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Abstract

In AI and Web communities, many applications utilize
PageRank. To obtain high PageRank score nodes, the
original approach iteratively computes the PageRank
score of each node until convergence by using the whole
graph. If the graph is large, this approach is infeasi-
ble due to its high computational cost. The goal of this
study is to find top-k PageRank score nodes efficiently
for a given graph without sacrificing accuracy. Our so-
lution, F-Rank, is based on two ideas: (1) It iteratively
estimates lower/upper bounds of PageRank scores, and
(2) It constructs subgraphs in each iteration by pruning
unnecessary nodes and edges to identify top-k nodes.
Our theoretical analysis shows that F-Rank guarantees
result exactness. Experiments show that F-Rank finds
top-k nodes much faster than the original approach.

Introduction
Graphs are widely used to represent data entities as well
as the relationships among them (Nakatsuji et al. 2012;
Shiokawa, Fujiwara, and Onizuka 2013; Fujiwara et al.
2013). PageRank is the most popular approach for comput-
ing the importance of nodes in a graph (Page et al. 1999).
It is based on the “random surfer model” (Langville and
Meyer 2012); web users get bored after several clicks and
switch to a random page. Informally, PageRank scores cor-
respond to the stationary distribution of random walks. At
each step of PageRank, it randomly selects an outgoing edge
from the current node, and, with a certain probability, it ran-
domly jumps to a node in the graph. Due to the effective-
ness and solid theoretical foundation of PageRank, it is used
by many applications in AI and Web communities recently
even though PageRank was originally proposed to enhance
the effectiveness of information retrieval:

Comment summarization Online commenting enables
news sites to extend their user volume as well as to in-
crease advertising revenue (Shmueli et al. 2012). However,
it is time-consuming to read all comments of an article since
a popular news article may easily accumulate thousands of
comments within a short time period. The PageRank-based
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approach suggested by Khabiri et al. can select the best top-
k comments for summarization (Khabiri, Caverlee, and Hsu
2011). They obtain a graph in an ad-hoc manner; they gen-
erate nodes from comments, and a node has an edge to an-
other node if the two nodes (comments) share terms. Com-
ment importance of a news article is computed by Page-
Rank. Therefore, they search top-k nodes and identify the
obtained nodes as the summary comments of the news ar-
ticle. Their approach yields more accurate summaries than
the LexRank-based approach (Erkan and Radev 2004).
Synonym expansion Synonym expansion is the task of re-
placing a target word in a given sentence with another, more
suitable, word. This is useful for question answering (Dagan
et al. 2006) or text simplification (McCarthy 2002). Sinha et
al. applied PageRank to synonym expansion (Sinha and Mi-
halcea 2011). For a given sentence and target word, they col-
lect all the synonyms from WordNet (Fellbaum and Miller
1998) on the fly. The entire set of candidate synonyms, along
with the words in the sentence, are used to generate nodes.
Edges are generated according to word similarities. They
compute PageRank scores of candidate nodes (synonyms).
And they select top-k nodes as relevant synonyms. Their ap-
proach is superior to the contextual fitness approach (Sinha
and Mihalcea 2009) in finding effective synonyms.
Web content extraction The mobile phone market has
been increased recently at a rate of nearly 50%; there are
three billion mobile subscribers worldwide. Mobile access
is a key to individual productivity by providing opportu-
nities to connect to the web at any time from anywhere
(Lee, Yeung, and Yu 2012). However, mobile phones are
not ideal platforms for surfing the web since the screens
are very small. The approach proposed by Yin et al. utilizes
PageRank to convert web pages to those suitable for mo-
bile phones (Yin and Lee 2004). They divide the web page
into inseparable elements such as images or text paragraphs
to obtain nodes. Edges are generated from word similarities
and physical proximities of the elements within the same
page. They obtain the most important topic of a web page by
detecting the top element in PageRank. The web page is re-
formatted by the detected element and its relevant elements.
Their approach provides more effective results than cosine
similarity (Manning and Schuetze 1999) based approach.

