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Abstract

The behavior of users in social networks is often observed
to be affected by the actions of their friends. Bhawalkar et
al. (Bhawalkar et al. 2012) introduced a formal mathemati-
cal model for user engagement in social networks where each
individual derives a benefit proportional to the number of its
friends which are engaged. Given a threshold degree k the
equilibrium for this model is a maximal subgraph whose min-
imum degree is ≥ k. However the dropping out of individu-
als with degrees less than k might lead to a cascading ef-
fect of iterated withdrawals such that the size of equilibrium
subgraph becomes very small. To overcome this some spe-
cial vertices called “anchors” are introduced: these vertices
need not have large degree. Bhawalkar et al. (Bhawalkar et al.
2012) considered the ANCHORED k-CORE problem: Given a
graph G and integers b, k and p do there exist a set of vertices
B ⊆ H ⊆ V (G) such that |B| ≤ b, |H| ≥ p and every
vertex v ∈ H \ B has degree at least k is the induced sub-
graph G[H]. They showed that the problem is NP-hard for
k ≥ 2 and gave some inapproximability and fixed-parameter
intractability results. In this paper we give improved hardness
results for this problem. In particular we show that the AN-
CHORED k-CORE problem is W[1]-hard parameterized by p,
even for k = 3. This improves the result of Bhawalkar et
al. (Bhawalkar et al. 2012) (who show W[2]-hardness param-
eterized by b) as our parameter is always bigger since p ≥ b.
Then we answer a question of Bhawalkar et al. (Bhawalkar et
al. 2012) by showing that the ANCHORED k-CORE problem
remains NP-hard on planar graphs for all k ≥ 3, even if the
maximum degree of the graph is k + 2. Finally we show that
the problem is FPT on planar graphs parameterized by b for
all k ≥ 7.
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Introduction

A social network can be thought as the graph of relation-
ships and interactions within a group of individuals. So-
cial networks play a leading role in various fields such
as social sciences (Mikolajczyk and Kretzschmar 2008;
Milgram 1967), life sciences (Dezső and Barabási 2002;
Wilson 1989) and medicine (Dezső and Barabási 2002;
Pastor-Satorras and Vespignani 2001). Social networks to-
day perform a fundamental role as a medium for the spread
of information, ideas, and influence among its members. As
an example, Facebook reported a figure of one billion active
users as of October 2012 (BBC 2012). An important charac-
teristic of social networks is that the behavior of an individ-
ual is often influenced by the actions of their friends. New
events occur quite often in social networks: some examples
are usage of a particular cell phone brand, adoption of a new
drug within the medical profession, or the rise of a political
movement in an unstable society. To estimate whether these
events or ideas spread extensively or die out soon, we need
to model and study the dynamics of influence propagation
in social networks. We consider the following model of user
engagement defined by Bhawalkar et al. (Bhawalkar et al.
2012): there is a single product and each individual has two
options of “engaged” or “drop out”. Initially we assume that
all individuals are engaged. There is a given threshold pa-
rameter k such that a person finds it worthwhile to remain
engaged if and only if at least k of her friends are still en-
gaged. For example engagement could represent active par-
ticipation in a social network, and individuals might drop
out and switch to a new social network if less than k of
his friends are active on the current social network. Indeed
such a phase transition has been observed in the popularity
of social networks: in India the leading social network was
Orkut until Facebook surpassed it in August 2010 (Facebook
2005).

In our model of user engagement all individuals with less
than k friends will clearly drop out. Unfortunately this can
be contagious and may affect even those individuals who
initially had more than k friends in the social network. An
extreme example of this is given in page 17 of (Schelling
2006): consider a path on n vertices and let k = 2. Note
that n − 2 vertices have degree two in the network. How-
ever there will be a cascade of iterated withdrawls. An end-
point has degree one, it drops out and now its neighbor
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in the path has only one friend in the social network and
it drops out as well. It is not hard to see that the whole
network eventually drops out. In general at the end of all
the iterated withdrawls the remaining engaged individuals
form a unique maximal induced subgraph whose minimum
degree is at least k. This is called as the k-core and is
a well-known concept in the theory of social networks. It
was introduced by Seidman (Seidman 1983) and also been
studied in various social sciences literature (Chwe 1999;
2000).

