Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

Usage-Centric Benchmarking of RDF Triple Stores

Mohamed Morsey and Jens Lehmann and Soren Auer and Axel-Cyrille Ngonga Ngomo
AKSW Research Group, University of Leipzig,
Johannisgasse 26, 04103 Leipzig, Germany
{morsey|lehmann|auer|ngonga}l@informatik.uni-leipzig.de

Abstract

A central component in many applications is the under-
lying data management layer. In Data-Web applications,
the central component of this layer is the triple store.
It is thus evident that finding the most adequate store
for the application to develop is of crucial importance
for individual projects as well as for data integration
on the Data Web in general. In this paper, we propose
a generic benchmark creation procedure for SPARQL,
which we apply to the DBpedia knowledge base. In con-
trast to previous approaches, our benchmark is based
on queries that were actually issued by humans and ap-
plications against existing RDF data not resembling a
relational schema. In addition, our approach does not
only take the query string but also the features of the
queries into consideration during the benchmark gen-
eration process. Our generic procedure for benchmark
creation is based on query-log mining, SPARQL feature
analysis and clustering. After presenting the method un-
derlying our benchmark generation algorithm, we use
the generated benchmark to compare the popular triple
store implementations Virtuoso, Sesame, Jena-TDB, and
BigOWLIM. ! 2

Introduction

The RDF data model (Klyne and Carroll 2004) is the main
building block of the Semantic Web — it plays a similar role
as HTML does for the conventional World Wide Web. The
RDF data model resembles directed labeled graphs, in which
each labeled edge (called predicate) connects a subject to an
object. Such a connection is called an RDF triple and nodes
in this graph can be resources, e.g. a particular book or a
person. Every resource is identified by a Uniform Resource
Identifier (URI) which is globally unique.A triple express-
ing that Leipzig is located in Germany could, therefore, be

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

!This work was supported by grants from the European Union’s
7th Framework Programme provided for the project LOD2 (GA no.
257943) and from Eurostars E!4604 SCMS.

*This article is an update of (Morsey et al. 2011) with the fol-
lowing changes: (1) We generalised the overall description to a
broader audience. (2) The similarity metrics simulation has been
improved. (3) New benchmark results based on this similarity metric
are presented.

B Y O N

2134

expressed as follows:

<http://dbpedia.org/resource/Leipzig>
<http://dbpedia.org/ontology/country>
<http://dbpedia.org/resource/Germany>

Figure 1: Example of an RDF triple.

SPARQL (SPARQL Protocol and RDF Query Language)
is the query language for RDF. A SPARQL processor finds
sets of triples in the RDF graph that match to the required
pattern. The results of SPARQL queries can be result sets
or RDF graphs (Prud’hommeaux and Seaborne 2008). For
instance, an example for the query ”Who is the spouse of
Shakespeare’s child?” is shown in Figure 2.

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX dbpedia:

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?spouse WHERE ({
dbpedia:William_Shakespeare dbo:child ?child.
?child dbp:spouse ?spouse.

}

<http://dbpedia.org/resource/>

Figure 2: SPARQL query to get the spouse of Shakespeare’s
child.

SPARQL is based on powerful graph matching that allows
binding variables to fragments in the input RDF graph. In
addition, operators akin to the relational joins, unions, left
outer joins, selections and projections can be used to build
more expressive queries (Schmidt et al. 2009). It is evident
that the performance of triple stores offering a SPARQL query
interface is mission critical for individual projects as well as
for data integration on the Web in general. It is consequently
of central importance during the implementation of any Data
Web application to have a clear picture of the weaknesses
and strengths of current triple store implementations.

