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Abstract

In AI and Web communities, modularity-based graph
clustering algorithms are being applied to various appli-
cations. However, existing algorithms are not applied to
large graphs because they have to scan all vertices/edges
iteratively. The goal of this paper is to efficiently com-
pute clusters with high modularity from extremely large
graphs with more than a few billion edges. The heart
of our solution is to compute clusters by incrementally
pruning unnecessary vertices/edges and optimizing the
order of vertex selections. Our experiments show that
our proposal outperforms all other modularity-based al-
gorithms in terms of computation time, and it finds clus-
ters with high modularity.

1 Introduction
Graphs can represent data entities as well as the relationships
among entities. They arise in a wide range of application do-
mains from the Internet to biological networks and beyond
(Fujiwara et al. 2012; Nakatsuji et al. 2012). Graphs are be-
coming larger and larger, and graphs of unprecedented size
can be easily found. For example, the number of monthly
active users in Facebook recently exceeded 1 billion (Si-
bona and Choi 2012). Therefore, there is no longer any doubt
about the need for techniques that can analyze large graphs
quickly. In these large graphs, graph clustering analysis is
one of the more important tools for scientific and industrial
data analysis. A graph is divided into groups, called clusters,
whose vertices are highly connected inside. By using graph
clustering, we can discover the structures and representative
examples present in the raw graph data.

Recently, modularity-base clustering proposed by New-
man and Girvan (Newman and Girvan 2004) has become
one of the most popular algorithms for extracting clusters
in a graph. Modularity evaluates the density of edges in-
side clusters as compared to edges between clusters. The
better clustering results are achieved with higher modular-
ity scores. Modularity-based algorithms have been applied
to many applications, described below, in AI and Web com-
munities due to its effectiveness:
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User recommendation Social tagging systems have
emerged as a popular way for users to annotate, and share
resources on the Web, such as Yahoo! Delicious and Flickr.
However, due to the fast growth of systems, a user is easily
overwhelmed by the large amount of data and it is very dif-
ficult for the user to dig out the information that he/she is in-
terested in. The modularity-based graph clustering approach
suggested by Zhou et al. (Zhou et al. 2010), can help users
to discover other users with common interests automatically
and effectively. It obtains an undirected weighted tag-graph
for each user. In each graph, vertices represent the tags used
by each user, and edges represent co-occurrences between
tag pairs. Then it extracts clusters as the topics which rep-
resent a user’s interests by using a modularity-based clus-
tering algorithm (Clauset, Newman, and Moore 2004) in
each graph. Finally, it computes the interest-based similar-
ity among users by measuring KL–divergence (Kernighan
and Lin 1970) of the topics for each user. Their approach
can discover users with common interests more effectively
than memory-based (Herlocker et al. 1999) and model-based
(Hofmann 2004) algorithms.

Event detection Recently, users of microblogging ser-
vices such as Twitter continuously report their real life
events through these services. Detecting life events would
be useful for understanding what users are really discussing.
Therefore, event detection algorithms have long been a re-
search topic (Yang, Pierce, and Carbonell 1998; Kleinberg
2002). Weng et al. applied a modularity-based clustering to
wavelet-based signals for event detection (Weng and Lee
2011). They build signals computed by wavelet analysis
for individual words, which capture only the bursts in the
words’ appearance. They then obtain a graph whose ver-
tices and edges represent signals and correlation values be-
tween signals, respectively. Finally, they detect events by us-
ing the modularity-based algorithm. Their modularity-based
approach shows better performance than the LDA-based ap-
proach (Blei, Ng, and Jordan 2001) in finding events.

Modularity-based algorithms can also be used in other ap-
plications such as image segmentation (Browet, Absil, and
Dooren 2011), brain analysis (Yu et al. 2010), and so forth.
We omit details due to the space limitations.