A Game-Theoretic Model: Consider the following
game-theoretical model (Bhawalkar et al. 2012): each user
in a social network pays a cost of k to remain engaged. On
the other hand it receives a profit of 1 from every neighbor
who is engaged. The “network effects” come into play, and
an individual decides to remain engaged if has non-negative
payoff, i.e., it has at least k neighbors who are engaged. The
k-core can be viewed as the unique maximal equilibrium
in this model. Assuming that all the players make decisions
simultaneously the model can be viewed as a simultaneous-
move game where each individual has two strategies viz. re-
maining engaged or dropping out. Consider a graph G de-
fined on the set of players by adding an edge between two
players if and only if they are friends in the network. For
every strategy profile δ let Sδ denote the set of players who
remain engaged. The payoff for a person v is 0 if she is not
engaged, otherwise it is the number of her friends among en-
gaged players minus k. We can easily characterize the set of
pure Nash equilibria for this game: a strategy profile δ is a
Nash equilibrium if and only if the following two conditions
hold:

• No engaged player wants to drop out, i.e., minimum de-
gree of the induced graph G[Sδ] is ≥ k

• No player who has dropped out wants to become engaged,
i.e., no v ∈ V (G) \ Sδ has ≥ k neighbors in Sδ

In general there can be many Nash equilibria. For exam-
ple, if G itself has minimum degree ≥ k then Sδ = ∅
and Sδ = V (G) are two equilibria (and there may be
more). Recall that the goal of the product company is to
attract as many people as possible. Owing to the fact that
it is a maximal equilibrium, the k-core has the special
property that it is beneficial to both parties: it maxi-
mizes the payoff of every user, while also maximizing
the payoff of the product company. Chwe (Chwe 1999;
2000) and Sääskilahti (Sääskilahti 2007) claim that one can
reasonably expect this maximal equilibrium even in real-life
implementations of this game.

Preventing Unraveling: The unraveling described above
in Schelling’s example of a path is highly undesirable since
the goal is to keep as many people engaged as possible. How
can we attempt to prevent this unraveling? In Schelling’s ex-
ample it is easy to see: if we “buy” the two end-point players
into being engaged then the whole path becomes engaged.

In general we overcome the issue of unraveling by allow-
ing some “anchors”: these are vertices that remain engaged
irrespective of their payoffs. This can be achieved by giving
them extra incentives or discounts. The hope is that with a

few anchors we can now ensure a large subgraph remains
engaged. This subgraph is now called as the anchored k-
core: each non-anchor vertex in this induced subgraph must
have degree at least k while the anchored vertices can have
arbitrary degrees. We use the notation degS(v) to denote the
degree of v in the graph S. Bhawalkar et al. (Bhawalkar et al.
2012) formally defined the ANCHORED k-CORE problem :

The ANCHORED k-CORE Problem (AKC)
Input : An undirected graph G = (V,E) and integers b, k
Question: Find a set of vertices H ⊆ V of maximum size
such that
• There is a set B ⊆ H and |B| ≤ b

• Every v ∈ H \B satisfies degG[H](v) ≥ k

The AKC problem deals with finding a small group of
individuals whose engagement is essential for the health of
the social network. We call the set B as anchors, the set H
as the anchored k-core and the set H \B as the anchored k-
supercore. The decision version of the ANCHORED k-CORE
problem deals with anchoring a given number of vertices to
maximize the number of engaged vertices. More formally:

p-AKC
Input : An undirected graph G = (V,E) and integers b, k, p
Question: Do there exist sets B ⊆ H ⊆ V such that
• |B| ≤ b and |H| ≥ p