Although PageRank is effective, it is difficult for the origi-
nal approach to realize quick response for large graphs since
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PageRank scores are computed from the whole graph un-
til convergence. This problem has led to the introduction of
acceleration approaches. Surveys of recent approaches are
reported in (Bahmani, Chowdhury, and Goel 2010) and (Fu-
jiwara et al. 2012b). However, the approaches have technical
limitations. Broadly speaking, there are three approaches of
linear algebraic, score update, and Monte Carlo.

A linear algebraic scheme was proposed by Kamvar et
al. (Kamvar, Haveliwala, and Golub 2004). The linear alge-
braic approach halts score computation of a node once the
PageRank score of the node converges. However, there is a
serious theoretical problem that this approach may not con-
verge and results may not be correct. Gleich et al. studied an-
other linear algebraic scheme; they applied Krylov subspace
methods (Watkins 2007) for PageRank instead of the iter-
ative power method which is used in the original approach
(Gleich, Zhukov, and Berkhin 2004). The approach is faster
than the original approach. However, the convergence of the
linear algebraic approach is not stationary, i.e., PageRank
scores yielded by the approach behave erratically.

Score update is another approach; the idea is that an in-
cremental change in the graph mostly impacts on only lo-
cal PageRank scores. Based on this idea, several approx-
imate schemes have been investigated (Chien et al. 2003;
McSherry 2005; Langville and Meyer 2006; Bahmani et al.
2012). However, graphs do not always change in an incre-
mental manner; graphs can be fully known only after a query
is submitted to the above applications. For example, in syn-
onym expansion, graphs are generated in an ad-hoc man-
ner from the given sentence and target word. Furthermore, it
is difficult for these approximate approaches to enhance the
quality of real applications (Fujiwara et al. 2012a).

The Monte Carlo approach, studied by Bahmani et al.,
precomputes random walks and stores them in a disk (Bah-
mani, Chowdhury, and Goel 2010). To compute approxi-
mate score of a node, it counts the total number of times the
node is visited by the random walks. Unfortunately, their ap-
proach has high I/O cost since it is disk-based. Avrachenkov
et al. proposed several Monte Carlo schemes (Avrachenkov
et al. 2007). The Monte Carlo approaches can approximately
compute the top-k nodes in ad-hoc style since they perform
random walks on a given graph on the fly. However, the
Monte Carlo approaches require that the number of random
walks to be set, which induces a trade-off between efficiency
and approximation quality.

To overcome the limitations of the previous approaches,
the research problem in this paper is posed as follows:

Problem (Top-k search for PageRank).
Given: Arbitrary graph G and required number of an-
swer nodes k.
Find: Top-k nodes with respect to their PageRank scores
exactly and efficiently.

We propose a novel approach, F-Rank, that finds top-k
nodes efficiently and exactly for PageRank. In order to re-
duce computation cost, (1) we estimate lower/upper bounds
of PageRank scores in each iteration, and (2) we dynami-
cally construct subgraphs to identify top-k nodes efficiently.
F-Rank has the following attractive characteristics:

Table 1: Definition of main symbols.
Symbol Definition

N Number of nodes in the graph
M Number of edges in the graph
T Number of iterations by the original approach
k Number of required answer nodes for top-k search
εi k-th highestlower estimation in the i-th iteration
G Given graph
V Set of nodes in G
E Set of edges in G
C Set of candidate nodes
R Set of reachable nodes to candidate nodes
W N ×N column normalized adjacent matrix of G
p N × 1 PageRank vector
p N × 1 upper bounding PageRank vector
p N × 1 lower bounding PageRank vector

• Fast: By utilizing the above ideas, F-Rank is much faster
than existing approaches.

• Exact: F-Rank does not sacrifice accuracy; it returns the
exact top-k nodes.

• Flexible: F-Rank does not require any precomputation
step; it can effectively handle ad-hoc search for any ar-
bitrary graphs and number of answer nodes.