Although the modularity-based algorithms are effective
for many applications, finding the maximum modularity
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involves NP-complete complexity (Newman and Girvan
2004). This problem has led to the introduction of approx-
imation approaches. Instead of performing an exhaustive
search, a greedy modularity-based approach, named New-
man clustering, was proposed by Newman (Newman 2004).
It iteratively selects and merges a pair of vertices so as to
maximize the rise in modularity. As a result, it produces
reasonable clusters with hierarchical structure, which rep-
resents the history of merges. Despite the effectiveness in
avoiding the NP-complete problem, it requires high comput-
ing cost O(|V|2), where |V| is the number of vertices.

Various algorithms have been proposed to reduce the
computational cost of Newman clustering (Clauset, New-
man, and Moore 2004; Wakita and Tsurumi 2007). Clauset
et al. proposed a greedy modularity-based algorithm, called
CNM (Clauset, Newman, and Moore 2004), which is one
of the most widely used methods recently. They used the
modularity gain, which is obtained after merging a pair of
vertices, and nested heap structures of modularity gain for
all pairs of vertices. It iteratively selects and merges the best
pair of vertices, which has the largest modularity gain, from
the heap until no pairs improve the modularity. The compu-
tational cost of CNM isO(d|E| log |V|), where d and |E| are
the depth of the hierarchical clustering result and the number
of edges. However, Blondel et al. reported that CNM cannot
return clustering results in reasonable computational time
for graphs with more than 500 thousand vertices (Blondel et
al. 2008). Moreover, they also reported that CNM has a ten-
dency to produce super-clusters with significant low modu-
larity, super-clusters contain a large fraction of the vertices,
by merging in a global maximization manner.

Blondel et al. proposed an efficient greedy algorithm
BGLL (Blondel et al. 2008). To the best of our knowledge,
BGLL is representative for the state of the art algorithm;
it achieves fast clustering with higher modularity than the
other algorithms. In contrast to CNM, it computes the modu-
larity gain only for the adjoined vertices pairs as a local max-
imization. Blondel et al. reported that BGLL requires almost
3 hours to process graphs with 118 million vertices (Blon-
del et al. 2008). Although BGLL is effective for extracting
high modularity clusters, it is difficult for BGLL to realize
quick responses for graphs of unprecedented size, such as
Web graphs with their few billion edges. This is because it
iteratively scans all vertices/edges as long as the modularity
is incrementing.

To overcome the limitation of computing time in the pre-
vious approaches, we propose a novel clustering algorithm.
In order to reduce computational cost, we introduce three
ideas. First, we incrementally aggregate vertices, which are
placed in a same cluster, into a single vertex. Second, we in-
crementally prune computations of modularity gain for ver-
tices whose clusters are obviously obtained. Last, we opti-
mize the order of vertex selections for efficient clustering.
Our proposal has the following attractive characteristics:

• Efficiency: The proposed algorithm is considerably faster
than existing approaches such as CNM and BGLL.

• High-modularity: Our approach provides clustering re-
sults with high modularity; it returns almost the same

modularity scores as the state of the art approach, BGLL.

• Effectiveness: Our algorithm is effective in improving the
performance for large-scale complex networks.

To the best of our knowledge, our approach is the first so-
lution to divide graphs into clusters that have more than 100
million vertices and 1 billion edges within 3 minutes. These
characteristics confirm the practicality of our algorithm for
real world applications. With our proposal, many more ap-
plications can be implemented more efficiently.

2 Preliminary
Let V and E be sets of vertices and edges, respectively, graph
clustering divides graph G = (V,E) into disjoint clusters
Ci = (Vi,Ei), in which V =

∑
iVi and Vi ∩ Vj = ∅

for any i 6= j. To simplify the representations, we assume
graphs are undirected and unweighted. However, other types
of graphs such as directed and weighted, can be handled with
only small modifications.

