables. Each variable gadget consists of two loops. Taking
the left path through a loop assigns the value of “true” to the
corresponding variable. Taking the right path assigns a value
of “false”. A line-shaped medium-weight obstacle intersects
the left path of both loops, and another line-shaped medium-
weight obstacle intersects the right path of both loops. This
is done to ensure that the path taken in the second loop cor-
responds to the same value as the path taken in the first loop.
In order for the medium-weight obstacles to not intersect
loops of variables that they are not associated with, the loops
are nested and decrease in size (both loops of x5 are in be-
tween the loops of x1, and the loops of x; are wider than
the loops of x9, etc.). Figure 3 shows a variable gadget, and
their placement relative to start point, goal point, and other
gadgets.

Positive/Negative Clauses

I,:T I,:F

-

T

To Negative/Negative Clauses and Goal

Figure 3: A variable gadget for x;. Taking the left path
sets x; to true, and taking the right path sets x; to false.
Medium-weight obstacles (the dotted lines) ensure that the
same assignment path is taken in both the upper and lower
loops. The upper loop of the gadget appears before the pos-
itive/negative clause gadgets, and the lower loop appears af-
ter the positive/negative clause gadgets.

In order to establish the relationships between the vari-
ables and the clauses, the left and right paths of the loops in



these gadgets are blocked by low-weight obstacles that also
block paths of the clause gadgets.

5.2 Positive/Negative Clause Gadget

These gadgets are located between the upper and lower
loops of the variable gadgets. A positive/negative clause
gadget consists of a single loop. The left path is blocked
by a low-weight obstacle that also intersects the left path in
the upper loop of the variable corresponding to the positive
literal. The right path is blocked by a low-weight obstacle
that intersects the right path in the upper loop of the vari-
able corresponding to the negative literal. Figure 4 shows
a positive/negative clause gadget, the variable loops associ-
ated with it, and the low-wight obstacles (in grey) that estab-
lish the relationship between the clause and the variables.

2 VT

Figure 4: A clause gadget for x; V 7. A single low-weight
obstacle blocks the left path of the x; variable loop and the
left path of the clause loop. Another low-weight obstacle
blocks the right path of the z; variable loop and the right
path of the clause loop. If z; is true, then the left path of the
clause loop can be taken without intersecting an additional
obstacle. If z; is false, then the right path of the clause loop
can be taken without intersecting an additional obstacle.

Since the robot has already passed through the upper
variable gadget loops before reaching the positive/negative
clauses, the variables have already had values assigned to
them. If the clause is satisfiable, then either the obstacle
blocking the left path of the clause gadget has already been
crossed in a variable gadget, or the obstacle blocking the
right path of the clause gadget has already been crossed in
a variable gadget. Since there is no penalty for crossing a
single obstacle multiple times, if the clause is satisfied, the
robot can pass through it without crossing any new obsta-

1391

cles. If the clause is not satisfied, the robot crosses a new
obstacle, increasing the size of the path’s cover.

5.3 Negative/Negative Clause Gadget

These gadgets are located after the lower loops of the vari-
able gadgets, and before g4. The upper path of this gadget
is blocked by an obstacle that also blocks the right path of
the upper loop of one of the variable gadgets. The lower
path of the gadget is blocked by an obstacle that also blocks
the right path of the lower loop of one of the variable gad-
gets. If either of those variables is assigned a negative value,
then at least one of those obstacles will have already been
crossed in the variable gadget, and the clause gadget can be
crossed without additional penalty. Otherwise, as above, the
robot must cross an additional obstacle. A negative/negative
clause gadget and associated variable loops and low-weight
obstacles are shown in Figure 5.

Q.

Positive/Negative Clauses

Figure 5: A clause gadget for 7; V Z;. A single low-weight
obstacle blocks the right path of the x; variable loop and the
left path of the clause loop. Another low-weight obstacle
blocks the right path of the x; variable loop and the right
path of the clause loop. If x; is true, then the left path of the
clause loop can be taken without intersecting an additional
obstacle. If z; is false, then the right path of the clause loop
can be taken without intersecting an additional obstacle.

5.4 Balancing Obstacles

At this point, the number of obstacles blocking the left path
of a variable loop might be different than the number of ob-
stacles blocking the right path of a variable loop. For exam-
ple, if the literal x; appears in several clauses, but Z; does
not appear in any clauses, the left path of the upper loop
of z;’s variable gadget will be blocked by many low-weight
obstacles, but the right path will not be blocked by any. In
order to ensure that the cost of setting a variable to be true is
the same as the cost of setting it to be false, for each obstacle



that is used to establish a relationship between a variable and
a clause, a balancing obstacle will be added to the other path
of the variable loop. This balancing obstacle will block the
variable loop, but will not intersect any clauses. Balancing
obstacles are represented by grey squares, and can be seen
in Figure 6.