• Parameter-free: Our approach does not require any
inner-parameters. Thus it provides the user with a simple
solution to PageRank-based applications.

By providing the exact solution in a highly efficient manner,
F-Rank will allow many more PageRank-based applications
to be developed in the future.

Preliminary
We formally define the notations and introduce the back-
ground of this paper. Table 1 lists the main symbols and
their definitions. Starting from a random node, PageRank
performs random walks by iteratively following an edge to
another node at each step with probability s(0 < s < 1).
Additionally, at each step, it jumps to a random node with
probability 1 − s. Let G = {V,E} be a given graph where
V and E are set of nodes and edges, respectively. p repre-
sents a column vector whose u-th element p[u] denotes the
PageRank score of node u. e is a column vector where ev-
ery element is set to 1/N ; N is the number of nodes in the
graph. Also let W be the column normalized adjacency ma-
trix where its element W [u, v] gives the probability of node
v being the next state given that the current state is node u.
The PageRank score of nodes can be obtained by recursively
applying the following equation until convergence:

pi = sWpi−1 + (1− s)e (1)

where pi is set to e if i = 0. The convergence of the equation
is guaranteed (Langville and Meyer 2012). This approach
updates the PageRank score of each node that is obtained in
the previous iteration by exploiting the whole graph. It needs
O((N +M)T ) time where M is the number of edges in the
graph and T is the number of iteration steps until conver-
gence. This incurs high computational cost for large graphs.
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Proposed method
We present our proposal, F-Rank, that exactly and efficiently
finds top-k nodes for PageRank. First, we give an overview
of the ideas underlying F-Rank. That is followed by a full
description including a top-k search algorithm.

Ideas
We introduce the idea of estimating the lower and upper
bounds of PageRank scores to reduce the computational
cost. Instead of using the whole graph to compute PageRank
scores, we obtain subgraphs to compute the estimations by
pruning unnecessary nodes and edges in the iterations.

This idea has several advantages. First, we can terminate
the iterations without waiting for convergence if k nodes are
identified as the candidate nodes of the top-k search. This
means that our approach needs fewer iterations than the orig-
inal approach. Second, we can exactly detect the top-k nodes
even though we estimate the lower/upper bounds. This is be-
cause we can safely discard unpromising nodes by the esti-
mations. Third, we can efficiently construct the subgraphs
on the fly for any given graph by utilizing the estimations.
The estimations allow us to detect the nodes and edges that
do not need to be utilized to find the top-k nodes. Based on
this idea, we dynamically construct subgraphs that have only
the necessary nodes and edges (Fujiwara, Irie, and Kitahara
2011), whereas the original approach must use the whole
graph to compute PageRank scores. Finally, the estimations,
as well as the subgraphs, do not require any user-defined
inner-parameter, whereas previous approaches need careful
inner-parameter setting. For example, Monte Carlo schemes
require setting of the number of random walks, which in-
duces a trade-off between computation time and approxima-
tion accuracy (Avrachenkov et al. 2007; Bahmani, Chowd-
hury, and Goel 2010). Thus our approach, F-Rank, is user-
friendly.

Lower and upper estimations
We compute lower/upper estimations to obtain subgraphs.
We introduce the lower/upper bound estimations and de-
scribe their properties. In the i-th iteration (i = 0, 1, 2, . . .),
we compute the estimations for the candidate node set Ci.
The next section describes our approach to obtaining the
candidate node set Ci. To compute the upper estimation, we
use Ri, the set of reachable nodes to any node in Ci. Node
u is reachable to node v if there is a path from node u to v
(Bryce and Kambhampati 2007). We also use an N × 1 vec-
tor of the maximum edge weights, W, where each element
is given by W [u] = max{W [u, v] : v ∈ V}. Let ri be the
N×1 probability vector of i length random walk; ri is com-
puted as ri = Wie by using the i-th power of the adjacent
matrix W. If i = 0, Wi = I where I is the identity matrix.