Modularity, introduced by Newman et al. (Newman and
Girvan 2004), is widely used to evaluate the cluster structure
of a graph from a global perspective. It measures the differ-
ences in graph structures from an expected random graph.
The main idea of modularity is to find groups of vertices that
have a lot of inner-group edges and few inter-group edges.
Modularity Q is defined as follows:

Definition 1 (Modularity Q) Let euv be the total number
of edges between cluster u and v; au be the total number of
edges that are attached to vertices in cluster u; and m be
the total number of edges in the whole graph. The following
equation gives the modularity score of the clustering result.

Q =
∑
u

{
euu

2m −
(
au
2m

)2}
.

In Definition 1, au/2m is the expected fraction of edges of
u, which can be obtained when we assume the graph to be
a random graph. Therefore, well clustered graphs will have
high modularity scores, since the value of euu is highly dif-
ferent from the random graph.

3 Proposed method
This section presents details of our proposal. In contrast to
all the other algorithms, we can find clusters with high mod-
ularity in graphs of unprecedented size, such as more than
a few billion of edges, within a few minutes. We give an
overview the ideas underlying our algorithm that is followed
by a full description including graph clustering algorithm.

3.1 Ideas
We introduce three ideas to avoid the high computation cost
of existing algorithms. First, we incrementally aggregate
vertices, which are placed in a same cluster, into a single ver-
tex to eliminate unnecessary vertices/edges from the graph.
Second, we incrementally prune vertices whose clusters are
obtained without modularity computing. Last, we optimize
the order of vertex selections to reduce the number of modu-
larity computations in the clustering process. Instead of iter-
ative computations for all vertices/edges in the whole graph,
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we only compute the key vertices/edges efficiently. More-
over, our proposal successfully produces clustering results
with high modularity by obtaining clusters in a local modu-
larity maximization and avoiding skewed access.

These simple ideas have two main advantages. First, we
can extract clusters with quite-small computational cost for
complex networks (Newman 2003). Our ideas successfully
handle the interesting characteristics of complex networks;
high clustering coefficients and power-law degree distribu-
tions. This is because our ideas are designed to perform well
even if the graph has many co-occurrence vertices between
adjacent vertices. That is, high clustering coefficients lead
our algorithm to compute efficiently. Additionally, our ideas
perform well in the case that there are strong imbalances
among the degrees of all vertices as in power-law distribu-
tions. Thus, our algorithm runs faster on large size complex
networks than the state of the art algorithm.

Second, our algorithm can produce clustering results with
high modularity by not missing the chances that may im-
prove the modularity. The reason is twofold. First is that our
pruning method does not sacrifice modularity. Second is that
our ideas successfully prevent our algorithm from produc-
ing imbalanced clustering results, which would otherwise
greatly degrade the modularity. Therefore, our algorithm can
extract clustering results with high modularity.

3.2 Incremental aggregation
We extract clusters by incrementally aggregating vertices
placed in a same cluster into an equivalent single vertex with
weighted edges. In contrast to previous algorithms, our pro-
posal does not traverse all vertices/edges multiple times. In
this section, we formally introduce our incremental aggrega-
tion technique and its properties.

We specify the modularity gain proposed by Newman
(Newman 2004), since it is also utilized by our algorithm.
Definition 2 (Modularity gain4Quv) Let 4Quv be the
modularity gain which is obtained after merging vertices u
and v. The modularity gain4Quv is defined as follows:

4Quv = 2
{
euv

2m −
(
au
2m

) (
av
2m

)}
.

By using modularity gain, our proposal finds clusters in
a local maximization manner. When vertex u is selected, it
computes the modularity gain of u for each v in Γ(u), where
Γ(u) is the set of vertices neighboring u. After computing all
modularity gains between u and v, our algorithm incremen-
tally aggregates u and v that yields the highest rise in modu-
larity. Details of the incremental aggregation and aggregated
vertex are as follows:
Definition 3 (Incremental aggregation) Let vertex v be
the neighboring vertex of vertex u that yields the highest rise
in modularity. If vertex u has a positive modularity gain for
v (i.e. 4Quv > 0), the pair of vertices, u and v, are ag-
gregated into a single vertex w. If vertex v has the negative
modularity gain (i.e.4Quv ≤ 0), the pair of vertices u and
v are not aggregated.

