
Concurrent Reasoning with Inference Graphs

Daniel R. Schlegel and Stuart C. Shapiro
Department of Computer Science and Engineering

University at Buffalo, Buffalo NY, 14260
<drschleg,shapiro>@buffalo.edu

1 Introduction
Since at least the early 1980s there has been an effort to uti-
lize multiple processors for logical reasoning. Prior to the
rise of the multi-core desktop computer, this often meant
parallel algorithms on specialized hardware. Parallel logic
programming systems designed during that same period
were less attached to a particular parallel architecture, but
parallelizing Prolog is a very complex problem (Shapiro
1989). Parallelizing Datalog has been more successful, but
it is a less expressive subset of Prolog. Recent work in statis-
tical inference has returned to large scale parallelism using
GPUs, but while GPUs are good at statistical calculations,
they do not do logical inference well (Yan, Xu, and Qi 2009).

We present inference graphs, a graph-based natural de-
duction inference system which lives within a KR sys-
tem and is capable of taking advantage of multiple cores
and/or processors using concurrrent processing techniques
rather than parallelism. Inference graphs extend proposi-
tional graphs so that the representation of knowledge is also
the inference system, something we believe is unique among
logical inference systems. We chose to use natural deduc-
tion inference, despite the existence of very well perform-
ing refutation based theorem provers, because our system
is designed to be able to perform forward, bi-directional
(Shapiro, Martins, and McKay 1982), and focused reason-
ing in addition to the backwards inference used in resolution.
Natural deduction also allows formulas generated during in-
ference to be retained in the KB for later re-use, whereas
refutation techniques always reason about the negation of
the formula to be derived, making intermediate derivations
invalid. In addition, our system is designed to allow formu-
las to be disbelieved, and to propogate that disbelief to de-
pendent formulas. We believe inference graphs are the only
concurrent inference system with all these capabilities.

2 Propositional Graphs
Propositional graphs in the tradition of the SNePS family
(Shapiro and Rapaport 1992) are graphs in which every
well-formed expression in the knowledge base, including
individual constants, functional terms, atomic formulas, or
non-atomic formulas (which we will refer to as “rules”), is

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

represented by a node in the graph. A rule is represented
in the graph as a node for the rule itself (henceforth, a rule
node), nodes for the argument formulas, and arcs emanat-
ing from the rule node, terminating at the argument nodes.
Arcs are labeled with an indication of the role the argument
plays in the rule, itself. Every node is labeled with an iden-
tifier. Nodes representing individual constants, proposition
symbols, function symbols, or relation symbols are labeled
with the symbol itself. Nodes representing functional terms
or non-atomic formulas are labeled wfti, for some inte-
ger, i. No two nodes represent syntactically identical ex-
pressions; rather, a single node is used if there are multiple
occurrences of one subexpression.

3 Inference Graphs
An inference graph is a propositional graph in which certain
arcs and certain reverse arcs are augmented with channels
through which information can flow – meaning the infer-
ence graph is both a representation of knowledge and the
method for performing inference upon it (see Fig. 1). Chan-
nels come in two forms. The first type, i-channels, are added
to the reverse antecedent arcs – named as such since they
carry messages reporting that “I am true” or “I am negated”
from the antecedent node to the rule node. Channels are also
added to the consequent arcs, called y-channels, since they
carry messages to the consequents which report that “you are
true” or “you are negated.” Rules are connected by shared
subexpressions (such as d in Fig. 1).

wft1! wft2!

a

b

c

dcq
ant

ant

ant e
fcq

ant

ant

Figure 1: The propositional graph for the propositions that if
{a,b,c} are all true, then d is true, and if one of {d,e} is
true, then f is true. Inference graph channels are also shown:
dashed lines are i-channels (drawn from antecedents to rule
nodes), and dotted lines are y-channels (drawn from rule
nodes to consequents).

Each channel contains a valve. Valves enable or prevent
the flow of messages forward through the graph’s channels.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

1637



When a valve is closed, any new messages which arrive at
it are added to a waiting set. When a valve opens, messages
waiting behind it are sent through.

Messages of several types are transmitted through the
inference graph’s channels, serving two purposes: relay-
ing newly derived information, and controlling the infer-
ence process. A message can be sent to relay the infor-
mation that its origin has been asserted or negated (an I-
INFER message), that its destination should now be as-
serted or negated (Y-INFER), or that its origin has either
just become unasserted or is no longer sufficiently supported
(UNASSERT). These messages flow forward through the
graph. Other messages flow backward, controlling inference
by affecting the channels: BACKWARD-INFER messages
open them, and CANCEL-INFER messages close them. The
use of messages to control valves allows inference graphs to
perform forward, backward, bi-directional, and focused in-
ference, and the messages are prioritized so these operations
are all performed efficiently (discussed further in Sec. 4).

