
Introducing Nominals to the Combined
Query Answering Approaches for EL

Giorgio Stefanoni and Boris Motik and Ian Horrocks
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road,
Oxford, OX1 3QD, UK

Abstract

So-called combined approaches answer a conjunctive query
over a description logic ontology in three steps: first, they ma-
terialise certain consequences of the ontology and the data;
second, they evaluate the query over the data; and third, they
filter the result of the second phase to eliminate unsound an-
swers. Such approaches were developed for various members
of the DL-Lite and the EL families of languages, but none
of them can handle ontologies containing nominals. In our
work, we bridge this gap and present a combined query an-
swering approach for ELHOr

⊥—a logic that contains all fea-
tures of the OWL 2 EL standard apart from transitive roles
and complex role inclusions. This extension is nontrivial be-
cause nominals require equality reasoning, which introduces
complexity into the first and the third step. Our empirical
evaluation suggests that our technique is suitable for practical
application, and so it provides a practical basis for conjunc-
tive query answering in a large fragment of OWL 2 EL.

Introduction
Description logics (DLs) (Baader et al. 2007) are a family of
knowledge representation formalisms that underpin OWL 2
(Cuenca Grau et al. 2008)—an ontology language used in
advanced information systems with many practical applica-
tions. Answering conjunctive queries (CQs) over ontology-
enriched data sets is a core reasoning service in such sys-
tems, so the computational aspects of this problem have re-
ceived a lot of interest lately. For expressive DLs, the prob-
lem is at least doubly exponential in query size (Glimm et
al. 2008). The problem, however, becomes easier for the EL
(Baader, Brandt, and Lutz 2005) and the DL-Lite (Calvanese
et al. 2007) families of DLs, which provide the foundation
for the OWL 2 EL and the OWL 2 QL profiles of OWL 2. An
important goal of this research was to devise not only worst-
case optimal, but also practical algorithms. The known ap-
proaches can be broadly classified as follows.

The first group consists of automata-based approaches
for DLs such as OWL 2 EL (Krötzsch, Rudolph, and Hit-
zler 2007) and Horn-SHOIQ and Horn-SROIQ (Or-
tiz, Rudolph, and Simkus 2011). While worst-case optimal,
these approaches are typically not suitable for practice since
their best-case and worst-case performance often coincide.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The second group consists of rewriting-based approaches.
Roughly speaking, these approaches rewrite the ontology
and/or the query into another formalism, typically a union
of conjunctive queries or a datalog program; the relevant
answers can then be obtained by evaluating the rewriting
over the data. Rewriting-based approaches were developed
for members of the DL-Lite family (Calvanese et al. 2007;
Artale et al. 2009), and the DLs ELHIO⊥ (Pérez-Urbina,
Motik, and Horrocks 2010) and Horn-SHIQ (Eiter et al.
2012), to name just a few. A common problem, however,
is that rewritings can be exponential in the ontology and/or
query size. Although this is often not a problem in practice,
such approaches are not worst-case optimal. An exception is
the algorithm by Rosati (2007) that rewrites an ELH⊥ on-
tology into a datalog program of polynomial size; however,
the algorithm also uses a nondeterministic step to transform
the CQ into a tree-shaped one, and it is not clear how to im-
plement this step in a goal-directed manner.

The third group consists of combined approaches, which
use a three-step process: first, they augment the data with
certain consequences of the ontology; second, they evaluate
the CQ over the augmented data; and third, they filter the re-
sult of the second phase to eliminate unsound answers. The
third step is necessary because, to ensure termination, the
first step is unsound and may introduce facts that do not fol-
low from the ontology; however, this is done in a way that
makes the third step feasible. Such approaches have been de-
veloped for logics in the DL-Lite (Kontchakov et al. 2011)
and the EL (Lutz, Toman, and Wolter 2009) families, and
they are appealing because they are worst-case optimal and
practical: only the second step is intractable (in query size),
but it can be solved using well-known database techniques.

None of the combined approaches proposed thus far, how-
ever, handles nominals—concepts containing precisely one
individual. Nominals are included in OWL 2 EL, and they
are often used to state that all instances of a class have a
certain property value, such as ‘the sex of all men is male’,
or ‘each German city is located in Germany’. In this paper
we present a combined approach for ELHOr

⊥—the DL that
covers all features of OWL 2 EL apart from transitive roles
and complex role inclusions. To the best of our knowledge,
this is the first combined approach that handles nominals.
Our extension is nontrivial because nominals require equal-
ity reasoning, which increases the complexity of the first and

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

1177

the third step of the algorithm. In particular, nominals may
introduce recursive dependencies in the filtering conditions
used in the third phase; this is in contrast to the known com-
bined approach for EL (Lutz, Toman, and Wolter 2009) in
which filtering conditions are not recursive and can be incor-
porated into the input query. To solve this problem, our algo-
rithm evaluates the original CQ and then uses a polynomial
function to check the relevant conditions for each answer.