We define the lower and upper bounding PageRank vec-
tors in the i-th iteration as p

i
and pi, respectively:

Definition 1 (Lower estimation) The lower estimation in
the i-th iteration is given as follows:

p
i

= (1− s)
∑i
j=0 s

jrj (2)

Definition 2 (Upper estimation) The following equation
gives the upper estimation in the i-th iteration:

pi = (1− s)
∑i
j=0 s

jrj + si+1ri + ∆iσiW (3)

In Equation (3), σi = si+1(1 − s)−1 and ∆i is computed
from the elements in ri as follows:

∆i =

{
1 (i = 0)∑
u∈Ri

∆i[u] (i 6= 0) (4)

where ∆i[u] = max{ri[u]− ri−1[u], 0}.
We recursively compute the lower and upper estimations
in each iteration by using the random walk probabilities as
shown in Definition 1 and 2. The next section introduces
our incremental approach to computing the estimations from
subgraphs. The theoretical aspects are as follows:
Lemma 1 (Lower estimation) For u-th elements in p and
p
i
, p
i
[u] ≤ p[u] holds in the i-th iteration.

Proof From Equation (1), we have

pi = sWpi−1 + (1− s)e = s2W2pi−2 + (1− s)(sWe + e)

= siWip0 + (1− s)(si−1Wi−1e + si−2Wi−2e + . . .+ e)

= siWie+(1−s)
∑i−1
j=0(sjWje)

Because the PageRank score of each node is the convergence value
in Equation (1), we have p = p∞. Therefore,

p = s∞W∞e + (1− s)
∑∞
j=0(sjWje) = (1− s)

∑∞
j=0 s

jrj

since 0 < s < 1 and the elements in W∞ cannot be larger than 1
or smaller than 0. The above equation indicates that the following
inequality holds for node u:

p[u] = (1− s)
∑∞
j=0 s

jrj [u] ≥ (1− s)
∑i
j=0 s

jrj [u] = p
i
[u]

which completes the proof. �

Lemma 2 (Upper estimation) pi[u] ≥ p[u] holds for p and pi in
the i-th iteration.

Proof As shown in the above proof,

p[u] =(1− s)
∑∞
j=0 s

jrj [u]

=(1− s)
∑i
j=0 s

jrj [u] + (1− s)
∑∞
j=1 s

i+jri+j [u]

We first show the property that ri+j [u] ≤ ri[u] + j∆iW [u]. Let
Hj [u] be set of nodes that are reachable to node u by j hops.
Note that Hj [u] ⊆ Ri ⊆ V. Since ri+j − ri+j−1 = Wi+je −
Wi+j−1e = WWj−1(ri − ri−1), we have

ri+j [u]− ri+j−1[u]

=
∑
v∈H1[u]

∑
w∈Hj−1[v]

W [u, v]W j−1[v, w](ri[w]− ri−1[w])

≤
∑
w∈Hj−1[v]

∑
v∈H1[u]

W [u]W j−1[v, w]∆i[w]

≤W [u]
∑
w∈Ri

∆i[w]
(∑

v∈H1[u]
W j−1[v, w]

)
We have

∑
v∈H1[u]

W j−1[v, w] ≤ 1 since Wj−1 is a column nor-
malized matrix. Therefore,

ri+j [u]− ri+j−1[u] ≤W [u]
∑
w∈Ri

∆i[w] = ∆iW [u]

As a result,

ri+j [u] ≤ ri+j−1[u] + ∆iW [u] ≤ . . . ≤ ri[u] + j∆iW [u]
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By exploiting this property, we have

(1−s)
∑∞
j=1s

i+jri+j [u]≤(1−s)
∑∞
j=1(s

i+jri[u]+jsi+j∆iW [u])

Since
∑∞
j=1 s

i+j ≤ si+1

1−s and
∑∞
j=1 js

i+j ≤ σ[i]
1−s ,

(1− s)
∑∞
j=1 s

i+jri+j [u] ≤ si+1ri[u] + ∆iσ[i]W [u]

Therefore, from Equation (3),

p[u] ≤ (1− s)
∑i
j=0 s

jrj [u] + si+1ri[u] + ∆iσ[i]W [u] = pi[u]

which completes the proof. �

Lemma 3 (Convergence of the estimations) The estimations
converge with PageRank scores; p

∞
[u]=p∞[u]=p[u].