• Every v ∈ H \B satisfies degG[H](v) ≥ k

Previous Work: Bhawalkar et al. (Bhawalkar et al. 2012)
introduced the ANCHORED k-CORE problem and gave
some positive and negative results for this problem. Noting
that the problem is trivial for k = 1, they showed that AKC
is polynomial time solvable for k = 2 but NP-hard for all
k ≥ 3. They also gave a strong inapproximability result:
it is NP-hard to approximate the AKC problem to within
an O(n1−ε) factor for any ε > 0. From the viewpoint of
parameterized complexity they showed that for every k ≥ 3
the p-AKC problem is W[2]-hard with respect to b. Finally
on the positive side they give a polynomial time algorithm
on graphs of bounded treewidth. On graphs with treewidth at
most w their algorithm runs in O(3w(k + 1)2wb2) · poly(n)
time.

Our Results: It is easy to see that ANCHORED k-CORE
can be solved in time nb+O(1), as we can try all subsets B
of size b of the set of vertices of the input graph, and for
each B, find the unique k-core H of maximum size such that
degG[H](v) ≥ k if v ∈ H \ B by the consecutive deletions
of small degree vertices. We show that this result is optimal
in some sense by proving that p-AKC problem is W[1]-hard
parameterized by b + k + p. We also show that the p-AKC
problem is W[1]-hard parameterized by p even for k = 3.
This improves the result of Bhawalkar et al. (Bhawalkar et
al. 2012) (who show W[2]-hardness parameterized by b), be-
cause our parameter is always bigger since p ≥ b. Bhawalkar
et al. raised the question of resolving the complexity of the
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ANCHORED k-CORE problem on special graph classes. In
this paper we consider the complexity of the AKC problem
on the class of planar graphs. We show that the ANCHORED
k-CORE problem is NP-hard on planar graphs for all k ≥ 3,
even if the maximum degree of the graph is k+2. Finally on
the positive side we show that the p-AKC problem on planar
graphs is FPT parameterized by b for all k ≥ 7.

Fixed-Parameter Intractability Results

In this section we give two parameterized intractability
results. Before that we give a brief introduction to parame-
terized complexity.

Parameterized Complexity: Parameterized Complexity
is basically a two-dimensional generalization of “P vs. NP”
where in addition to the overall input size n, one studies
the effects on computational complexity of a secondary
measurement that captures additional relevant information.
This additional information can be, for example, a structural
restriction on the input distribution considered, such as
a bound on the treewidth of an input graph or the size
of solution set. For general background on the theory
see (Downey and Fellows 1999; Flum and Grohe 2006;
Niedermeier 2006). For decision problems with input size
n, and a parameter k, the two dimensional analogue (or
generalization) of P, is solvability within a time bound
of O(f(k)nO(1)), where f is a computable function of
k alone. Problems having such an algorithm are said to
be fixed parameter tractable (FPT). Such algorithms are
practical when small parameters cover practical ranges.
The W -hierarchy is a collection of computational com-
plexity classes: we omit the technical definitions here. The
following relation is known amongst the classes in the
W -hierarchy: FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ . . ..
It is widely believed that FPT �= W [1], and hence if a
problem is hard for the class W [i] (for any i ≥ 1) then it is
considered to be fixed-parameter intractable.

W[1]-hardness parameterized by b+k+p: In this sec-
tion we show that the p-AKC problem is W[1]-hard even
when parameterized by b+ k+ p. We reduce from the well-
known W[1]-hard problem CLIQUE

CLIQUE

Input : An undirected graph G = (V,E) and an integer �
Question: Does G have a clique of size at least � ?

Theorem 1 [�]1 The p-AKC problem is W[1]-hard parame-
terized by b+ k + p for k ≥ 3.

W[1]-hardness parameterized by p
Bhawalkar et al. (Theorem 3 in (Bhawalkar et al. 2012))
showed that the p-AKC problem is W[2]-hard parameter-
ized by b for every k ≥ 3. In this section we prove that it is
in fact W[1]-hard parameterized by p for k = 3.

1The proofs marked with [�] have been deferred to a full version
of this paper due to space constraints.