Following Krötzsch, Rudolph, and Hitzler (2008), instead
of directly materialising the relevant consequences of the on-
tology and the data, we transform the ontology into a datalog
program that captures the relevant consequences. Although
seemingly just a stylistic issue, a datalog-based specification
may be beneficial in practice: one can either materialise all
consequences of the program bottom-up in advance, or one
can use a top-down technique to compute only the conse-
quences relevant for the query at hand. The latter can be par-
ticularly useful in informations systems that have read-only
access to the data, or where data changes frequently.

We have implemented a prototypical system using our al-
gorithm, and we carried out a preliminary empirical evalua-
tion of (i) the blowup in the number of facts introduced by
the datalog program, and (ii) the number of unsound answers
obtained in the second phase. Our experiments show both of
these numbers to be manageable in typical cases, suggesting
that our algorithm provides a practical basis for answering
CQs in an expressive fragment of OWL 2 EL.

The proofs of our technical results are provided in the
technical report (Stefanoni, Motik, and Horrocks 2013).

Preliminaries
Logic Programming. We use the standard notions of vari-
ables, constants, function symbols, terms, atoms, formulas,
and sentences (Fitting 1996). We often identify a conjunc-
tion with the set of its conjuncts. A substitution σ is a par-
tial mapping of variables to terms; dom(σ) and rng(σ) are
the domain and the range of σ, respectively; σ|S is the re-
striction of σ to a set of variables S; and, for α a term or a
formula, σ(α) is the result of simultaneously replacing each
free variable x occurring in α with σ(x). A Horn clause C
is an expression of the form B1 ∧ . . . ∧Bm → H , where
H and each Bi are atoms. Such C is a fact if m = 0, and
it is commonly written as H . Furthermore, C is safe if each
variable occurring inH also occurs in someBi. A logic pro-
gram Σ is a finite set of safe Horn clauses; furthermore, Σ is
a datalog program if each clause in Σ is function-free.

In this paper, we interpret a logic program Σ in a model
that can be constructed bottom-up. The Herbrand universe
of Σ is the set of all terms built from the constants and
the function symbols occurring in Σ. Given an arbitrary set
of facts B, let Σ(B) be the smallest superset of B such
that, for each clause ϕ→ ψ ∈ Σ and each substitution σ
mapping the variables occurring in the clause to the Her-
brand universe of Σ, if σ(ϕ) ⊆ B, then σ(ψ) ⊆ Σ(B). Let
I0 be the set of all facts occurring in Σ; for each i ∈ N, let
Ii+1 = Σ(Ii); and let I =

⋃
i∈N Ii. Then I is the minimal

Herbrand model of Σ, and it is well known that I satisfies
∀~x.C for each Horn clause C ∈ Σ and ~x the vector of all
variables occurring in C.

Type Axiom Clause
1 {a} v A A(a)

2 A v B A(x)→ B(x)

3 A v {a} A(x)→ x ≈ a
4 A1 uA2 v A A1(x) ∧A2(x)→ A(x)

5 ∃R.A1 v A R(x, y) ∧A1(y)→ A(x)

6 A1 v ∃R.A
A1(x)→ R(x, fR,A(x))
A1(x)→ A(fR,A(x))

7 R v S R(x, y)→ S(x, y)

8 range(R,A) R(x, y)→ A(y)

Table 1: Transforming ELHOr
⊥ Axioms into Horn Clauses

In this paper we allow a logic program Σ to contain the
equality predicate ≈. In first-order logic, ≈ is usually inter-
preted as the identity over the interpretation domain; how-
ever, ≈ can also be explicitly axiomatised (Fitting 1996).
Let Σ≈ be the set containing clauses (1)–(3), an instance of
clause (4) for each n-ary predicate R occurring in Σ and
each 1 ≤ i ≤ n, and an instance of clause (5) for each n-ary
function symbol f occurring in Σ and each 1 ≤ i ≤ n.

→ x ≈ x (1)
x1 ≈ x2 → x2 ≈ x1 (2)

x1 ≈ x2 ∧ x2 ≈ x3 → x1 ≈ x3 (3)

R(~x) ∧ xi ≈ x′i → R(x1, . . . , x
′
i, . . . , xn) (4)

xi ≈ x′i → f(. . . , xi, . . .) ≈ f(. . . , x′i, . . .) (5)

The minimal Herbrand model of a logic program Σ that
contains ≈ is the minimal Herbrand model of Σ ∪ Σ≈.

Conjunctive Queries. A conjunctive query (CQ) is a
formula q = ∃~y.ψ(~x, ~y) with ψ a conjunction of function-
free atoms over variables ~x ∪ ~y. Variables ~x are the answer
variables of q. Let NT (q) be the set of terms occurring in q.

Let τ be a substitution such that rng(τ) contains only con-
stants. Then, τ(q) = ∃~z.τ(ψ), where ~z is obtained from ~y
by removing each variable y ∈ ~y for which τ(y) is defined.
Note that, according to this definition, non-free variables can
also be replaced; for example, given q = ∃y1, y2.R(y1, y2)
and τ = {y2 7→ a}, we have τ(q) = ∃y1.R(y1, a).

Let Σ be a logic program, let I be the minimal Herbrand
model of Σ, and let q = ∃~y.ψ(~x, ~y) be a CQ that uses only
the predicates occurring in Σ. A substitution π is a candidate
answer for q in Σ if dom(π) = ~x and rng(π) contains only
constants; furthermore, such a π is a certain answer to q
over Σ, written Σ |= π(q), if a substitution τ exists such that
dom(τ) = ~x ∪ ~y, π = τ |~x, and τ(q) ⊆ I .