Existing SPARQL benchmark efforts such as LUBM (Pan
et al. 2005), BSBM (Bizer and Schultz 2009) and
SP2 (Schmidt et al. 2009) resemble relational database bench-
marks. Especially, the data structures underlying these bench-
marks are basically relational data structures, with relatively

few and homogeneously structured classes. However, RDF
knowledge bases are increasingly heterogeneous. Thus, they
do not resemble relational structures and are not easily rep-
resentable as such. Examples of such knowledge bases are
curated bio-medical ontologies such as those contained in
Bio2RDF (Belleau et al. 2008) as well as knowledge bases
extracted from unstructured or semi-structured sources such
as DBpedia (Lehmann et al. 2009; Morsey et al. 2012)
or LinkedGeoData (Auer, Lehmann, and Hellmann 2009;
Stadler et al. 2011). For instance, DBpedia contains thou-
sands of classes and properties. Also, various data types and
object references of different types are used in property val-
ues. Such knowledge bases cannot be easily represented
according to the relational data model and hence perfor-
mance characteristics for loading, querying and updating
these knowledge bases might potentially be fundamentally
different from knowledge bases resembling relational data
structures.

In this article, we propose a generic SPARQL benchmark
creation methodology. This methodology is based on a flexi-
ble data generation mimicking an input data source, query-
log mining, clustering and SPARQL feature analysis. We
apply the proposed methodology to datasets of various sizes
derived from the DBpedia knowledge base. In contrast to
previous benchmarks, we perform measurements on real
queries that were issued by humans or Data-Web applica-
tions against existing RDF data. Moreover, we do not only
consider the query string but also the SPARQL features used
in each of the queries. In order to obtain a representative
set of prototypical queries reflecting the typical workload
of a SPARQL endpoint, we perform a query analysis and
clustering on queries that were sent to the official DBpedia
SPARQL endpoint. From the highest-ranked query clusters
(in terms of aggregated query frequency), we derive a set of
20 SPARQL query templates, which cover most commonly
used SPARQL feature combinations and are used to generate
the actual benchmark queries by parametrization. We call the
benchmark resulting from this dataset and query generation
methodology DBPSB?2 (i.e. DBpedia SPARQL Benchmark
version 2). The benchmark methodology and results are also
available online®. Although we apply this methodology to
the DBpedia dataset and its SPARQL query log in this case,
the same methodology can be used to obtain application-
specific benchmarks for other knowledge bases and query
workloads. Since DBPSB2 changes with the data and queries
in DBpedia, we envision to update it in yearly increments and
publish results on the above website. In general, our method-
ology follows the four key requirements for domain specific
benchmarks as postulated in the Benchmark Handbook (Gray
1991), i.e. it is (1) relevant, thus testing typical operations
within the specific domain, (2) portable, i.e. executable on
different platforms, (3) scalable, e.g. it is possible to run the
benchmark on both small and very large data sets, and (4) it
is understandable.

We apply DBPSB2 to assess the performance and scal-
ability of the popular triple stores Virtuoso (Erling and
Mikhailov 2007), Sesame (Broekstra, Kampman, and van

3http://aksw.org/Projects/DBPSB

2135

Harmelen 2002), Jena-TDB (Owens et al. 2008), and
BigOWLIM (Bishop et al. 2011) and compare our results
with those obtained with previous benchmarks. Our experi-
ments reveal that the performance and scalability is by far less
homogeneous than other benchmarks indicate. For example,
we observed query performance differences of several orders
of magnitude much more often than with other RDF bench-
marks when looking at the runtimes of individual queries.
The main observation in our benchmark is that previously
observed differences in performance between different triple
stores amplify when they are confronted with actually asked
SPARQL queries, i.e. there is now a wider gap in performance
compared to essentially relational benchmarks.

The paper is organized as follows: We first show the pro-
cess of query analysis and clustering in detail. After that,
we present our approach to selecting SPARQL features and
to query variability. We then assess the four triple stores
via DBPSB2 and discuss results. Finally, we conclude with
related and future work.