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 
 

 
 

 
 

 

 
 
 

Figure 1: The graph G′ constructed in Theorem 2 for the
special case when n = 8 and � = 5.

Theorem 2 The p-AKC problem is W[1]-hard parameter-
ized by p for k = 3.

Proof. We again reduce from the CLIQUE problem. Con-
sider an instance (G = (V,E), �) of CLIQUE where V =
(v1, v2, . . . , vn). Construct a new graph G′ = (V ′, E′) as
follows. For each 1 ≤ i �= j ≤ � make a copy Gij of the
vertex set V (do not add any edges). Let the vertex vr in the
copy Gij be labeled vrij . Add the following edges to G′:

• For each 1 ≤ i �= j ≤ � and r, s ∈ [�] we add an edge
between vrij and vsji if and only if vrvs ∈ E. Subdivide
each such edge by adding a new vertex called green.

• For each 1 ≤ i, j ≤ � add the cycle vji1−vji2−. . . vji,i−1−
vji,i+1 − . . .− vji� − vji1. Let us denote this cycle by Cj

i .

This completes the construction of G′. Let k = 3, b =
(
�
2

)

and p = 3b. The claim is that the instance (G, �) of CLIQUE
answers YES if and only if the instance (G′, b, k, p) of p-
AKC answers YES.

Suppose G has a clique of size �, say C =
{v1, v2, . . . , v�}. For 1 ≤ i �= j ≤ � pick the vertex viij
from Gij . This gives a set S of 2b vertices. It is easy to see
that G′[S] consists of disjoint cycles, and hence is regular
of degree two. Now for every viij there is an unique vertex
vjji which is connected to it by a subdivided edge in G′. The
green vertices of this subdivided edges become the anchors.
Note that we pick exactly |S|

2 = b anchors. It is easy to see
that each vertex of S now has degree three in the resulting
induced subgraph, and hence S becomes the k-supercore.
Therefore the instance (G′, b, k, p) of p-AKC answers YES.

Now suppose that the instance (G′, b, k, p) of p-AKC an-
swers YES. Let S be the k-supercore and B be the set of
anchors. Then we know that |S| ≥ p − b = 2b. Each
green vertex has degree two in G′, and hence cannot be
in S. Each vertex in S needs at least one green vertex to
achieve degree three in G′[S ∪B]. But any green vertex can
be used by at most two vertices in S. Therefore we have
2b ≥ 2|B| ≥ |S| ≥ 2b which implies |B| = b and |S| = 2b.
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Hence the budget must come from the green vertices only,
and that the vertices of S form a matching under the relation
of sharing a common green vertex. Without loss of general-
ity let vi112 and vi221 be two vertices in S such that they share
a green vertex from B. Now we know that vi112 has degree
at least three in G′[B ∪ S] but cannot be incident to any
other green vertex. So we need to include vi113 and vi11� in S.
Again each of these two vertices can be incident to at most
one green vertex in G′[B ∪ S] and ultimately this means
that we must have Ci1

1 ⊆ G′[B ∪ S]. For 2 ≤ j ≤ � we
know that the vertex vi11j needs one more edge to achieve de-
gree at least three. This edge must be towards a green vertex
which is adjacent to some vertex in Gj1, say v

ij
j1. By reason-

ing similar to above we must have Cij
j ⊆ G′[B∪S] for every

2 ≤ j ≤ �. So we have chosen 2b vertices in S, which is the
maximum allowed budget. Therefore S ∩Gjj′ = {vijjj′} for
every 1 ≤ j �= j′ ≤ �.