Definition 4 (Aggregated vertex) We initialize the weight
of each edge to 1 in the given graph. If vertex w is ag-
gregated from vertex u and v, vertex w has two types of

weighted edges; a self-loop edge and outer edges. The
weight of the self-loop edge is obtained by summing (1)
weights of the self-loop edges of vertices u and v, and (2)
weights of edges between vertex u and v. The weights of
outer edges for other vertices are obtained by summing the
weights of edges that incident vertices u and v.

From Definition 4, the degree of w is given as the number
of the weighted outer edges that are obtained by aggregating
vertices/edges included in the same cluster. Then, we intro-
duce the theoretical properties of Definition 3 and 4.
Lemma 1 (Equivalence of the modularity) If (1) vertex u
and v belong to the same cluster (i.e. cu = cv) and (2) vertex
u and v are aggregated into vertex w, the modularity taken
from vertex w is equivalent that of vertices u and v.
Proof Let Q(u,v) be the modularity for the case that vertex
u and v belong to the same cluster, and Qw be the modular-
ity of aggregated vertex w. From Definition 4, the weighted
edges of w are eww = euu + evv + 2euv = e(u,v)(u,v) and
aw = au + av = a(u,v). Qw is obtained as follows:

Qw = eww

2m −
a2w

4m2 = euu+evv+2euv

2m − (au+av)2

4m2 = Q(u,v)

Thus, vertex w has the same modularity as vertices u and v
that belong to the same cluster. �
From Lemma 1, we can reduce the number of vertices/edges
in the graph without sacrificing modularity quality. Addi-
tionally, we advance the following lemma to avoid iterative
traversal of all vertices/edges:
Lemma 2 (Negativity of the modularity) Once a vertex
has negative modularity gain for all neighbors, it will never
be clustered with its neighbors in the subsequent process.
Proof We assume vertices vi and vj are connected. There
are two cases in which the modularity gains of vertex u can
be updated. First is that vertex u is connected to both of vi
and vj . In this case, the modularity gains of u are given as
4Quvi < 0 and 4Quvj < 0, respectively. If vi and vj
are aggregated into vertex w, the updated modularity gain
4Quw can be obtained by Definition 2 and 4 as follows:

4Quw = 2
{
euw

2m −
(
au
2m

) (
aw
2m

)}
= 2

{
euvi

+euvj

2m −
(
au
2m

) (avi+avj
2m

)}
= 2

(
4Quvi +4Quvj

)
< 0.

As can be see, vertex u always has negative modularity gain
after merging pairs of neighbor vertices in this case. Next,
we assume the case that only vertex vi is connected to vertex
u. In this case, the modularity gain between u and vi is given
as 4Quvi < 0. If vi and vj are aggregated into a vertex w,
the updated modularity gain4Quw is obtained as follows:

4Quw = 2
{
euw

2m −
(
au
2m

) (
aw
2m

)}
= 2

{
euvi

2m −
(
au
2m

) (avi+avj
2m

)}
= 2

(
4Quvi −

auavj
4m2

)
< 0.

This case also has no positive improvement of 4Quw af-
ter aggregation. Therefore, vertex u never finds a neighbor
vertex yielding positive modularity gain. Thus, once a vertex
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only has negative modularity gains, it will never be clustered
in the subsequent process. �
From Lemma 2, we can efficiently reduce the number of tra-
verses for all vertices/edges. This is because, once a vertex
is detected as yielding having only negative modularity gain,
it is never considered for aggregation thereafter.