Query Analysis and Clustering

The goal of the query analysis and clustering is to detect
prototypical queries that were sent to a SPARQL endpoint
based on a query-similarity graph. Several types of similarity
measures can been used on SPARQL queries, for example
string similarities for comparing the actual query used and
graph similarities to compare the query structure. Given that
previous work suggest that most triple stores tend to perform
well for queries that display certain SPARQL features and
less well for others, we carry out the following approach for
the benchmark generation: First, we select queries that were
executed frequently on the input data source. Second, we
strip common syntactic constructs (e.g., namespace prefix
definitions) from these query strings in order to increase the
conciseness of the query strings. Then, we compute a query
similarity graph from the stripped queries by comparing both
the features used in the queries and the query strings. Finally,
we use a soft graph clustering algorithm for computing clus-
ters on this graph. These clusters are subsequently used to
devise the query generation patterns used in the benchmark.
In the following, we describe each of the four steps in more
detail.

Query Selection For the DBPSB, we use the DBpedia
SPARQL query-log which contains all queries posed to the
official DBpedia SPARQL endpoint for a three-month period
in 2010%. For the generation of the current benchmark, we
used the log for the period from April to July 2010. Overall,
31.5 million queries were posed to the endpoint within this pe-
riod. In order to obtain a small number of distinctive queries
for benchmarking triple stores, we reduce those queries in
the following two ways:

e Query variations. Often, the same or slight variations of
the same query are posed to the endpoint frequently. A

“The DBpedia SPARQL endpoint is available at: http:/dbpedia.
org/sparql/ and the query log excerpt at: ftp://download.openlinksw.
com/support/dbpedia/.

particular cause of this is the renaming of query variables.
We solve this issue by renaming all query variables in a
consecutive sequence as they appear in the query, i.e., var0,
varl, var2, and so on. As a result, distinguishing query
constructs such as REGEX or DISTINCT are a higher
influence on the clustering.

o Query frequency. We discard queries with a low frequency
(below 10) because they do not contribute much to the
overall query performance.

The application of both methods to the query log data set
at hand reduced the number of queries from 31.5 million
to 35,965. This reduction allows our benchmark to capture
the essence of the queries posed to DBpedia within the time
span covered by the query log and reduces the runtime of the
subsequent steps substantially.

String Stripping Every SPARQL query contains sub-
strings that segment it into different clauses. Although these
strings are essential during the evaluation of the query,
they are a major source of noise when computing query
similarity, as they boost the similarity score without the
query patterns being similar per se. Therefore, we remove
all SPARQL syntax keywords such as PREFIX, SELECT,
FROM and WHERE. In addition, common prefixes (such as
http://www.w3.0rg/2000/01/rdf-schema# for RDF-Schema)
are removed as they occur in most queries.

Similarity Computation The goal of the third step is to
compute the similarity of the stripped queries. Previous
benchmark results have shown that most triple stores perform
well for certain SPARQL features (Morsey et al. 2011). Thus,
the goal of the similarity computation is to match queries that
displayed the same features and to allow the subsequent clus-
tering step to detect the prototypical queries for common sets
of property combinations. In addition, our similarity function
aims to detect queries that are similar in the order in which
the SPARQL features were utilized. Let @ be the set of all
queries. We represent each query ¢ € () by two properties:

e a binary feature vector f(g) that contains a 1 for each
SPARQL feature used by the query and a 0 else and

e the query string s(q).
The similarity sim(q, ¢’) of two queries ¢ and ¢’ is then set

to sim(q,q') = (1+5(q,q’")) ~*, where the distance function
d(q,q’) is given by

5(q.¢') = min(||f(q)— (¢')|, levenshtein(s(q), (@)

Computing the Cartesian product of) over both compo-
nents would lead to almost 2.59 billion similarity computa-
tions. To reduce the runtime of the benchmark compilation,
we use the LIMES framework® (Ngonga Ngomo and Auer
2011; Ngonga Ngomo 2011). For the similarity computation,
we only consider queries ¢ and ¢’ such that

, A
1f(a) = F(d)II* < m%lf(w)l 2

>http://limes.sf.net

2136

and

levenshtein(s(q), s(q")) <

A

ls(@)[| (3
100]Q] %
where |s(q)| resp. | f(¢)| stands for the length of a query
string resp. a query vector. For the work presented herein,
we use A = 2. The average length of a stripped query string
is 143.33 characters, while the feature vector has a constant
length of 17. Consequently, only queries that bear a similar-
ity of at least 1/3 with respect the similarity of their strings
and 1/2 with respect to their feature vectors are included in
the similarity graph. By using this restriction, we are able
to reduce the runtime of the similarity computation to ap-
proximately 3% of the runtime required by the brute-force
approach.