The claim is that the set {vi1 , vi2 , . . . , vi�} forms a clique
in G. Consider any two indices 1 ≤ q �= r ≤ �. We know
that the vertex v

iq
qr is in S and has degree two in G′[B ∪ S]

as it is in the cycle C
iq
q . To achieve degree three it must be

incident to some green vertex. Also it must share this green
vertex with some other vertex from Grq ∩ S. But we know
that Grq ∩ S = {virrq}. Therefore v

iq
qr and virrq share a green

vertex, i.e., viq and vir are adjacent in G, i.e, the vertices
{vi1 , vi2 , . . . , vi�} form a clique in G. �

NP-hardness Results on Planar Graphs

Bhawalkar et al. (Bhawalkar et al. 2012) raised the question
of investigating the complexity of the ANCHORED k-CORE
problem on special cases of graphs such as planar graphs.
In this section we provide some answers by showing NP-
hardness results for planar graphs for k ≥ 3. The case k ≥ 4
can be handled by a single reduction, but k = 3 is more
complicated and requires a separate reduction. We reduce
from the following problem which was shown to be NP-hard
by Dahlhaus et al. (Dahlhaus et al. 1994):

RESTRICTED-PLANAR-3-SAT
Input : A Boolean CNF formula φ such that
• Each clause has at most 3 literals
• Each variable is used in at most 3 clauses
• Each variable is used at least once in positive and at least

once in negation
• The graph Gφ (described below) is planar
Question: Is the formula φ satisfiable ?

Consider an instance φ of RESTRICTED-PLANAR-3-SAT
with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm.
We associate the following graph Gφ with φ:

• For each 1 ≤ i ≤ n introduce the vertices ri, xi and xi.
Add the edges rixi and rixi.

• For each 1 ≤ j ≤ m introduce the vertex cj .

• For each 1 ≤ i ≤ n and 1 ≤ j ≤ m add an edge between
xi (or xi) and cj iff xi (or xi) belongs to the clause Cj .

NP-hardness on Planar Graphs for k = 3
In this section we show that the ANCHORED k-CORE prob-
lem is NP-hard on planar graphs for all k = 3, even in graphs
of maximum degree 5.

The graph T The graph W 

1 

2 

n 

Figure 2: The graphs T and W used in construction of G in
Theorem 3. Note that T has 2n+3 vertices, and exactly one
vertex has degree two. The graph W has exactly one vertex
of degree one.

 
 

 
 
 
 
 

 

 
 

 
 

 
 

 
 

 
  

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

Figure 3: The graph G constructed in Theorem 3.

Theorem 3 For k = 3 the ANCHORED k-CORE problem is
NP-hard even on planar graphs of maximum degree 5.
Proof. We reduce from the RESTRICTED-PLANAR-3-SAT
problem. For an instance φ of RESTRICTED-PLANAR-3-
SAT let Gφ be the associated planar graph. We define two
special graphs T and W (see Figure 2) and build the graph
G as follows (see Figure 3):
• For each 1 ≤ i ≤ n subdivide the edge rixi and let the

newly introduced vertex be yi

• For each 1 ≤ i ≤ n subdivide the edge rixi and let the
newly introduced vertex be yi.

• For each 1 ≤ i ≤ [n attach a copy of T by identifying its
degree two vertex with vertex ri. Call this gadget as Ri

• For each 1 ≤ i ≤ n if xi appears in exactly one clause
then attach a copy of W by identifying its degree one ver-
tex with vertex xi. Call this gadget as Xi

• For each 1 ≤ i ≤ n if xi appears in exactly one clause
then attach a copy of W by identifying its degree one ver-
tex with vertex xi. Call this gadget as Xi
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• For each 1 ≤ j ≤ m attach a copy of T by identifying its
degree two vertex with vertex cj . Call this gadget as Cj

This completes the construction of the graph G = (V,E).
All the gadgets we added are planar, and it is easy to verify
that the planarity is preserved when we construct G from
Gφ. Let k = 3, b = n and p = |V |−2n. The claim is that φ
is satisfiable if and only if the instance (G, b, k, p) of p-AKC
answers YES.