Our proposal efficiently handles the structural feature of
high clustering coefficient. The clustering coefficient of ad-
joined vertices (Latapy, Magnien, and Vecchio 2008) mea-
sures how close the pair of vertices is to being a clique.
By considering this pairwise clustering coefficient, the ef-
ficiency of our algorithm is confirmed as follows:

Lemma 3 (Efficiency of incremental aggregation) Let c
be the clustering coefficient of the adjacent vertices, and n
be the number of neighbors adjoined to the pair of vertices
(i.e. |Γ(u) ∪ Γ(v)|). In each incremental aggregation, our
algorithm can eliminate cn edges.

Proof If a pair of vertices have n neighboring vertices, the
pair is expected to have cn neighboring vertices that are
co-referenced from both of the pair. From Definition 4, cn
edges, indicates co-referenced vertices from the pair, will
be eliminated by aggregating the pair into a single vertex.
Therefore, we can eliminate cn edges in each aggregation.�
From Lemma 3, it is obvious that our algorithm performs
well when the given graph has a high clustering coefficient.

3.3 Incremental pruning
In practice, there are a lot of vertices whose clusters are triv-
ially determined, we call them prunable vertices. We call the
set of vertices whose modularity gains are to be computed as
target vertices, in the clustering process. Unlike existing al-
gorithms, our algorithm computes the modularity gain for
only target vertices by dynamically removing prunable ver-
tices in incremental manner. We formally introduce below
the definitions of prunable vertices and target vertices with
their theoretical properties. The set of prunable vertices Pi
in the i–th aggregation is defined as follows:

Definition 5 (Prunable vertices) Let cu be a cluster to
which vertex u belongs. The following equation gives the
set of prunable vertices in the i–th aggregation.

Pi=
{
∅ (i = 0)
{u : |Γ(u)|=1}∪{u :∀v,w∈Γ(u), cv=cw} (i > 0)

Definition 5 indicates that a vertex is included in Pi if (1)
the vertex has only a single adjacent vertex, or (2) all the
adjacent vertices of the vertex belong to the same cluster. We
can introduce the following properties of prunable vertices:

Lemma 4 (Non-negativity of the modularity gain) If ver-
tex u is included in Pi, the modularity gain of vertex u for
each adjacent vertex must be greater than 0.

Proof From Definition 5, if the vertex included in Pi has
only a single adjacent vertex in the given graph (i.e. |Γ(u)| =
1), we have euv = au = 1 and 0 < av < 2m. There-
fore, from Definition 2, the modularity gain4Quv between
vertex u and v is always greater than 0. If all neighbor
vertices of vertex u belong to the same cluster cw, (i.e.
cv = cw,∀v, w ∈ Γ(u)), vertex u has edges euw = au > 0

and cluster cw has 0 < aw < 2m. Therefore, the modular-
ity gain 4Quw between vertex u and cluster cw is always
greater than 0. �
From Lemma 4, all vertices included in Pi must have posi-
tive modularity gains. That is, all vertices that belong to Pi
are always clustered in their neighbors’ cluster. Therefore,
we can aggregate these vertices without sacrificing the qual-
ity of modularity. From Lemma 4, the set of target vertices
in the i–th aggregation, Ti, can be defined as follows:

Definition 6 (Target vertices) The following equation
gives the set of target vertices in the i-th aggregation.

Ti =

{
V (i = 0)
Ti−1 − Pi (i > 0)

Our algorithm incrementally prunes Pi from Ti−1 in each
aggregation step. However, computation costs would be ex-
cessive if we naively search for vertices in Pi such that all of
their adjacent vertices belong to a same cluster. For efficient
computing, therefore, we introduce a theoretical property of
Ti and Pi as follows:

Lemma 5 (Incremental pruning) We can find all vertices
included in Pi by obtaining vertices such that they have only
a single adjacent vertex from Ti−1 in each aggregation.