Clustering The final step of our approach is to apply graph
clustering to the query similarity graph computed above. The
goal of this step is to discover very similar groups queries
out of which prototypical queries can be generated. As a
given query can obey the patterns of more than one proto-
typical query, we opt for using the soft clustering approach
implemented by the BorderFlow algorithm®.

BorderFlow (Ngonga Ngomo and Schumacher 2009) im-
plements a seed-based approach to graph clustering. It as-
sumes a weighted graph G = (V, E,w) as input, where
w : ' — R is the weight function. The default setting of
the algorithm (as used in the computation described below)
consists of taking all nodes in the input graph as seeds. For
each seed v, the algorithm begins with an initial cluster X
containing only v. Then, it expands X iteratively by adding
nodes from the direct neighborhood of X to X until X is
node-maximal with respect to the border flow ratio’. The
same procedure is repeated over all seeds. As different seeds
can lead to the same cluster, identical clusters (i.e., clusters
containing exactly the same nodes) that resulted from differ-
ent seeds are subsequently collapsed to one cluster. The set of
collapsed clusters and the mapping between each cluster and
its seeds are returned as result. Applying BorderFlow to the
input queries led to 622 clusters that contained more than one
node, therewith confirming a long-tail distribution of query
types across the query log at hand. We picked one query out
of each cluster by choosing the query with the highest degree
centrality in the cluster.

SPARQL Feature Selection and Query
Variability

After the completion of the detection of similar queries and
their clustering, our aim is now to select a number of fre-
quently executed queries that cover most SPARQL features
and allow us to assess the performance of queries with single
as well as combinations of features. The SPARQL features
we consider are:

8An implementation of the algorithm can be found at http://
borderflow.sf.net. We used the CUGAR Framework found at http:
//cugar-framework.sf.net for the experiments described herein.

See (Ngonga Ngomo and Schumacher 2009) for more details.

C ® N R W N -

S

11

SELECT * WHERE ({
{ ?2v2 a dbp-owl:Settlement ;
rdfs:label %%v%% .

?v6 a dbp-owl:Airport . }
{ ?2v6 dbp-owl:city ?v2 . }
UNION
{ ?2v6 dbp-owl:location ?v2 . }
{ ?v6 dbp-prop:iata ?v5 .}
UNION
{ ?v6 dbp-owl:iatalLocationIdentifier ?2v5 . }
OPTIONAL { ?v6 foaf:homepage °?v7 . }
OPTIONAL { ?v6 dbp-prop:nativename ?v8 . }

Figure 3: Sample query with placeholder.

o the number of triple patterns contained in the query (|G P|),
e pattern constructors UNION (UON), OPTIONAL (OPT),
e the solution sequences and modifiers DISTINCT (DST),

e as well as the filter conditions and operators FILTER
(FLT), LANG (LNG), REGEX (REG) and STR (STR).

We pick different numbers of triple patterns in order to in-
clude the efficiency of JOIN operations in triple stores. The
other features were selected because they frequently occurred
in the query log. We rank the clusters by the sum of the fre-
quency of all queries they contain. Thereafter, we select 25
queries as follows: For each of the features, we choose the
highest ranked cluster containing queries having this feature.
From that particular cluster we select the query with the
highest frequency.