Inference operations take place in the rule nodes. When
a message arrives at a rule node the message is translated
into Rule Use Information, or RUI (Choi and Shapiro 1992).
RUIs contain information about how many (and specifically
which) antecedents of a rule are known to be true or false,
along with a set of support. All RUIs created at a node are
cached. When a new one is made, it is combined with any al-
ready existing ones. The output of the combination process
is a set of new RUIs created since the message arrived at the
node. By looking at the number of known true or false an-
tecedents, this set is used to determine if the rule node’s in-
ference rules can be applied. RUIs prevent re-derivations and
cut cycles by ignoring arriving RUIs already in the cache.
The disadvantage of our approach is that some rules are dif-
ficult to implement such as negation introduction and proof
by cases. For us, the advantages in capability outweigh the
difficulties of implementation.

4 Concurrent Reasoning
The inference graph’s structure lends itself naturally to con-
current inference. For example, each antecedent of wft1 in
Fig. 1 could be derived concurrently. The RUIs generated
from the messages would then need to be combined, before
a Y-INFER message could be sent to d. Since there is shared
state (the RUI cache) we perform the combination of RUIs
synchronously, guaranteeing we don’t “lose” results.

In order to perform inference concurrently, the inference
graph is divided into inference segments (henceforth, seg-
ments). A segment represents the inference operation – from
receipt of a message to sending new ones – which occurs in
a node. Valves delimit segments. When a message passes
through an open valve a new task is created – the appli-
cation of the segment’s inference function to the message.
When tasks are created they enter a global prioritized queue,
where the priority of the task is the priority of the message.
When the task is executed, inference is performed as de-
scribed above, and any newly generated messages are sent
toward its outgoing valves for the process to repeat.

If we arrange an inference graph so that a user’s request
(in backward inference) is on the right, and channels flow

(where possible, cycles can exist) from left to right, we can
see the goal of inference as trying to get messages from the
left side of the graph to the right side of the graph. Every
inference operation begins processing messages some num-
ber of levels to the left of the query node. Since there are a
limited number of tasks which can be running at once due
to hardware limitations, we must prioritize their execution,
and remove tasks which we know are no longer necessary.
Therefore,

1. tasks for relaying newly derived information using seg-
ments to the right execute before those to the left, and

2. once a node is known to be true or false, all tasks attempt-
ing to derive it (left of it in the graph) are canceled, as
long as their results are not needed elsewhere.
Together, these two heuristics ensure that messages reach

the query as quickly as possible, and time is not wasted
deriving unnecessary formulas. The priorities of the mes-
sages (and hence, tasks) allow us to reach these goals. All
UNASSERT messages have the highest priority, followed
by all CANCEL-INFER messages. Then come I-INFER and
Y-INFER messages. BACKWARD-INFER messages have
the lowest priority. The priority of I-INFER and Y-INFER
messages increase as they flow to the right, but they remain
lower than that of CANCEL-INFER messages.

5 Evaluation Summary
To evaluate the speedup in inference as the number of
processors increases, we automatically generated graphs of
chaining entailments with multiple antecedents and a single
consequent. The system then backchained on and derived a
consequent when the entailments required either all the an-
tecedents to be true, or only one. We found, when ignoring
the intrinsically sequential portions of inference, nearly lin-
ear speedup with the number of processors. In addition, the
heuristics presented resulted in a nearly 10x speedup over
using LIFO queues, and 20-40x over FIFO queues.

References
Choi, J., and Shapiro, S. C. 1992. Efficient implementation of
non-standard connectives and quantifiers in deductive reasoning
systems. In Proc. HICSS-25. Los Alamitos, CA: IEEE Computer
Society Press. 381–390.
Shapiro, S. C., and Rapaport, W. J. 1992. The SNePS family. Com-
put Math Appl 23(2–5):243–275. Reprinted in Lehmann, F. 1992.
Semantic Networks in Artificial Intelligence. Pergamon Press.
Shapiro, S. C.; Martins, J. P.; and McKay, D. P. 1982. Bi-
directional inference. In Proc. CogSci-4.
Shapiro, E. 1989. The family of concurrent logic programming
languages. ACM Comput. Surv. 21(3):413–510.
Yan, F.; Xu, N.; and Qi, Y. 2009. Parallel inference for latent
dirichlet allocation on graphics processing units. In Proc. NIPS,
2134–2142.

This work has been supported by a Multidisciplinary Uni-
versity Research Initiative (MURI) grant (Number W911NF-09-1-
0392) for Unified Research on Network-based Hard/Soft Informa-
tion Fusion, issued by the US Army Research Office (ARO) under
the program management of Dr. John Lavery.

1638