Proof Omitted due to the space limitation. �
Lemma 3 ensures the convergence of our approach.

Subgraph
We iteratively compute candidate nodes to find the top-k nodes,
and terminate the iterations if the number of candidate nodes is k.
We compute the estimations only for candidate nodes in subgraphs,
which are dynamically obtained in each iteration. We show defini-
tions of candidate nodes and subgraphs along with the theoretical
properties.

A set of candidate nodes in the i-th iteration, Ci, is defined as
follows by letting εi−1 be the k-th highest lower estimation in the
previous i−1-th iteration:

Definition 3 (Candidate nodes) The following equation gives the
set of candidate nodes in the i-th iteration:

Ci =

{
V (i = 0)
{u ∈ V : pi−1[u] ≥ εi−1} (i 6= 0)

(5)

The above definition shows that a node is a candidate node if its
upper estimation is not lower than εi−1. This is because, if the up-
per estimation of the node is lower than εi−1, the exact PageRank
score of the node must be lower than εi−1. We show the theoretical
property of node set Ci as follows:

Lemma 4 (Candidate nodes) If node u is not included in Ci, i.e.,
u /∈ Ci, node u cannot be an answer node.

Proof Let ε be the k-th highest exact PageRank score, it is clear
that εi−1 ≤ ε from Lemma 1. And pi−1[u] ≥ p[u] from Lemma 2.
Let A be answer nodes, if i 6= 0, we have

A = {u ∈ V : p[u] ≥ ε} ⊆ {u ∈ V : pi−1[u] ≥ εi−1} = Ci

If i = 0, A ⊆ V = Ci, so there is no node such that u /∈ Ci.
Therefore, if u /∈ Ci, node u cannot be an answer node. �
Since A ⊆ Ci from Lemma 4, we incrementally compute Ci from
Ci−1 in each iteration as follows:

Definition 4 (Update of candidate nodes) If i 6= 0, we incremen-
tally compute Ci in each iteration as follows:

Ci = {u ∈ Ci−1 : pi−1[u] ≥ εi−1} (6)

Lemma 5 (Update of candidate nodes) In the iteration, the can-
didate nodes monotonically decrease; Ci ⊆ Ci−1.

Proof Since Ci is obtained as a subset of Ci−1 in Equation (6), it
is clear that Ci ⊆ Ci−1. �

We compute the estimations for Ci by subgraphs. The subgraph
in the i-th iteration is defined as follows:

Definition 5 (Subgraph) Let Gi = {Vi,Ei} be the subgraph in
the i-th iteration. If i = 0, V0 and E0 are defined as V and E,
respectively. If i 6= 0, Vi and Ei are defined as Vi = Ri and
Ei = {(u, v) ∈ E : u ∈ Ri, v ∈ Ri}, respectively, where (u, v) is
an edge from node u to v.

We introduce the following lemma for the subgraph.

Lemma 6 (Subgraph) The estimations of the i-th iteration for
candidate nodes can be obtained from subgraph Gi.
Proof If i = 0, this lemma obviously holds since Gi corresponds
to the given graph G. Otherwise, as shown in Definition 1 and 2,
the estimations of node u can be computed if the random walk
probability of node u is obtained. If node v is not reachable to
node u, the random walk probability of node v does not affect the
random walk probability of node u. Therefore, node set Ri and the
set of edges which are incident to Ri need to be processed to obtain
the estimations for candidate nodes. �

Lemma 7 (Monotonic decrease of Gi) In the iterations, the sub-
graphs have the property that Gi ⊆ Gi−1.