In order to convert the selected queries into query tem-
plates, we manually select a part of the query to be varied.
This is usually an IRI, a literal or a filter condition. In Figure 3
those varying parts are indicated by $%v%$% or in the case of
multiple varying parts $$vn%%. We exemplify our approach
to replacing varying parts of queries by using Query 9, which
results in the query shown in Figure 3. This query selects a
specific settlement along with the airport belonging to that
settlement as indicated in Figure 3. The variability of this
query template was determined by getting a list of all set-
tlements using the query shown in Figure 4. By selecting
suitable placeholders, we ensured that the variability is suffi-
ciently high (> 1000 per query template). Note that the triple
store used for computing the variability was different from
the triple store that we later benchmarked in order to avoid
potential caching effects.

For the benchmarking we then used the list of thus re-
trieved concrete values to replace the $%$v%% placeholders
within the query template. This method ensures, that (a) the
actually executed queries during the benchmarking differ, but
(b) always return results. This change imposed on the original
query avoids the effect of simple caching.

Experimental Setup

This section presents the setup we used when applying the
DBPSB2 on four triple stores commonly used in Data Web
applications. The hardware and software setup was exactly
the same as in (Morsey et al. 2011). We used a typical server

o - . B NI VU R SR

5 L =32

2137

SELECT DISTINCT ?v WHERE ({
{ ?2v2 a dbp-owl:Settlement ;
rdfs:label ?v .

?v6 a dbp-owl:Airport . }
{ ?2v6 dbp-owl:city ?2v2 . }
UNION
{ ?v6 dbp-owl:location ?v2 . }
{ ?v6 dbp-prop:iata ?v5 .}
UNION
{ ?2v6 dbp-owl:iataLocationIdentifier ?v5 . }
OPTIONAL { ?v6 foaf:homepage ?v7 . }
OPTIONAL { ?v6 dbp-prop:nativename ?2v8 . }
} LIMIT 1000

Figure 4: Sample auxiliary query returning potential values a
placeholder can assume.

QMpH (logarithmic) OVirtuoso ®@Sesame OJena-TDB BBigOWLIM

1E+5

1E+4

1E+3

1E+2

1E+1

%

N

50% 100%
Dataset size

1E+0 +

Mean

‘ SVituoso MSesame OJenaTDB DBigOWLIM

120

100

80

60

%%

40

\
N\

%

20

29/

50% 100%
Dataset size

Figure 5: QMpH for all triple stores (top). Geometric mean
of QpS (bottom).

machine with 32GB RAM and an AMD Opteron 6 Core
CPU with 2.8 GHz. All triple stores were allowed 8GB of
memory. For executing the benchmark, we used DBpedia
datasets with different scale factors, i.e. 10%, 50% and 100%.
For DBPSB2, we used a warm-up period of 10 minutes, the
duration of the hot-run phase to 30 minutes and the time-out
and the time-out threshold to 180s. The benchmarking code
along with the DBPSB2 queries is freely available®.

Results

We evaluated the performance of the triple stores with re-
spect to two main metrics: their overall performance on the
benchmark and their query-based performance.

The overall performance of the triple stores was measured
by computing its query mixes per hour (QMpH) as shown in
Figure 5. Note that we used a logarithmic scale in this figure
due to the high performance differences we observed. In

8https://akswbenchmark.svn.sourceforge.net/svnroot/
akswbenchmark/

QpsS for 10% dataset

Virtuoso m Sesame O Jena TDB 0o BigOWLIM

| Virtuoso m Sesame O Jena TDB £ BigOWLIM |

T L T F T T P TP T

L EF LR L L)

QpS for 100% dataset

| Virtuoso m Sesame O Jena TDB 1 BigOWLIM |

150

Qs

100

50

Figure 6: Queries per Second (QpS) for all triple stores for 10%, 50% and 100%.

general, Virtuoso was clearly the fastest triple store, followed
by BigOWLIM, Sesame and Jena-TDB. The highest observed
ratio in QMpH between the fastest and slowest triple store
was 3.2 and it reached more than 1,000 for single queries.
The scalability of stores did not vary as much as the overall
performance. There was on average a linear decline in query
performance with increasing dataset size.