Suppose φ is satisfiable. For each 1 ≤ i ≤ n, if xi =
1 in the satisfying assignment for φ then pick yi in B and
xi, yi in B′. Otherwise pick yi in B and xi, yi in B′. Clearly
|B| = n and |B′| = 2n. Let B be the set of anchors and set
H = V \B′. Now the claim is that every vertex w ∈ H \B
has degree at least three in the induced subgraph G[H]. For
each 1 ≤ i ≤ n, exactly one of yi or yi is in B. Hence ri
(and also each vertex of Ri) has degree exactly three in H .
Consider a literal xi. We have the following two cases:

• yi ∈ B: xi gets one edge from yi. If xi appears in exactly
one clause then it gets one edge from that clause vertex
and one edge from its neighbor in Xi (and each vertex in
Xi has degree at least three in H). Otherwise xi gets two
edges from the two clause vertices which it appears in.

• yi ∈ B: xi gets one edge from yi. If xi appears in exactly
one clause then it gets one edge from that clause vertex
and one edge from its neighbor in Xi (and each vertex in
Xi has degree at least three in H). Otherwise xi gets two
edges from the two clause vertices which it appears in.

Finally consider a clause vertex cj . It has at least one true lit-
eral say xi in it. In addition cj has two neighbors in Cj , and
hence the degree of cj is at least three in H . Consequently
each vertex in Cj has degree at least three in H . Therefore
with b = |B| = n anchors we can cover a 3-core of size
at least |V \ B′| = |V | − 2n = p, and hence (G, b, k, p)
answers YES.

Suppose that the instance (G, b, k, p) of p-AKC answers
YES. Let us denote the 3-core by H . Note that we can afford
to not have at most 2n vertices in the 3-core. Each yi and yi
have degree two in G: so either we cannot have them in the
3-core or we need to pick them as anchors. Also for i ∈ [n]
if we do not pick at least one of yi or yi then the vertex
ri also cannot be in the 3-core. This will lead to a cascade
effect and the whole gadget Ri cannot be the in the 3-core,
which is a contradiction since it has 2n+ 3 vertices and we
could have left out at most n vertices from the core. If for
some i ∈ [n] we pick both yi and yi as anchors then for
some j �= i we cannot pick either of yj and yj as anchors
since the total budget for anchors is at most n. Therefore
we must anchor exactly one of yi, yi for each 1 ≤ i ≤ n.
Let B be the set of anchors. Consider the assignment f :
{1, 2, . . . , n} → {0, 1} given by f(xi) = 1 if yi ∈ B or
f(xi) = 0 otherwise. We claim that f is indeed a satisfying
assignment for φ. Consider a clause vertex cj . We know that
cj must lie in the 3-core: otherwise we lose the entire gadget
Cj which has 2n+3 vertices which is more than our budget.
Therefore cj has an edge in G[H] to some vertex say xi. If
yi /∈ B then xi can have degree at most two in G[H]: either
it appears in exactly one clause and has a copy of W attached

to it, or it is adjacent to two clause vertices. Therefore yi ∈
B which implies f(xi) = 1, and so the clause cj is satisfied.

Finally note that the maximum degree of G is five, which
can occur if cj has three literals. �

NP-hardness on Planar Graphs for k ≥ 4

In this section we show that the ANCHORED k-CORE prob-
lem is NP-hard on planar graphs for all k ≥ 4, even in graphs
of maximum degree k + 2.

 
 

 
 

 
 

 
 

 
 

 
  

 

 
 

 
 

 
 

 
 

Figure 4: The graph G constructed in Theorem 4 for k = 4.

Theorem 4 For any k ≥ 4 the ANCHORED k-CORE prob-
lem is NP-hard even on planar graphs of maximum degree
k + 2.

Proof. Fix any k ≥ 4. We reduce from the RESTRICTED-
PLANAR-3-SAT problem. For an instance φ of
RESTRICTED-PLANAR-3-SAT let Gφ be the associ-
ated planar graph. We build a graph G = (V,E) from Gφ

as follows (see Figure 4):
1. For each 1 ≤ i ≤ n

• Add a set Yi of k − 1 vertices and make all of them
adjacent to ri.

• For each vertex y ∈ Yi add k − 1 vertices and make
all of them adjacent to y. Let Zi be the set of all these
(k − 1)2 vertices.