Proof If a vertex in the given graph has only a single adja-
cent vertex, the vertex can be obviously pruned. If all neigh-
boring vertices of a vertex belong to a same cluster, all of
them have already been aggregated into a single vertex by
Definition 3. Therefore, we can obtain Pi by finding vertices
such that they have only a single adjacent vertex. �
By Lemma 5, we can efficiently find all vertices in Pi.

3.4 Efficient ordering of vertex selections
We establish efficient ordering of vertex selections for local
modularity maximization to reduce the computations. Our
proposal dynamically selects vertex with the smallest degree
by handling the power-law degree distribution.

One of the famous properties of complex graphs is the
power-law degree distribution (Faloutsos, Faloutsos, and
Faloutsos 1999); most vertices have relatively few neighbors
while a few vertices have many neighbors. Under the power-
law degree distribution, the frequency of vertices with de-
gree number of d is proportional to d−α, where exponent α
is a positive constant that represents the skewness of the de-
gree distribution. A high α implies that the vast majority of
vertices have small degree. As α decreases, the graph den-
sity and the number of large degree vertices increases. Given
the power-law degree distribution, we find the following em-
pirical observation:

• Observation 1: Greedy modularity-based algorithms,
which maximize modularity in a local manner, can extract
clusters with a small number of modularity computations
by selecting vertices that have the smallest degree.

We compute the modularity gains of vertex u for all neigh-
bor vertices in Γ(u). This process involves |Γ(u)| times
modularity computations for vertex u to find the vertex that
yields the highest rise in modularity gain. Therefore, se-
lecting vertices that have a large degree waste computation
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Algorithm 1 Graph clustering
Input: G = {V,E};
Output: clustering result of G;
1: i = 0, P0 = ∅, T0 = V;
2: while |Ti| > 0 do
3: i = i+ 1;
4: Pi = {u : |Γ(u)| = 1};
5: for ∀u ∈ Pi do
6: aggregate vertex u into its neighbor;
7: end for
8: Ti = Ti−1 − Pi;
9: select vertex u from Ti that has the smallest degree;

10: v = arg max v′4Quv′ ;
11: if4Quv > 0 then
12: aggregate u and v into a single vertex w;
13: Ti = Ti − {u, v};
14: Ti = Ti ∪ {w};
15: else
16: Ti = Ti − {u};
17: end if
18: end while

time. Thus, we find vertices of the highest modularity gain
with low computation cost by dynamically selecting vertices
with the smallest degree. By combining the ordering and
the incremental aggregation, we reduce the size of degrees.
Thus, the ordering reduces the computational cost especially
for high degree vertex. Additionally, we find the vertex of
the highest modularity gain more efficiently as the graph
strongly follows power-law degree distribution. This is be-
cause vertices in the power-law degree distribution tend to
have highly skewed degree.

Moreover, we obtain clusters with high modularity by
avoiding skewed access to vertices of large degree. This is
because our proposal successfully prevents the results from
producing super-clusters, which would otherwise greatly de-
grade the modularity. Thus, we extract clusters from graphs
with high modularity.

3.5 Graph clustering algorithm
Algorithm 1 shows our algorithm. First, if i = 0, the al-

gorithm initializes P0 = ∅ and T0 = V based on Definition
5 and 6, respectively (line 1). Next, it incrementally com-
putes prunable vertices Pi (line 4) and merge each vertex in
Pi into its neighboring cluster (lines 5-7). Next, it obtains
target vertices Ti as described in Lemma 5 and Definition 6
(line 8). It selects vertex u with the smallest degree from Ti
based on Observation 1 (line 9), and finds neighbor vertex v
that maximizes the modularity gain as defined in Definition
2 (line 10). If the modularity gain 4Quv is positive, it then
aggregates vertices u and v into a single vertex as described
in Definition 3 and 4 (lines 11-14). Otherwise, vertex u is
pruned from Ti by Lemma 2 (line 16). If Ti contains no
vertices, it terminates its iteration cycle. Finally, it returns
aggregated vertices as a result; all vertices included in an
aggregated vertex belong to same cluster.