Description Logic. DL ELHOr
⊥ is defined w.r.t. a sig-

nature consisting of mutually disjoint and countably infi-
nite sets NC , NR, and NI of atomic concepts (i.e., unary
predicates), roles (i.e., binary predicates), and individuals
(i.e., constants), respectively. Furthermore, for each individ-
ual a ∈ NI , expression {a} denotes a nominal—that is, a
concept containing precisely the individual a. Also, we as-
sume that > and ⊥ are unary predicates (without any pre-
defined meaning) not occurring in NC . We consider only
normalised knowledge bases, as it is well known (Baader,
Brandt, and Lutz 2005) that each ELHOr

⊥ knowledge base
can be normalised in polynomial time without affecting the
answers to CQs. An ELHOr

⊥ TBox is a finite set of ax-

1178

ioms of the form shown in the left-hand side of Table 1,
where A(i) ∈ NC ∪ {>}, B ∈ NC ∪ {>,⊥}, R,S ∈ NR,
and a ∈ NI . An ABox A is a finite set of facts constructed
using the symbols fromNC ∪ {>,⊥},NR, andNI . Finally,
an ELHOr

⊥ knowledge base (KB) is a tuple K = 〈T ,A〉,
where T is an ELHOr

⊥ TBox T and an A is an ABox such
that each predicate occurring in A also occurs in T .

We interpret K as a logic program. Table 1 shows how to
translate a TBox T into a logic program Ξ(T). Moreover,
let >(T) be the set of the following clauses instantiated for
each atomic concept A and each role R occurring in T .

A(x)→ >(x) R(x, y)→ >(x) R(x, y)→ >(y)

A knowledge base K = 〈T ,A〉 is translated into the logic
program Ξ(K) = Ξ(T) ∪ >(T) ∪ A. Then, K is unsatis-
fiable if Ξ(K) |= ∃y.⊥(y). Furthermore, given a conjunc-
tive query q and a candidate answer π for q, we write
K |= π(q) iff K is unsatisfiable or Ξ(K) |= π(q). Although
somewhat nonstandard, our definitions of DLs are equiva-
lent to the ones based on the standard denotational semantics
(Baader et al. 2007). Given a candidate answer π for q, de-
ciding whether Ξ(K) |= π(q) holds is NP-complete in com-
bined complexity, and PTIME-complete in data complexity
(Krötzsch, Rudolph, and Hitzler 2007).

Datalog Rewriting of ELHOr
⊥ TBoxes

For the rest of this section, we fix an arbitrary ELHOr
⊥

knowledge base K = 〈T ,A〉. We next show how to trans-
form K into a datalog program D(K) that can be used to
check the satisfiability of K. In the following section, we
then show how to use D(K) to answer conjunctive queries.

Due to axioms of type 6 (cf. Table 1), Ξ(K) may contain
function symbols and is generally not a datalog program;
thus, the evaluation of Ξ(K) may not terminate. To ensure
termination, we eliminate function symbols from Ξ(K) us-
ing the technique by Krötzsch, Rudolph, and Hitzler (2008):
for each A ∈ NC ∪ {>} and each R ∈ NR occurring in
T , we introduce a globally fresh and unique auxiliary in-
dividual oR,A. Intuitively, oR,A represents all terms in the
Herbrand universe of Ξ(K) needed to satisfy the existential
concept ∃R.A. Krötzsch, Rudolph, and Hitzler (2008) used
this technique to facilitate taxonomic reasoning, while we
use it to obtain a practical CQ answering algorithm. Please
note that oR,A depends on both R and A, whereas in the
known approaches such individuals depend only onA (Lutz,
Toman, and Wolter 2009) or R (Kontchakov et al. 2011).
Definition 1. Datalog program D(T) is obtained by trans-
lating each axiom of type other than 6 in the TBox T of K
into a clause as shown in Table 1, and by translating each
axiom A1 v ∃R.A in T into clauses A1(x)→ R(x, oR,A)
and A1(x)→ A(oR,A). Furthermore, the translation of K
into datalog is given by D(K) = D(T) ∪ >(T) ∪ A.
Example 1. Let T be the following ELHOr

⊥ TBox:

KRC v ∃taught .JProf ∃taught .> v Course
Course v ∃taught .Prof {kr} v KRC

Prof v ∃advisor .Prof KRC v Course
JProf v {john} range(taught ,Prof)

kr

ai oT,P

john ≈ oT,J

oA,P

kr

ai

john ≈ fT,J(kr)

fT,P(ai)

fT,P(kr)

fA,P (fT,P(ai))

fA,P (fT,P(kr))

fA,P (john)
≈

 fA,P (fT,J(kr))

taught

taught

taught

advisor

advisor

advisor

advisor

advisor

advisor

taught

taught

advisor
advisor

adviso
r

J

I

taught

Figure 1: Representing the Models of Ξ(K).