Proof Since (1) Ri is the set of reachable nodes to any node in
Ci, and (2) Ci ⊆ Ci−1 from Lemma 5, it is clear that Ri ⊆ Ri−1.
Therefore, Gi ⊆ Gi−1 from Definition 5. �
The next section describes our algorithm that constructs subgraphs
based on Lemma 7.

We incrementally compute the estimations from subgraphs in
the iterations as follows:

Definition 6 (Incremental estimations) The lower and upper es-
timations are incrementally computed as follows:

p
i
[u] =

{
(1− s)/N (i = 0)
p
i−1

[u] + (1− s)siri[u] (i 6= 0) (7)

pi[u] =

{
1/N + s(1− s)−1W [u] (i = 0)
p
i−1

[u]+siri[u]+∆iσiW [u] (i 6= 0)
(8)

where ri[u] is computed as ri[u] =
∑
v∈Vi

W [u, v]ri−1[v] from
subgraph Gi if i 6= 0, and r0 = e.

This definition indicates that (1) if i = 1, the estimations of a node
are obtained by the probability s, the number of nodes in the graph,
and the edge weights, and (2) otherwise, we can incrementally up-
date the lower/upper estimations from the lower estimation of the
previous iteration. From Definition 6, we have the following prop-
erty:

Lemma 8 (Incremental estimations) For u ∈ Ci, the estima-
tions are exactly computed at the cost of O(1) by Definition 6 if
the random walk probability is obtained for v ∈ Vi.
Proof Omitted due to the space limitation. �
This lemma ensures that we can efficiently obtain the estimations
for the candidate nodes in the iterations.

Search algorithm
Algorithm 1, F-Rank, finds the top-k nodes exactly. If i = 0,

it initializes C0 = V and G0 = G based on Definition 3 and 5,
respectively (lines 2-3). Otherwise, it computes Ri to Ci in Gi−1

by applying breadth-first search inversely (line 7). This is because
Gi has the property that Gi ⊆ Gi−1 from Lemma 7. It constructs
Gi from Ri from Definition 5 (line 8). It then computes the ran-
dom walk probability of each node in Gi (lines 10-12), since the
probability of each node is needed to compute the estimations for
candidate nodes from Lemma 6. It computes the estimations for
Ci (lines 13-15), and computes εi from Ci (line 16). It updates
the candidate node set to Ci+1 (line 17). If the size of Ci+1 is k
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Algorithm 1 F-Rank
Input: G, original graph; k, number of answer nodes
Output: set of top-k nodes
1: i := 0;
2: C0 := V;
3: G0 := G;
4: repeat
5: if i 6= 0 then
6: i := i+ 1;
7: compute Ri to Ci in Gi−1 by breadth-first search;
8: compute Gi from Ri;
9: end if

10: for each node u ∈ Vi do
11: compute ri[u] from Gi;
12: end for
13: for each node u ∈ Ci do
14: compute p

i
[u] and pi[u] by Equation (7) and Equation (8), respectively;

15: end for
16: compute εi from Ci;
17: compute Ci+1 from εi and Ci by Equation (6);
18: until |Ci+1| = k
19: return Ci+1;

(i.e., |Ci+1| = k), all nodes in Ci+1 must be answer nodes from
Lemma 4. Therefore, it terminates the iteration process (line 18)
and returns the answer nodes (line 19).

As shown in Algorithm 1, F-Rank does not need precomputa-
tion and does not require any inner-parameters; F-Rank is a simple
solution to finding the top-k nodes for PageRank.