2. For each 1 ≤ j ≤ m

• Add a set Uj of k − 1 vertices and make all of them
adjacent to vj .

• For each vertex u ∈ Uj add k − 1 vertices and make
all of them adjacent to u. Let Wj be the set of all these
(k − 1)2 vertices.

Set b = n((k−1)2+1)+m(k−1)2 and p = n(k(k−1)+
2) + m(k(k − 1) + 1) = b + nk + mk. Note that degree
of each xi and xi is at most three in G. We claim that φ is
satisfiable if and only if the instance (G, b, k, p) of p-AKC
answers YES.

Suppose φ is satisfiable. For each 1 ≤ i ≤ n, if xi =
1 in the satisfying assignment then select xi in B′ and
xi in B′′. Else select xi in B′ and xi in B′′. Let B =
B′

⋃
(∪n

i=1Zi)
⋃
(∪m

j=1Wj). Let us place the anchors at ver-
tices of B. Then |B| = n + n(k − 1)2 + m(k − 1)2 = b.
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Now the claim is that V \ B′′ forms a k-core. This would
conclude the proof since |V \B′′| = |G| − n = p. For each
1 ≤ i ≤ n the vertex ri gets one neighbor from either xi or
xi and it has k − 1 neighbors in Yi. Each vertex in Yi has
one neighbor in ri and k− 1 neighbors in Zi. Each vertex in
Uj has one neighbor in vj and k− 1 neighbors in Wj . Since
there is a satisfying assignment we know that vj has at least
one neighbor in B′, and of course has k−1 neighbors in Uj .
So V \B′′ forms a k-core with B as the anchor set, and the
instance (G, b, k, p) of p-AKC answers YES.

Now suppose that the instance (G, b, k, p) of
p-AKC answers YES. Let us denote the an-
chors by B and the k-core by H . Consider
S = (∪n

i=1{xi, xi})
⋃
(∪n

i=1Zi)
⋃
(∪m

j=1Wj). Note
that |S| = b + n. Any vertex in S has degree at most
max{k − 1, 3} in G: so if it is present in the k-core then
it must be an anchor. Since p = |V | − n at least |S| − n
vertices from S must be anchors. Since |S| − n = b these
vertices must be the anchor set say B and the k-core is
H = B ∪ (V \ S). Let z ∈ Zi for some 1 ≤ i ≤ n be
adjacent to y ∈ Yi in G. If z /∈ B then y has at most k − 1
neighbors in H , which contradicts the fact that Yi ⊆ H \B.
Therefore Zi ⊆ B for every 1 ≤ i ≤ [n]. Similarly we
have Wj ⊆ B for every 1 ≤ j ≤ m. So now we can
only choose n more anchors from the set ∪n

i=1{xi, xi}.
Suppose for some 1 ≤ i ≤ n we have both xi /∈ B and
xi /∈ B. Then the vertex ri has degree at most k − 1 in
G[H], contradicting the fact that ri ∈ H \ B. Therefore
for every 1 ≤ i ≤ n at least one of xi or xi must be in
B. As the budget for the anchors is n we know that for
every 1 ≤ i ≤ n exactly one of xi or xi is in B. Consider
the assignment f : {1, 2, . . . , n} → {0, 1} for φ given by
f(i) = 1 if xi ∈ B and 0 otherwise. The claim is that f is
a satisfying assignment for φ. Consider any clause Cj of
φ. The vertex vj has exactly k − 1 neighbors in Uj , and
hence must have at least one neighbor in B (which appears
in the clause Cj). If this neighbor is some xi ∈ B then
the assignment would set xi = 1. Else the neighbor is of
the type xi ∈ B and then our assignment would have set
xi = 0. Hence f is a satisfying assignment for φ. Finally
note that the maximum degree of G is k + 2, which can
occur if vj has three literals. �

FPT on Planar Graphs Parameterized by b

In this section we show that the p-AKC problem is FPT pa-
rameterized by b on planar graphs when k ≥ 7.