6 Reduction

Since a path from ¢, to g4 exists that does not intersect any
high-weight obstacles, a minimum constraint removal path
will not intersect any high-weight obstacles. Additionally,
the minimum number of medium-weight obstacles that can
be crossed on a path from g; to ¢ is ¢, the number of clauses.
Each literal within a clause adds an obstacle to the left and
right paths of the associated variable gadget loop (one ob-
stacle used to establish the relationship between the clause
and the variable, and one balancing obstacle), one of which
needs to be crossed to reach the goal. Since there are two
literals per clause, a minimum constraint removal path will
cross at least 2c low-weight obstacles while setting the truth
values of the variables. Finally, each clause that is not satis-
fied requires the crossing of an additional low-weight obsta-
cle. Therefore, if no clauses can be satisfied, the size of the
minimum constraint removal is

(a+1)¢ + 3e. (1)

For each clause that can be satisfied, the size of the mini-
mum constraint removal is decreased by 1. Therefore, given
a set of ¢ clauses over ¢ variables that produces a mini-
mum constraint removal of size z, the maximum number of
clauses that can be simultaneously satisfied is

(a+ 1) +3c—z. )

Therefore, MAX2HORNSAT is reducible to the mini-
mum constraint removal problem in the plane even when
all obstacles are convex, indicating that the latter problem is
NP-hard. A complete representation of a MAX2HORNSAT
problem as a minimum constraint removal problem is shown
in Figure 6.

7 Discussion and Open Problems

Navigation in R? with convex polygonal obstacles is a
highly restricted form of path planning. The NP-hardness
of the minimum constraint removal problem under these re-
strictions immediately implies the NP-hardness of the prob-
lem for higher dimensions and for less restricted types of
obstacles.

What restrictions on the environment and obstacles make
the problem tractable? In the plane, the minimum constraint
removal problem is trivial when the obstacles are forced to
be infinite lines or half-planes. It is not known whether forc-
ing all obstacles to be unit circles, circles, or axis-aligned
rectangles makes the problem tractable, though the authors
conjecture that the first is tractable and the latter two are not.
One could also place restrictions on the ways in which the
obstacles are allowed to intersect. The problem becomes
trivial when the obstacles are allowed to intersect only pair-
wise. It is not known at what point restrictions of the form

1392

Figure 6: A MAX2HORNSAT problem with four variables
and five clauses represented as a minimum constraint re-
moval problem. High-weight obstacles surround the solid
black path between ¢, and g,. Medium-weight obstacles are
represented by dotted black lines. Low-weight obstacles are
represented by grey lines and grey squares.

“There is no point at which more than k obstacles intersect”
or “Each obstacle intersects no more than k other obstacles”
render the problem tractable.

Acknowledgements

This work is supported in part by NSF grant 0904501
(ITS Robotics), NSF grant 1035345 (CNS Cyberphysical
Systems), DARPA SToMP grant HR0011-05-1-0008, and
MURI/ONR grant N00014-09-1-1052.

References

Canny, J. 1987. A new algebraic method for robot motion
planning and real geometry. In Foundations of Computer
Science, 1987., 28th Annual Symposium on, 39—48.

Chazelle, B. 1987. Approximation and Decomposition of
Shapes. Lawrence Erlbaum Associates. chapter 4, 145-185.

Cimatti, A.; Roveri, M.; Schuppan, V.; and Tchaltsev, A.
2008. Diagnostic information for realizability. In Verifica-
tion, Model Checking, and Abstract Interpretation, 52—67.



Culberson, J. C. 1997. Sokoban is pspace-complete. Techni-
cal Report TR 97-02, The University of Alberta, Edmonton,
AB.

Dowling, W. F,, and Gallier, J. H. 1984. Linear-time al-
gorithms for testing the satisfiability of propositional horn
formulae. The Journal of Logic Programming 1(3):267 —
284.

Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to
do when no plan can be found. In Proceedings of the Twen-

tieth International Conference on Automated Planning and
Scheduling, 81-88.

Hauser, K. 2012. The minimum constraint removal problem
with three robotics applications. In Proc. Workshop on the
Algorithmic Foundations of Robotics.

Hearn, R., and Demaine, E. 2005. Pspace-completeness of
sliding-block puzzles and other problems through the non-
deterministic constraint logic model of computation. Theo-
retical Computer Science 343(1):72-96.

Jaumard, B., and Simeone, B. 1987. On the complexity
of the maximum satisfiability problem for horn formulas.
Information Processing Letters 26(1):1 — 4.

LaValle, S. M. 2006. Planning Algorithms. Cam-
bridge, UK: Cambridge University Press. Also available at
http://msl.cs.uiuc.edu/planning/.

McCarthy, Z.; Bretl, T.; and Hutchinson, S. 2012. Prov-
ing path non-existence using sampling and alpha shapes. In
Proc. IEEE International Conference on Robotics and Au-
tomation, 2563-2569.

Reif, J. 1979. Complexity of the mover’s problem and gen-
eralizations extended abstract. In Proceedings of the 20th
Annual IEEE Conference on Foundations of Computer Sci-
ence, 421-427.

Zhang, L.; Kim, Y.; and Manocha, D. 2008. A simple path
non-existence algorithm using c-obstacle query. In Proc.
Workshop on the Algorithmic Foundations of Robotics, 269—
284.

1393