We provide theoretical analyses that address the search results
and the computational cost of F-Rank. The following theorem
shows that F-Rank finds the top-k nodes exactly:
Theorem 1 (Exactness in top-k search) F-Rank finds the top-k
nodes exactly with respect to PageRank scores.
Proof In the i-th iteration, F-Rank prunes node u if pi[u] < εi.
Since εi ≤ ε from Lemma 1 and pi[u] ≥ pi[u] from Lemma 2, the
answer nodes cannot be pruned by F-Rank. If node u is not an an-
swer node, pi[u] < ε holds in at least one iteration from Lemma 2;
the node must be pruned with its upper estimation in that iteration.
Therefore, the result of F-Rank is equivalent to that of the original
approach. �
We discuss the computational cost of F-Rank. Let n and m be the
average number of nodes and edges of the subgraphs, respectively.
c and t be the average number of candidate nodes and the number
of iterations in F-Rank, respectively. It is clear that c ≤ n. Note
that, the original approach requires O((N +M)T ) time.
Theorem 2 (Computational cost) F-Rank needs O((n + m +
log c log k)t) time to obtain the top-k nodes.
Proof F-Rank first constructs the subgraphs by breadth-first search
in O((n + m)t) time. It computes the random walk probabilities
for each node in the subgraphs, which needs O((n + m)t)
time. The estimations of the candidate nodes are obtained at
O(ct) since it needs O(1) time to compute the lower/upper
estimations of a node in each iteration (Lemma 8). It requires
O(log c log k) time to compute εi from the candidate nodes by
the lower estimations in each iteration. This is because (1) the
k-th highest lower estimation can be updated at O(log k) time by
using Fibonacci heaps (Mehlhorn and Sanders 2010) if a new k-th
node is detected from the candidate nodes, and (2) the expected
number of update is O(log c) by randomly accessing the candidate
nodes (Cormen et al. 2009). Ci+1 is obtained at O(ct) time from
Ci by using εi and the lower estimations. Thus, F-Rank requires
O((n+m+ log c log k)t) time. �

Experimental evaluation
We performed experiments to confirm the effectiveness of F-Rank.
Our experiments were designed to show that:

Table 2: Score of each inner-parameter.

Parameter
Dataset

P2P Web Wikipedia

N 6.26× 104 3.26× 105 2.39× 106

c 3.16× 104 1.49× 105 4.00× 105

n 4.69× 104 2.70× 105 6.29× 105

M 1.48× 105 3.22× 106 5.02× 106

m 1.20× 105 3.06× 106 2.44× 106

T 18 116 97

t 9 33 21

• Efficiency: F-Rank outperforms the original approach (Page et
al. 1999) in terms of computation time.

• Exactness: F-Rank finds the top-k nodes exactly unlike the
Monte Carlo approach (Avrachenkov et al. 2007).

The experiments use the following three public datasets:

• P2P1: This graph is a snapshot of the Gnutella peer-to-peer
file sharing network. In this graph, nodes represent hosts in the
Gnutella network topology and edges represent connections be-
tween the hosts. The number of nodes and edges are 62, 586 and
147, 892, respectively.

• Web2: CNR (Italy’s National Research Council) is a public re-
search organization. This graph is the result of a crawl of the
Italian CNR domain where nodes and edges correspond to pages
and hyperlinks, respectively. This graph has 325, 557 nodes and
3, 216, 152 edges.

• Wikipedia3: Each registered Wikipedia user has a talk page,
that other users can edit for discussion. In this graph, nodes are
Wikipedia users. An edge from node u to v represents that user
u edited a talk page of user v. There are 2, 394, 385 nodes and
5, 021, 410 edges.

Note that graph sizes increase in the order of P2P, Web, and
Wikipedia. We set s = 0.85, the same as the original paper (Page
et al. 1999). All experiments were conducted on a Linux 3.33 GHz
Intel Xeon server with 32GB of main memory. We implemented
all approaches using GCC.

Efficiency
We evaluated the search time of F-Rank and the original approach.
Figure 1 shows the results. In Figure 1, the results of F-Rank are
indicated by “F-Rank(k)” where k is the number of answer nodes.
In the original approach, the the iterations are terminated when the
residual 1-norm dropped below 10−10, as is used by a previous
study (Langville and Meyer 2006) 4. Note that, for the original ap-
proach, the number of answer nodes does not have an impact on the
search time since it computes PageRank scores of all nodes. Table 2
details the inner-parameters in each approach where k = 50. Note
that these parameters are automatically set by the given graphs and
F-Rank.