The metric used for query-based performance evaluation
is Queries per Second (QpS). QpS is computed by summing
up the runtime of each query in each iteration, dividing it by
the QMpH value and scaling it to seconds. The QpS results
for all triple stores and for the 10%, 50% and 100% datasets
are depicted in Figure 6. As the outliers (i.e. queries with
very low QpS) affect the mean value of QpS for each store
significantly, we also computed the geometric mean of all the
QpS timings of queries for each store. The geometric mean
for all triple stores is also depicted in Figure 5.

Although Virtuoso performed best overall, it displayed
very low QpS rates on Q3, Q5 and Q16. All of these queries
require dealing extensively with literals (in contrast to re-
sources). Especially Q16 combined four different SPARQL
features (optional,filter,lang and distinct) which seemed to

2138

require a significant amount of processing time. BigOWLIM
was mainly characterized by a good scalability as it achieves
the slowest decrease of its QMpH rates over all the datasets.
Still, some queries were also particularly difficult to process
for BigOWLIM. Especially Q16 and Q12 which involves
three resp. four SPARQL features and a lot of string manipu-
lations were slow to run. Sesame dealt well with most queries
for the 10% dataset. The QMpH that it could achieve yet
diminishes significantly with the size of the data set. This
behavior becomes especially obvious when looking at Q4,
Q10 and Q12. Especially Q4 which combines several triple
patterns through a UNION leads to a considerable decrease
of the runtime. Jena TDB had the most difficulties dealing
with the 100% data set. This can be observed especially on
Q9, which contained four triple patterns that might have lead
to large intermediary results. Especially in the case Jena TDB,
we observed that the 8GB RAM were not always sufficient
for storing the intermediary results, which led to swapping
and a considerable reduction of the overall performance of
the system.

LUBM SP?Bench BSBM V2 BSBM V3 DBPSB2

RDF stores tested DLDB-OWL, Sesame,|ARQ, Redland, SDB,| Virtuoso, Sesame, |Virtuoso, 4store, BigData,| Virtuoso, Jena-TDB,

OWL-JessKkB Sesame, Virtuoso |Jena-TDB, Jena-SDB| Jena-TDB, BigOWLIM BigOWLIM, Sesame
Test data Synthetic Synthetic Synthetic Synthetic Real
Test queries Synthetic Synthetic Synthetic Synthetic Real
Size of tested 0.1M, 0.6M, 10k, 50k, 250k, IM, 25M, 100M, 200M 14M, 75M, 150M
datasets 1.3M, 2.8M, 6.9M 1M, 100M, 5M, 25M
Dist. queries 14 12 12 12 20
Multi-client - - X X -
Use case Universities DBLP E-commerce E-commerce DBpedia
Classes 43 8 8 8 239(base) +300K(YAGO)
Properties 32 22 51 51 1200

Table 1: Comparison of different RDF benchmarks.
Related work synthetic scalable fulltext data and corresponding queries for

Several RDF benchmarks were previously developed. The
Lehigh University Benchmark (LUBM) (Pan et al. 2005) was
one of the first RDF benchmarks. LUBM uses an artificial
data generator, which generates synthetic data for universi-
ties, their departments, their professors, employees, courses
and publications. SP2Bench (Schmidt et al. 2009) is another
more recent benchmark for RDF stores. Its RDF data is based
on the Digital Bibliography & Library Project (DBLP) and
includes information about publications and their authors.
Another benchmark described in (Owens, Gibbins, and mc
schraefel 2008) compares the performance of BigOWLIM
and AllegroGraph. The size of its underlying synthetic dataset
is 235 million triples, which is sufficiently large. The bench-
mark measures the performance of a variety of SPARQL con-
structs for both stores. It also measures the performance of
adding data, both using bulk-adding and partitioned-adding.
The Berlin SPARQL Benchmark (BSBM) (Bizer and Schultz
2009) is a benchmark for RDF stores, which is applied to
various triple stores, such as Sesame, Virtuoso, and Jena-
TDB. It is based on an e-commerce use case in which a set of
products is provided by a set of vendors and consumers post
reviews regarding those products. It tests various SPARQL
features on those triple stores by mimicking a real user.