Then, D(T) contains the following clauses:

KRC (x)→ taught(x, oT,J) JProf (x)→ x ≈ john
KRC (x)→ JProf (oT,J) taught(x, y)→ Course(x)
Course(x)→ taught(x, oT,P) KRC (kr)
Course(x)→ Prof (oT,P) KRC (x)→ Course(x)
Prof (x)→ advisor(x, oA,P) taught(x, y)→ Prof (y)
Prof (x)→ Prof (oA,P) ♦

The following result straightforwardly follows from the
definition of Ξ(K) and D(K).
Proposition 2. Program D(K) can be computed in time lin-
ear in the size of K.

Next, we prove that the datalog program D(K) can be
used to decide the satisfiability of K. To this end, we define
a function δ that maps each term w in the Herbrand universe
of Ξ(K) to the Herbrand universe of D(K) as follows:

δ(w) =

{
w if w ∈ NI ,

oR,A if w is of the form w = fR,A(w′).

Let I and J be the minimal Herbrand models of Ξ(K) and
D(K), respectively. Mapping δ establishes a tight relation-
ship between I and J as illustrated in the following example.
Example 2. Let A = {Course(ai)}, let T be as in Exam-
ple 1, and letK = 〈T ,A〉. Figure 1 shows a graphical repre-
sentation of the minimal Herbrand models I and J of Ξ(K)
and D(K), respectively. The grey dotted lines show how δ re-
lates the terms in I to the terms in J. For the sake of clarity,
Figure 1 does not show the reflexivity of ≈. ♦

Mapping δ is a homomorphism from I to J.
Lemma 3. Let I and J be the minimal Herbrand mod-
els of Ξ(K) and D(K), respectively. Mapping δ satisfies
the following three properties for all terms w′ and w, each
B ∈ NC ∪ {>,⊥}, and each R ∈ NR.
1. B(w) ∈ I implies B(δ(w)) ∈ J.
2. R(w′, w) ∈ I implies R(δ(w′), δ(w)) ∈ J.
3. w′ ≈ w ∈ I implies δ(w′) ≈ δ(w) ∈ J.

For a similar result in the other direction, we need a couple
of definitions. Let H be an arbitrary Herbrand model. Then,

1179

dom(H) is the set containing each term w that occurs in H
in at least one fact with a predicate in NC ∪ {>,⊥} ∪NR;
note that, by this definition, we havew 6∈ dom(H) whenever
w occurs in H only in assertions involving the ≈ predicate.
Furthermore, auxH is the set of all terms w ∈ dom(H) such
that, for each term w′ with w ≈ w′ ∈ H , we have w′ 6∈ NI .
We say that the terms in auxH are ‘true’ auxiliary terms—
that is, they are not equal to an individual in NI . In Figure
1, bold terms are ‘true’ auxiliary terms in I and J.
Lemma 4. Let I and J be the minimal Herbrand models of
Ξ(K) and D(K), respectively. Mapping δ satisfies the fol-
lowing five properties for all terms w1 and w2 in dom(I),
each B ∈ NC ∪ {>,⊥}, and each R ∈ NR.
1. B(δ(w1)) ∈ J implies that B(w1) ∈ I.
2. R(δ(w1), δ(w2)) ∈ J and δ(w2) 6∈ auxJ imply that
R(w1, w2) ∈ I.

3. R(δ(w1), δ(w2)) ∈ J and δ(w2) ∈ auxJ imply that
δ(w2) is of the form oP,A, thatR(w1, fP,A(w1)) ∈ I, and
that a term w′1 exists such that R(w′1, w2) ∈ I.

4. δ(w1) ≈ δ(w2) ∈ J and δ(w2) 6∈ auxJ imply that
w1 ≈ w2 ∈ I.

5. For each term u occurring in J, term w ∈ dom(I) exists
such that δ(w) = u.
Lemmas 3 and 4 allow us to decide the satisfiability of

K by answering a simple query over D(K), as shown in
Proposition 5. The complexity claim is due to the fact that
each clause in D(K) contains a bounded number of vari-
ables (Dantsin et al. 2001).
Proposition 5. For K an arbitrary ELHOr

⊥ knowledge
base, Ξ(K) |= ∃y.⊥(y) if and only if D(K) |= ∃y.⊥(y).
Furthermore, the satisfiability of K can be checked in time
polynomial in the size of K.

Answering Conjunctive Queries
In this section, we fix a satisfiable ELHOr

⊥ knowledge base
K = 〈T ,A〉 and a conjunctive query q = ∃~y.ψ(~x, ~y). Fur-
thermore, we fix I and J to be the minimal Herbrand models
of Ξ(K) and D(K), respectively.