We provide a theoretical analysis of the computation cost.

Theorem 1 (Computational cost) Our algorithm requires
O(|E| − cn|V|) time to obtain a clustering result from a
graph, where c and n are the clustering coefficient and the
number of neighbors for each adjacent vertices, respectively.

Proof Our algorithm needs 2|E| computations without the
incremental aggregation, because it has to compute 4Q for

all neighbors for each vertex. Lemma 3 shows that each in-
cremental aggregation eliminates cn edges from the given
graph. Moreover, it iterates the incremental aggregations
|Ti| ≈ |V| times by Definition 3 and 4, so we can eliminate
cn|V| edges from the given graph. Therefore, the computa-
tion cost can be determined to be O(|E| − cn|V|). �
This theorem indicates that the computation cost of our pro-
posal is dramatically smaller than those of existing algo-
rithms; for instance, CNM requiresO(d|E| log |V|) to obtain
a clustering result. Furthermore, we have even smaller com-
putation cost than the one described in Theorem 1 in prac-
tical cases. This is because we have two other techniques to
enhance the clustering speed; incremental pruning and ef-
ficient ordering. However their computation costs strongly
depend on the structure of the graph, we show concrete com-
putation times for real world datasets in the next section.

4 Experimental evaluation
We conducted evaluations to confirm the effectiveness of
our algorithm. In the experiments, we used the five public
datasets (Boldi et al. 2011) to evaluate our algorithm:
• dblp-2010: This scientific collaboration graph was ex-

tracted from the bibliography service DBLP in 2010; each
vertex is a scientist and each edge is coauthor relationship.

• ljournal-2008: This graph was obtained from a social net-
working site LiveJournal in 2008; each vertex and edge
represent a user and friendship among users, respectively.

• uk-2005: This graph was obtained from a 2005 crawl of
.uk domain; each vertex and edge mean a Web page and a
link between pages, respectively.

• webbase-2001: This Web graph of .us domain in 2001 was
downloaded from the Stanford Webbase project, each ver-
tex and edge mean a Web page and a link, respectively.

• uk-2007-05: This graph is a expansion of uk-2005 crawled
from .uk domain Web pages in May, 2007.

The details of our datasets are shown in Table 1, where α is
the exponent that controls the skewness of the degree distri-
bution, described in previous section. Additionally, we also
use synthetic datasets generated by DIGG1 to evaluate the
effectiveness of our proposal for complex networks. The de-
tails setting will be described later.

All experiments were conducted on a Linux 2.6.18 server
with Intel Xeon CPU L5640 2.27GHz and 144GB RAM. We
implemented our proposal using C++. To evaluate the ex-
isting algorithms, we used programs of CNM2 and BGLL3

published on their authors’ sites.

4.1 Efficiency
We evaluated the clustering performance of each algorithm
through wall clock time for each real world dataset. Fig.
1 shows the results of computational time. In Fig. 1, our
proposal is tested under two different types; Proposed and
Proposed-Limited. Proposed represents the full version of

1http://digg.cs.tufts.edu/
2http://www.cs.unm.edu/ aaron/research/fastmodularity.htm
3https://sites.google.com/site/findcommunities/
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Figure 3: Scalability

Table 1: Datasets
dblp-2010 ljournal-2008 uk-2005 webbase-2001 uk-2007-05

|V| 326,186 5,363,260 39,459,925 118,142,155 105,896,555
|E| 1,615,400 79,023,142 936,364,282 1,019,903,190 3,738,733,648
α 2.82 2.29 1.71 2.14 1.51

