
Tools for Preference Reasoning

Ying Zhu
University of Kentucky

Department of Computer Science
Lexington, KY 40504, USA

ying.zhu@uky.edu

Introduction and Background
The problem of computing similar and dissimilar solutions
to a given one has received much attention in constraint
satisfaction (Hebrard et al. 2005) and answer set program-
ming (ASP) (Lifschitz 1999; Eiter et al. 2011; Marek and
Truszczynski 1998). In many practical applications involv-
ing product configuration or planning, it is often the case
that there are many valid solutions. To help the user see a
small but representative sample, one needs algorithms that
compute sets of dissimilar solutions. Once the user “zooms”
in on one or two that she likes the most, it still makes sense
to present several alternatives that are similar to the selected
ones so that the user can find one that truly corresponds to
her needs.

Preferences play an important role in AI applications es-
pecially those involving decision making (Kaci 2011). They
are used to shrink the range of feasible solutions reflect-
ing preferences specified by the user. Some concepts of
optimality are relatively weak and still leave many opti-
mal solutions to consider. Thus it makes sense to consider
similar/dissimilar solutions also in preference formalisms.
My work concerns the problem of computing similar and
dissimilar optimal solutions in the preference formalism
called answer set optimization (ASO) (Brewka, Niemela,
and Truszczynski 2003). I am interested in the computa-
tional complexity of such problems, and in effective com-
puting methods. In particular, I am interested in applications
of ASP to represent preference formalisms and model pref-
erence problems, and in the use of ASP solvers to perform
preference optimization.

Preferences can be modeled in quantitative and qualita-
tive ways. In the quantitative way, preferences are combined
with quantitative values to express the satisfaction or rejec-
tion levels, and the satisfaction degrees of solutions are ex-
pressed by numbers. In the qualitative way, preferences are
partial or total orders on the values of some combination of
variables. Thus the solutions are ordered by pairwise com-
parisons. ASO programs are the combination of answer set
programming and qualitative optimization techniques. They
have two parts, a program Pgen and a program Ppref . The
role of a generating program is to produce possible solu-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tions and the role of the preference program is to capture
preferences that need to be optimized. The preference pro-
gram Ppref consists of a set of preference rules in the form

C1 > · · · > Ck ← a1, . . . , an,¬ b1, . . . ,¬ bm

where ais and bis are literals and Cis are boolean combi-
nations. Informally, this rule reads: if an answer set contains
a1, . . . , an and does not contain any of the literal b1, . . . , bm,
then C1 is preferred over C2, C2 is preferred to C3, etc. The
satisfaction degree of an answer set S on a preference rule
r is represented by vS(r) = min{i : S |= Ci}. Given two
answer sets S1 and S2, we say S1 � S2 if vS1(r) ≤ vS2(r)
for all rules, and S1 � S2 if S1 � S2 and for some rule
vS1(r) < vS2(r). An answer set S is an optimal answer set
if there is no answer set S′ such that S′ � S. To illustrate
the ASO formalism, we consider a simple example. Let us
assume Pgen is any theory generating 4 answer sets:

S1 = {soup, beef}, S2 = {salad, beef},
S3 = {soup, fish}, S4 = {salad, fish}.

For example, we can take for Pgen an answer set program:
1{soup, salad}1, 1{beef, fish}1,

or a propositional theory:
(soup ∨ salad) ∧ (beef ∨ fish)∧
¬(soup ∧ salad) ∧ ¬(beef ∧ fish).

Assuming Ppref is:
soup > salad

beef > fish,

the satisfaction vectors for the 4 answer sets are V1 = (1, 1),
V2 = (2, 1), V3 = (1, 2), V4 = (2, 2). Thus, S1 is the op-
timal answer set, S4 is the worst answer set, and S2 and S3

are incomparable.

Problem Statement
I consider the problems of finding a similar/dissimilar op-
timal solution to/from a given one. In each problem we as-
sume that an ASO program P , an interpretation S, a distance
measure ∆ that maps two solutions for P to a nonnegative
integer, and a nonnegative integer k is given.

k-SIMILAR OPTIMAL SOLUTION Decide whether
there is an optimal answer set S′ such that ∆(S, S′) ≤ k.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

1686



k-DISSIMILAR OPTIMAL SOLUTION Decide
whether there is an optimal answer set S′ such that
∆(S, S′) ≥ k.

Assuming that deciding whether ∆(S, S′) ≤ k for a given
k is in P, the problems to find a similar/dissimilar opti-
mal answer set are

∑p
2-complete. The membership can be

showed by guessing an interpretation S′, verifying whether
S′ is an optimal answer set which has been proved is coNP-
complete (Brewka, Niemela, and Truszczynski 2003), and
checking whether ∆(S, S′) ≤ k in polynomial time. For
the hardness, we construct a reduction from the problem to
decide whether an optimal answer set including a given lit-
eral exists, which is

∑p
2-complete (Brewka, Niemela, and

Truszczynski 2003). The details depend on the definition of
the distance function. The theorems we present below as-
sume that the Hamming distance is used to measure how far
from each other are the solutions.