While D(K) can be used to decide the satisfiability of K,
the following example shows that D(K) cannot be used di-
rectly to compute the answers to q.
Example 3. Let K be as in Example 2, and let q1, q2, and
q3 be the following conjunctive queries:

q1 = taught(x1, x2)

q2 = ∃y1, y2, y3. taught(x1, y1) ∧ taught(x2, y2) ∧
advisor(y1, y3) ∧ advisor(y2, y3)

q3 = ∃y. advisor(y, y)

Furthermore, let τi be the following substitutions:
τ1 = {x1 7→ kr , x2 7→ oT,P }
τ2 = {x1 7→ kr , x2 7→ ai ,

y1 7→ oT,P , y2 7→ oT,P , y3 7→ oA,P }
τ3 = {y 7→ oA,P }

Finally, let each πi be the projection of τi to the answer
variables of qi. Using Figure 1, one can readily check that
D(K) |= τi(qi), but Ξ(K) 6|= πi(qi), for each 1 ≤ i ≤ 3. ♦

This can be explained by observing that J is a homomor-
phic image of I. Now homomorphisms preserve CQ answers
(i.e., Ξ(K) |= π(q) implies D(K) |= π(q)), but they can also
introduce unsound answers (i.e., D(K) |= π(q) does not
necessarily imply Ξ(K) |= π(q)). This gives rise to the fol-
lowing notion of spurious answers.
Definition 6. A substitution τ with dom(τ) = ~x ∪ ~y and
D(K) |= τ(q) is a spurious answer to q if τ |~x is not a certain
answer to q over Ξ(K).

Based on these observations, we answer q over K in two
steps: first, we evaluate q over D(K) and thus obtain an over-
estimation of the certain answers to q over Ξ(K); second, for
each substitution τ obtained in the first step, we eliminate
spurious answers using a special function isSpur. We next
formally introduce this function. We first present all relevant
definitions, after which we discuss the intuitions. As we shall
see, each query in Example 3 illustrates a distinct source of
spuriousness that our function needs to deal with.
Definition 7. Let τ be a substitution s.t. dom(τ) = ~x ∪ ~y
and D(K) |= τ(q). Relation ∼ ⊆ NT (q)×NT (q) for q, τ ,
and D(K) is the smallest reflexive, symmetric, and transitive
relation closed under the fork rule, where auxD(K) is the set
containing each individual u from D(K) for which no indi-
vidual c ∈ NI exists such that D(K) |= u ≈ c.

s′ ∼ t′(fork)
R(s, s′) and P (t, t′) occur in q, and
τ(s′) ∈ auxD(K)s ∼ t

Please note that the definition auxD(K) is actually a refor-
mulation of the definition of auxJ , but based on the conse-
quences of D(K) rather than the facts in J.

Relation ∼ is reflexive, symmetric, and transitive, so it is
an equivalence relation, which allows us to normalise each
term t ∈ NT (q) to a representative of its equivalence class
using the mapping γ defined below. We then construct a
graphGaux that checks whether substitution τ matches ‘true’
auxiliary individuals in a way that cannot be converted to a
match over ‘true’ auxiliary terms in I.
Definition 8. Let τ and ∼ be as specified in Definition 7.
Function γ : NT (q) 7→ NT (q) maps each term t ∈ NT (q)
to an arbitrary, but fixed representative γ(t) of the equiva-
lence class of ∼ that contains t. Furthermore, the directed
graph Gaux = 〈Vaux, Eaux〉 is defined as follows.
• Set Vaux contains a vertex γ(t) ∈ NT (q) for each term
t ∈ NT (q) such that τ(t) ∈ auxD(K).

• Set Eaux contains an edge 〈γ(s), γ(t)〉 for each atom of
the form R(s, t) in q such that {γ(s), γ(t)} ⊆ Vaux.

Query q is aux-cyclic w.r.t. τ and D(K) if Gaux contains a
cycle; otherwise, q is aux-acyclic w.r.t. τ and D(K).

We are now ready to define our function that checks
whether a substitution τ is a spurious answer.
Definition 9. Let τ and ∼ be as specified in Definition 7.
Then, function isSpur(q,D(K), τ) returns t if and only if at
least one of the following conditions hold.
(a) Variable x ∈ ~x exists such that τ(x) 6∈ NI .
(b) Terms s and t occurring in q exist such that s ∼ t and

D(K) 6|= τ(s) ≈ τ(t).

1180

(c) Query q is aux-cyclic w.r.t. τ and D(K).
We next discuss the intuition behind our definitions. We

ground our discussion in minimal Herbrand models I and
J, but our technique does not depend on such models: all
conditions are stated as entailments that can be checked
using an arbitrary sound and complete technique. Since K
is an ELHOr

⊥ knowledge base, model I is forest-shaped:
roughly speaking, the role assertions in I that involve at
least one functional term are of the form R(w1, fR,A(w1))
or R(w1, a) for a ∈ NI ; thus, I can be viewed as a family
of directed trees whose roots are the individuals in NI and
whose edges point from parents to children or to the indi-
viduals in NI . This is illustrated in Figure 1, whose lower
part shows the the forest-model of the knowledge base from
Example 3. Note that assertions of the form R(w1, a) are
introduced via equality reasoning.

Now let τ be a substitution such that D(K) |= τ(q), and
let π = τ |~x. If τ is not a spurious answer, it should be pos-
sible to convert τ into a substitution π∗ such that π = π∗|~x
and π∗(q) ⊆ I. Using the queries from Example 3, we next
identify three reasons why this may not be possible.

First, τ may map an answer variable of q to an auxiliary
individual, so by the definition π cannot be a certain an-
swer to q; condition (a) of Definition 9 identifies such cases.
Query q1 and substitution τ1 from Example 3 illustrate such
a situation: τ2(x2) = oT ,P and oT ,P is a ‘true’ auxiliary in-
dividual, so π1 is not a certain answer to q1.