Table 2: Modularity Q
dblp-2010 ljournal-2008 uk-2005 webbase-2001 uk-2007-05

Proposed 0.90 0.74 0.98 0.98 0.97
BGLL 0.88 0.74 0.97 0.96 0.97
CNM 0.82 - - - -

our algorithm described in Algorithm 1. And Proposed-
Limited represents the limited version of Algorithm 1 which
only uses the incremental aggregation. Since CNM cannot
compute clusters in a day except for dblp, we omitted the
results of CNM for other dataset. Fig. 1 indicates that Pro-
posed is significantly faster than the other algorithms under
all conditions examined. As described earlier, the existing
algorithms traverse all vertices/edges multiple times while
our algorithm dynamically eliminates vertices/edges. As a
result, our proposal is up to 60 times faster than the state
of the art algorithm BGLL; our algorithm computed clusters
from the graph with 1 billion edges in 156 seconds. Fur-
thermore, Proposed-Limited is up to 20 times faster than
BGLL, even though Proposed is almost three times faster
than Proposed-Limited under all conditions. This indicates
that the incremental aggregation contributes most to the im-
provement. Proposed more efficiently reduces the computa-
tional cost than Proposed-Limited by combining incremen-
tal aggregation, incremental pruning and efficient ordering.

4.2 Modularity
One major advantage of our algorithm is that it outputs clus-
ters with high modularity. Table 2 shows modularity Q for
each of the real world datasets. Table 2 indicates that the
modularity score of our algorithm is higher than that of
CNM. Since CNM optimizes modularity in a global man-
ner, it tends to produce super-clusters which significantly
degrades modularity. In contrast, our algorithm success-
fully avoid to produce super-clusters by using a local mod-
ularity maximization and efficient ordering of vertex selec-
tions. Furthermore, Table 2 shows that our proposal achieves
slightly higher modularity than BGLL even though BGLL
also performs higher modularity than CNM. The computa-
tion time of BGLL is significantly larger than ours as shown
in Fig. 1. That is, these results show the superiority of our
approach over the previous approaches.

4.3 Effectiveness
We evaluate the effectiveness of our algorithm for complex
networks that have high cluster coefficients and power-law
degree distributions. We compared our proposal with BGLL
since it performed well in terms of computing time and
modularity. To evaluate the effectiveness, we used synthetic
graphs produced by the graph generator DIGG.

Fig. 2 shows the computation times of our proposal and
BGLL for different α values (from 2.0 to 2.5) of graphs with
1 million vertices; α represents the skewness of the power-
law degree distribution. It is known that the clustering coeffi-
cient also follows a power-law degree distribution (Newman
2003); graphs with large α tend to have high clustering co-
efficients. As shown in Fig. 2, BGLL shows almost constant
computational time under all conditions examined. In con-
trast to BGLL, our algorithm increases its clustering speed
as α increases. In the most efficient case, i.e. α = 2.5, our
proposal is up to two times faster than the result of α = 2.0.
This is because our algorithm eliminates a significant num-
ber of vertices/edges as shown in Lemma 3 and 5, when the
graph has large α. Thus, our algorithm outperforms BGLL
at high α values.

Fig. 3 shows the scalability for our proposal and BGLL;
we show the wall clock time as a function of the number of
vertices. We varied the number of vertices from 10 thousand
to 100 million with α = 2.5. As shown in Fig. 3, our al-
gorithm scales better than BGLL. This is because we do not
traverse all vertices/edges multiple times. Thus, our proposal
clearly achieves higher scalability than BGLL.

5 Conclusion
We have introduced an efficient algorithm for finding clus-
ters with high modularity that allows graphs of unprece-
dented size to be processed in practical time. Our algorithm
is based on three ideas. First, it incrementally aggregates ver-
tices, which are placed in a same cluster, into a single ver-
tex. Second, it incrementally prunes computations for ver-
tices whose clusters can be obtained. Last, it dynamically se-
lects the vertex with the smallest degree. Experiments show
that our algorithm can achieve efficient clustering with high
modularity. Modularity-based algorithms are fundamental to
many current and prospective applications in various disci-
plines. Our proposal will improve the effectiveness of future
applications in AI and Web communities.
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