Lemma 1 The problem of checking whether there is an an-
chored k-core such that q ≥ |H| ≥ p can be expressed in
first-order logic.

Proof. Consider the following formula in first-order logic:
φq =

∨
p≤i≤q

(∃h1, h2, . . . hi : Hi∧
∨

1≤j≤b

(∃b1, b2, . . . bj
: Bj ∧ BjHi ∧ ∀y :

(∨
1≤i1≤i(y = hi1) ∧ Y Bj

) →
∃v1 . . . vk : Vk ∧ VkHi ∧ Y Vk

))

where
Hi =

∧
1≤i1 �=i2≤i(hi1 �= hi2)

Bj =
∧

1≤j1 �=j2≤j(bj1 �= bj2)

BjHi =
∧

1≤j1≤j(
∨

1≤i1≤i(bj1 = hi1)

Y Bj =
∧

1≤j1≤j(y �= bj1)

Vk =
∧

1≤k1 �=k2≤k(vk1
�= vk2

)

VkHi =
∧

1≤k1≤k(
∨

1≤i1≤i(vk1
= hi1))

Y Vk =
∧

1≤k1≤k(yvkg1 ∈ E))
We claim that the formula φq correctly expresses the prob-

lem of checking whether there is an anchored k-core such
that q ≥ |H| ≥ p. The formulae Hi, Bj and Bk just check
that all the variables in the respective formula are pairwise
distinct. The formula BjHi checks every anchor is present
in the anchored k-core H . Finally for every y ∈ H \ B we
enforce that that there are at least k elements v1, v2, . . . , vk
which are pairwise distinct, present in H and adjacent to y. It
is now easy to see that any solution H such that q ≥ |H| ≥ p
gives a solution to the formula φq and vice versa, i.e., the for-
mula φq exactly expresses this problem. Note that the length
of φq is poly(q) since q ≥ p ≥ b and q ≥ k − 1. �

Seese (Seese 1996) showed that any graph problem ex-
pressible in first-order logic can be solved in linear FPT
time on graphs of bounded degree. More formally, let X
be a graph problem and φX be a first-order formula for
X . For a constant c > 0 consider the graph class Gc =
{ G | Δ(G) ≤ c}. Then for every G ∈ G we can solve X in
O(f(|φX |) · |G|) where f is some function. This was later
extended by Dvorak et al. (Dvorak, Král, and Thomas 2010)
to a much richer graph class known as graphs with bounded
expansion. We refer to (Dvorak, Král, and Thomas 2010;
Nesetril and de Mendez 2006) for the exact definitions.
However we remark that examples of such graph classes are
graphs of bounded degree, graphs of bounded genus (includ-
ing planar graphs), graphs that exclude a fixed (topological)
minor, etc. Using these results we can give FPT algorithm
parameterized by b on some classes of sparse graphs when
k is sufficiently large. However for the sake of simplicity we
just state the result for planar graphs.
Lemma 2 [�] Let G be a planar graph on n vertices. Let
k ≥ 7 and m be the set of vertices of degree at least k. Then
m
n < 6

7 .
Theorem 5 [�] Let k ≥ 7. Then for the class of planar
graphs the p-AKC problem can be solved in linear FPT time
parameterized by the number of anchors b.

Conclusions and Open Problems

We studied the complexity of the AKC problem on the
class of planar graphs, thus answering the question raised
in (Bhawalkar et al. 2012). We showed that the AKC prob-
lem is NP-hard on planar graphs, even if the graph has max-
imum degree k + 2. We also improve some fixed-parameter
intractability results for the p-AKC problem. Finally on the
positive side we show that for all k ≥ 7 the p-AKC problem
on planar graphs is FPT parameterized by b.

There are still several interesting questions remaining. We
mention some of them here: what is the parameterized com-
plexity status of the problem parameterized by b on planar
graphs for 3 ≤ k ≤ 6? What happens when we consider the
problem on random graphs? Can we get reasonable approx-
imation algorithms on some restricted graph classes?
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