The remaining two problems arise because model J is not
forest-shaped, so τ might map q into J in a way that cannot
be converted into a substitution π∗ that maps q into I.

The second problem is best explained using substitution
τ2 and query q2 from Example 3. Query q2 contains a ‘fork’
advisor(y1, y3) ∧ advisor(y2, y3). Now τ2(y3) = oA,P is a
‘true’ auxiliary individual, and so it represents ‘true’ aux-
iliary terms fA,P (fT,P (ai)), fA,P (fT,P (kr)), and so on.
Since I is forest-shaped, a match π∗2 for q in I obtained
from τ2 would need to map y3 to one of these terms; let
us assume that π∗2(y3) = fA,P (fT,P (ai)). Since I is forest-
shaped and fA,P (fT,P (ai)) is a ‘true’ auxiliary term, this
means that both y1 and y2 must be mapped to the same term
(in both J and I). This is captured by the (fork) rule: in our
example, the rule derives y1 ∼ y2, and condition (b) of Def-
inition 9 checks whether τ2 maps y1 and y2 in a way that
satisfies this constraint. Note that, due to role hierarchies,
the rule needs to be applied to atoms R(s, s′) and P (t, t′)
with R 6= P . Moreover, such constraints must be propa-
gated further up the query. In our example, due to y1 ∼ y2,
atoms taught(x1, y1) ∧ taught(x2, y2) in q2 also constitute
a ‘fork’, so the rule derives x1 ∼ x2; now this allows condi-
tion (b) of Definition 9 to correctly identify τ2 as spurious.

The third problem is best explained using substitution τ3
and query q3 from Example 3. Model J contains a ‘loop’ on
individual oA,P , which allows τ3 to map q3 into J. In con-
trast, model I is forest-shaped, and so the ‘true’ auxiliary
terms that correspond to oA,P do not form loops. Condition
(c) of Definition 9 detects such situations using the graph
Gaux. The vertices of Gaux correspond to the terms of q that
are matched to ‘true’ auxiliary individuals (mapping γ sim-
ply ensures that equal terms are represented as one vertex),

Individuals Unary facts Binary facts
(% in auxD(K)) (% over auxD(K)) (% over auxD(K))

L-5 100848 169079 296941
Mat. 100868 (0.01) 309350 (0.01) 632489 (49.2)
L-10 202387 339746 598695
Mat. 202407 (0.01) 621158 (0.01) 1277575 (49.3)
L-20 426144 714692 1259936
Mat. 426164 (0.01) 1304815 (0.01) 2691766 (49.3)
SEM 17945 17945 47248
Mat. 17953 (0.04) 25608 (0.03) 76590 (38.3)

Table 2: Size of the materialisations.

and edges of Gaux correspond to the role atoms in q. Hence,
if Gaux is cyclic, then the substitution π∗ obtained from τ
would need to match the query q over a cycle of ‘true’ aux-
iliary terms, which is impossible since I is forest-shaped.

Unlike the known combined approaches, our approach
does not extend q with conditions that detect spurious an-
swers. Due to nominals, the relevant equality constraints
have a recursive nature, and they depend on both the sub-
stitution τ and on the previously derived constraints. Con-
sequently, filtering in our approach is realised as postpro-
cessing; furthermore, to ensure correctness of our filtering
condition, auxiliary individuals must depend on both a role
and an atomic concept. The following theorem proves the
correctness of our approach.

Theorem 10. LetK = 〈T ,A〉 be a satisfiable ELHOr
⊥ KB,

let q = ∃~y.ψ(~x, ~y) be a CQ, and let π : ~x 7→ NI be a can-
didate answer for q. Then, Ξ(K) |= π(q) iff a substitution
τ exists such that dom(τ) = ~x ∪ ~y, τ |~x = π, D(K) |= τ(q),
and isSpur(q,D(K), τ) = f.

Furthermore, isSpur(q,D(K), τ) can be evaluated in poly-
nomial time, so the main source of complexity in our ap-
proach is in deciding whether D(K) |= τ(q) holds. This
gives rise to the following result.

Theorem 11. Deciding whetherK |= π(q) holds can be im-
plemented in nondeterministic polynomial time w.r.t. the size
of K and q, and in polynomial time w.r.t. the size of A.

Evaluation
To gain insight into the practical applicability of our ap-
proach, we implemented our technique in a prototypical sys-
tem. The system uses HermiT, a widely used ontology rea-
soner, as a datalog engine in order to materialise the conse-
quences of D(K) and evaluate q. The system has been im-
plemented in Java, and we ran our experiments on a Mac-
Book Pro with 4GB of RAM and an Intel Core 2 Duo
2.4 Ghz processor. We used two ontologies in our eval-
uation, details of which are given below. The ontologies,
queries, and the prototype system are all available online at
http://www.cs.ox.ac.uk/isg/tools/KARMA/.