Theorem 1. Given an ASO program P , an interpretation
S, and a nonnegative integer k, deciding whether there is
an optimal answer set S′ such that HD(S, S′) ≤ k is

∑p
2-

complete.

Theorem 2. Given an ASO program P , an interpretation
S, and a nonnegative integer k, deciding whether there is
an optimal answer set S′ such that HD(S, S′) ≥ k is

∑p
2-

complete.

Before talking about computing methods, I briefly intro-
duce a method to find optimal answer sets in ASO pro-
gramming. The method is based on answer set programming
(ASP) (Lifschitz 1999; Marek and Truszczynski 1998). To
get the optimal answer sets, we design a “tester” ASP pro-
gram. It takes an answer set as input, and an ASP solver,
such as CLASP (Gebser et al. 2007), applied to it generates
a strictly better one if one exists. Thus, to find an optimal
answer set, we can start from an arbitrary answer set, which
can be found by an ASP solver, and use the tester iteratively,
each time taking the output of last run as the input, until it
fails. To find another optimal answer set, we first find an an-
swer set which is not worse than the first optimal answer set,
which also can be modeled as an ASP problem and solved
by ASP solvers, and then use it as a start point to find an op-
timal answer set. To find all optimal answer set, we continue
until it is no longer possible to find an answer set incompa-
rable with the optimal answer sets found so far.

Solving the problem, the offline methods compute all op-
timal answer sets and store them. To compute k-similar
solutions to a given interpretation U0, the distances from
U0 to all optimal solutions are computed and the solutions
whose distances from U0 are ≤ k are reported. To compute
k-dissimilar solutions, similarly, the outcomes whose dis-
tances from U0 are ≥ k are reported.

Two important variants of these problems are to find a
set of n optimal solutions, in which the distance between
each pair of solutions is ≤ k or ≥ k. Similarly, all optimal
solutions and the distances between each pair of them are
computed and some clustering methods are used to find the
proper cluster. I do not discuss these problems here due to
space limitation.

Conclusion and Future Work
So far I have studied the problem of computing similar or
dissimilar optimal answer sets in ASO programming, ana-
lyzed its computational complexity, and introduced offline
computing methods. My work so far demonstrates that ASP
is a convenient tool to represent preference optimization
problems and ASP solver a promising computational tool
for the preference reasoning domain.

I am currently working on online computing methods
which can find the similar/dissimilar optimal solution with-
out computing all optimal solutions. The idea is to model the
computation of an optimal answer set, the distance function,
and the constraints on the distance into one ASP program.
This program takes the given interpretation as input and
gives a similar/dissimilar optimal answer set if it exists. The
key point is to build a program which can find an optimal
answer set in one call. To build that program, I am studying
encodings of the problem as a quantified boolean formula
(QBF). Once an appropriate QBF encoding is found, I will
use standard methods to translate it further into a disjunc-
tive logic program (Eiter and Gottlob 1995). That will allow
me to use disjunctive ASP solvers such as claspD (Gebser
et al. 2007) and DLV (Leone et al. 2006). However, I also
intend to apply QBF solvers directly on the QBF encoding.
Once all these techniques are well developed, I will perform
extensive experiments to study their performance.

References
Brewka, G.; Niemela, I.; and Truszczynski, M. 2003. An-
swer set optimization. In PROC. IJCAI-03, 867–872. Morgan
Kaufmann.
Eiter, T., and Gottlob, G. 1995. On the computational cost
of disjunctive logic programming: Propositional case.
Eiter, T.; Erdem, E.; Erdogan, H.; and Fink, M. 2011. Find-
ing similar/diverse solutions in answer set programming.
CoRR abs/1108.3260.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. T.: Conflict-driven answer set solving. In In: Twentieth
International Joint Conference on Artificial Intelligence (IJCAI-07,
386–392. MIT Press.
Hebrard, E.; Hnich, B.; O’Sullivan, B.; and Walsh, T. 2005.
Finding diverse and similar solutions in constraint program-
ming. In Proceedings of the 20th national conference on Artificial
intelligence - Volume 1, AAAI’05, 372–377. AAAI Press.
Kaci, S. 2011. Working with Preferences: Less Is More. Cogni-
tive Technologies. Springer.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The dlv system for knowl-
edge representation and reasoning. ACM Trans. Comput. Logic
7(3):499–562.
Lifschitz, V. 1999. Answer set planning. 23–37. The MIT
Press.
Marek, V. W., and Truszczynski, M. 1998. Stable mod-
els and an alternative logic programming paradigm. CoRR
cs.LO/9809032.

1687