Figure 1 indicates that F-Rank is much faster than the origi-
nal approach. F-Rank cuts the search time from the original ap-
proach by up to 40%, 70%, and 90% for P2P, Web, and Wikipedia,
respectively; F-Rank can more efficiently find the top-k nodes
than the original approach as the graph sizes increase. The orig-
inal approach iteratively computes PageRank scores until conver-
gence by utilizing the whole graphs which takes O((N + M)T )

1http://snap.stanford.edu/data/p2p-Gnutella31.html
2http://law.di.unimi.it/webdata/cnr-2000/
3http://snap.stanford.edu/data/wiki-Talk.html
4 Even though the original approach does not theoretical guarantee to yield the

exact results with this setting (Langville and Meyer 2012), we confirmed that the orig-
inal approach converges to the exact results with this setting.
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Figure 1: Search time.
Figure 2: Accuracy versus number of
random walks.

Figure 3: Efficiency versus number of
random walks.

time. On the other hand, F-Rank computes the estimations by
subgraphs until the number of candidate becomes k which takes
O((n + m + log c log k)t) time (Theorem 2). As shown in Ta-
ble 2, in practice, the subgraphs are smaller than the given graphs,
and F-Rank needs fewer iterations than the original approach. Ad-
ditional experiments confirmed that we can reduce the numbers of
nodes/edges rapidly in the iterations since the number of candidate
nodes monotonically decreases (Lemma 5) and the subgraphs are
obtained from the candidate/reachable nodes (Definition 5). As a
result, F-Rank is faster than the original approach.

Exactness
One major advantage of F-Rank is that it outputs the same results
as the original approach. To demonstrate this advantage, we com-
pared F-Rank with “MC complete path stopping in dangling nodes”
proposed by Avrachenkov et al. (Avrachenkov et al. 2007). Even
though they proposed several Monte Carlo approaches, this ap-
proach can most effectively approximate PageRank scores among
their approaches as reported in their paper. This approach can iden-
tify the top-k nodes for a given graph in ad-hoc style by perform-
ing random walks several times from each node. Unlike other pre-
vious approaches, this approach does not have technical limita-
tions such as unguaranteed score convergence, incremental graph
change, or high I/O cost. Since this approach approximates the
PageRank score of a node by the total number of visits to the
node via the random walks, the number of random walks from
each node is expected to impact the search time and approxima-
tion accuracy. Therefore, we conducted comparative experiments
using various numbers of random walks. Figure 2 and 3 show the
accuracy and the search time of each approach for P2P, respec-
tively, where k = 50. In Figure 2, we used precision as the metric
of accuracy; precision is the fraction of answer nodes that match
those of the original approach. We evaluated the efficiency of each
approach through wall clock time in Figure 3.

Figure 2 indicates that the precision of F-Rank is 1 since F-
Rank guarantees the same results as the original approach (The-
orem 1). Figure 2 also shows that precision of the Monte Carlo
approach reaches a plateau even though it more accurately finds
top-k nodes as the number of random walks increases. The results
indicate that the Monte Carlo approach cannot find the top-k nodes
exactly while F-Rank outputs only exact answers. Unfortunately,
the search time of the Monte Carlo approach is proportional to the
number of random walks as shown in Figure 3. These figures show
that F-Rank is superior to the Monte Carlo approach in both speed
and accuracy.

Conclusions
This paper proposed an efficient top-k algorithm for PageRank, F-
Rank, that guarantees the same results as the original approach. Our
algorithm prunes unnecessary nodes and edges by lower/upper es-
timations and dynamically constructs subgraphs in each iteration

to identify the top-k nodes. Experiments showed that our approach
has a superiority over the previous approaches. The proposed so-
lution allows many PageRank-based applications to be processed
more efficiently, and helps to improve the effectiveness of future
applications. There are some avenues for future works. For ex-
ample, since web-scale graphs can exceed main-memory capacity,
disk-aware algorithm is an interesting and challenging problem.
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