The LSTW benchmark (Lutz et al. 2012) consists of an
OWL 2 QL version of the LUBM ontology (Guo, Pan, and
Heflin 2005), queries ql1, . . . , q

l
11, and a data generator. The

LSTW ontology extends the standard LUBM ontology with
several axioms of type 6 (see Table 1). To obtain an ELHOr

⊥

ontology, we removed inverse roles and datatypes, added 11
axioms using 9 freshly introduced nominals, and added one

1181

LSTW ql1 ql2 ql3 ql5 ql8 ql9 ql10
Tot (%) Tot (%) Tot (%) Tot (%) Tot (%) Tot (%) Tot (%)

L-5 116K
(4.0)

3.7M
(100.0)

10
(0.0)

28K
(0.0)

13K
(26.0)

1K
(0.0)

12K
(74.5)L-10 233K 32M 22 57K 26K 2K 25K

L-20 487K 170M 43 121K 55K 4K 53K

qs1 qs2 qs3 qs4 qs5 qs6 qs7 qs8 qs9
Tot (%) Tot (%) Tot (%) Tot (%) Tot (%) Tot (%) Tot (%) Tot (%) Tot (%)

SEMINTEC 7 (0.0) 53 (0.0) 16 (0.0) 12 (0.0) 31 (0.0) 838K (55.4) 5K (0.0) 5K (54.3) 13K (33.3)

Table 3: Total number of answers and ratio spurious to answers. In Table LSTW, the ratio is stable for each data set.

axiom of type 4 (see Table 1). These additional axioms re-
semble the ones in Example 1, and they were designed to
test equality reasoning. The resulting signature consists of
132 concepts, 32 roles, and 9 nominals, and the ontology
contains 180 axioms. From the 11 LSTW queries, we did
not consider queries ql4, ql6, ql7, and ql11 because their result
sets were empty: ql4 relies on existential quantification over
inverse roles, and the other three are empty already w.r.t.
the original LSTW ontology. Query ql2 is similar to query q2
from Example 3, and it was designed to produce only spu-
rious answers and thus stress the system. We generated data
sets with 5, 10 and 20 universities. For each data set, we de-
note with L-i the knowledge base consisting of our ELHOr

⊥

ontology and the ABox for i universities (see Table 2).
SEMINTEC is an ontology about financial services de-

veloped within the SEMINTEC project at the University of
Poznan. To obtain an ELHOr

⊥ ontology, we removed in-
verse roles, role functionality axioms, and universal restric-
tions, added nine axioms of type 6 (see Table 1), and added
six axioms using 4 freshly introduced nominals. The result-
ing ontology signature consists of 60 concepts, 16 roles,
and 4 nominals, and the ontology contains 173 axioms.
Queries qs1–qs5 are tree-shaped queries used in the SEM-
INTEC project, and we developed queries qs6–qs9 ourselves.
Query qs6 resembles query ql2 from LSTW, and queries qs8
and qs9 were designed to retrieve a large number of answers
containing auxiliary individuals, thus stressing condition (a)
of Definition 9. Finally, the SEMINTEC ontology comes
with a data set consisting of approximately 65,000 facts con-
cerning 18,000 individuals (see row SEM in Table 2).

The practicality of our approach, we believe, is deter-
mined mainly by the following two factors. First, the num-
ber of facts involving auxiliary individuals introduced dur-
ing the materialisation phase should not be ‘too large’. Table
2 shows the materialisation results: the first column shows
the number of individuals before and after materialisation
and the percentage of ‘true’ auxiliary individuals, the sec-
ond column shows the number of unary facts before and
after materialisation and the percentage of facts involving
a ‘true’ auxiliary individual, and the third column does the
same for binary facts. As one can see, for each input data
set, the materialisation step introduces few ‘true’ auxiliary
individuals, and the number of facts at most doubles. The
number of unary facts involving a ‘true’ auxiliary individual
does not change with the size of the input data set, whereas
the number of such binary facts increases by a constant fac-
tor. This is because, in clauses of type 6, atoms A(oR,A) do
not contain a variable, whereas atoms R(x, oR,A) do.

Second, evaluating q over D(K) should not produce too

many spurious answers. Table 3 shows the total number of
answers for each query—that is, the number of answers ob-
tained by evaluating the query over D(K); furthermore, the
table also shows what percentage of these answers are spuri-
ous. Queries ql2, ql10, qs6, and qs8 retrieve a significant percent-
age of spurious answers. However, only query ql2 has proven
to be challenging for our system due to the large number of
retrieved answers, with an evaluation time of about 40 min-
utes over the largest knowledge base (L-20). Surprisingly, ql1
also performed rather poorly despite a low number of spu-
rious answers, with an evaluation time of about 20 minutes
for L-20. All other queries were evaluated in at most a few
seconds, thus suggesting that queries ql1 and ql2 are problem-
atical mainly because HermiT does not implement query op-
timisation algorithms typically used in relational databases.

Conclusion
We presented the first combined technique for answering
conjunctive queries over DL ontologies that include nomi-
nals. A preliminary evaluation suggests the following. First,
the number of materialised facts over ‘true’ anonymous in-
dividuals increases by a constant factor with the size of
the data. Second, query evaluation results have shown that,
while some cases may be challenging, in most cases the per-
centage of answers that are spurious is manageable. Hence,
our technique provides a practical CQ answering algorithm
for a large fragment of OWL 2 EL.

We anticipate several directions for our future work. First,
we would like to investigate the use of top-down query eval-
uation techniques, such as magic sets (Abiteboul, Hull, and
Vianu 1995) or SLG resolution (Chen and Warren 1993).
Second, tighter integration of the detection of spurious an-
swers with the query evaluation algorithms should make it
possible to eagerly detect spurious answers (i.e., before the
query is fully evaluated). Lutz et al. (2012) already imple-
mented a filtering condition as a user-defined function in a
database, but it is unclear to what extent such an implemen-
tation can be used to optimise query evaluation. Finally, we
would like to extend our approach to all of OWL 2 EL.

Acknowledgements
This work was supported by the Royal Society; Alcatel-
Lucent; the EU FP7 project OPTIQUE; and the EPSRC
projects ExODA, MASI3, and QueRe.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

1182

Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite Family and Relations.
Journal of Artificial Intelligence Research 36:1–69.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2007. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press. ISBN 9780511717383.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
Envelope. In Kaelbling, L. P., and Saffiotti, A., eds., Pro-
ceedings of the 19th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2005), 364–369. Edinburgh, UK:
Morgan Kaufmann Publishers.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite Fam-
ily. Journal of Automated Reasoning 9(3):385–429.
Chen, W., and Warren, D. S. 1993. Query evaluation un-
der the well-founded semantics. In Proceedings of the 12th
ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, PODS ’93, 168–179. New York, NY,
USA: ACM.
Cuenca Grau, B.; Horrocks, I.; Motik, B.; Parsia, B.; Patel-
Schneider, P.; and Sattler, U. 2008. OWL 2: The next step
for OWL. Journal of Web Semantics 6(4):309–322.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.
Eiter, T.; Ortiz, M.; Simkus, M.; Tran, T.-K.; and Xiao, G.
2012. Query Rewriting for Horn-SHIQ Plus Rules. In Pro-
ceedings of the 26th AAAI Conference on Artificial Intelli-
gence, (AAAI 2012). AAAI Press.
Fitting, M. 1996. First-order logic and automated theorem
proving (2nd ed.). Secaucus, NJ, USA: Springer-Verlag New
York, Inc.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2008.
Conjunctive Query Answering for the Description Logic
SHIQ. Journal of Artificial Intelligence Research 31:151–
198.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web Seman-
tics 3(2–3):158–182.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The Combined Approach to
Ontology-Based Data Access. In Walsh, T., ed., Proceed-
ings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011). AAAI Press.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2007. Conjunc-
tive queries for a tractable fragment of OWL 1.1. In Aberer,
K.; Choi, K.-S.; Noy, N.; Allemang, D.; Lee, K.-I.; Nixon,
L.; Golbeck, J.; Mika, P.; Maynard, D.; Mizoguchi, R.;
Schreiber, G.; and Cudré-Mauroux, P., eds., Proceedings of
the 6th International Semantic Web Conference (ISWC’07),
volume 4825 of LNCS, 310–323. Springer.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2008. ELP:
Tractable rules for OWL 2. In Sheth, A.; Staab, S.; Dean,
M.; Paolucci, M.; Maynard, D.; Finin, T.; and Thirunarayan,

K., eds., Proceedings of the 7th International Semantic Web
Conference (ISWC’08), volume 5318 of LNCS, 649–664.
Springer.
Lutz, C.; Seylan, I.; Toman, D.; and Wolter, F. 2012. The
Combined Approach to OBDA: Taming Role Hierarchies
using Filters. In Fokoue, A.; Liebig, T.; Goodman, E.;
Weaver, J.; Urbani, J.; and Mizell, D., eds., Proceedings of
the Joint Workshop on Scalable and High-Performance Se-
mantic Web Systems (SSWS+HPCSW 2012), volume 943 of
CEUR Workshop Proceedings, 16–31. CEUR-WS.org.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
Query Answering in the Description Logic EL Using a Re-
lational Database System. In Boutilier, C., ed., Proceedings
of the 21st International Joint Conference on Artificial Intel-
ligence, (IJCAI 2009), 2070–2075. AAAI Press.
Ortiz, M.; Rudolph, S.; and Simkus, M. 2011. Query An-
swering in the Horn Fragments of the Description Logics
SHOIQ and SROIQ. In Walsh, T., ed., Proceedings of
the 22nd International Joint Conference on Artificial Intel-
ligence (IJCAI 2011), 1039–1044. Barcelona, Spain: AAAI
Press.
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2010.
Tractable Query Answering and Rewriting under Descrip-
tion Logic Constraints. Journal of Applied Logic 8(2):186–
209.
Rosati, R. 2007. On Conjunctive Query Answering in EL.
In Calvanese, D.; Franconi, E.; Haarslev, V.; Lembo, D.;
Motik, B.; Turhan, A.-Y.; and Tessaris, S., eds., Proceedings
of the 20th International Workshop on Description Logics
(DL-2007), CEUR Workshop Proceedings. CEUR-WS.org.
Stefanoni, G.; Motik, B.; and Horrocks, I. 2013. Introducing
Nominals to the Combined Query Answering Approaches
for EL. CoRR abs/1303.7430.

1183