A comparison between benchmarks is shown in Table 1.
The main difference between previous benchmarks and ours
is that we rely on real data and real user queries, while most
of the previous approaches rely on synthetic data. LUBM’s
main drawback is that is solely relies on plain queries without
SPARQL features such as FILTER or REGEX. In addition,
its querying strategy (10 repeats of the same query) allows
for caching. SP?Bench relies on synthetic data and a small
(25M triples) synthetic dataset for querying. The benchmark
described in (Owens, Gibbins, and mc schraefel 2008) does
not allow for testing the scalability of the stores, as the size
of the data set is fixed. Finally, the BSBM data and queries
are artificial and the data schema is very homogeneous and
resembles a relational database.

In addition to general purpose RDF benchmarks it is rea-
sonable to develop benchmarks for specific RDF data man-
agement aspects. One particular important feature in practical
RDF triple store usage scenarios (as was also confirmed by
DBPSB) is full-text search on RDF literals. In (Minack, Siber-
ski, and Nejdl 2009) the LUBM benchmark is extended with

fulltext-related query performance evaluation. RDF stores are
benchmarked for basic fulltext queries (classic IR queries) as
well as hybrid queries (structured and fulltext queries).

Conclusions and Future Work

We proposed the DBPSB2 benchmark for evaluating the per-
formance of triple stores based on non-artificial data and
queries. Our solution was implemented for the DBpedia
dataset and tested with 4 different triple stores.The main
advantage of our benchmark over previous work is that it
uses real RDF data with typical graph characteristics includ-
ing a large and heterogeneous schema part. By basing the
benchmark on queries asked to DBpedia, we intend to spur
innovation in triple store performance optimisation towards
scenarios which are actually important for end users and
applications. We applied query analysis and clustering tech-
niques to obtain a diverse set of queries corresponding to
feature combinations of SPARQL queries. Query variability
was introduced to render simple caching techniques of triple
stores ineffective.

The benchmarking results we obtained reveal that real-
world usage scenarios can have substantially different char-
acteristics than the scenarios assumed by prior RDF bench-
marks. Our results are more diverse and indicate less ho-
mogeneity than what is suggested by other benchmarks.
The creativity and inaptness of real users while construct-
ing SPARQL queries is reflected by DBPSB and unveils
for a certain triple store and dataset size the most costly
SPARQL feature combinations. Several improvements are
envisioned in future work to cover a wider spectrum of fea-
tures in DBPSB2, especially the coverage of more SPARQL
1.1 features (e.g., reasoning and subqueries).

References

Auer, S.; Lehmann, J.; and Hellmann, S. 2009. LinkedGeo-
Data - adding a spatial dimension to the web of data. In Proc.
of 8th International Semantic Web Conference (ISWC).

Belleau, F.; Nolin, M.-A.; Tourigny, N.; Rigault, P.; and
Morissette, J. 2008. Bio2rdf: Towards a mashup to build

bioinformatics knowledge systems. Journal of Biomedical
Informatics 41(5):706-716.

2139

Bishop, B.; Kiryakov, A.; Ognyanoff, D.; Peikov, I.; Tashev,
Z.; and Velkov, R. 2011. Owlim: A family of scalable
semantic repositories. Semantic Web 2(1):1-10.

Bizer, C., and Schultz, A. 2009. The Berlin SPARQL Bench-
mark. Int. J. Semantic Web Inf. Syst. 5(2):1-24.

Broekstra, J.; Kampman, A.; and van Harmelen, F. 2002.
Sesame: A generic architecture for storing and querying RDF
and RDF schema. In ISWC, number 2342 in LNCS, 54-68.
Springer.

Erling, O., and Mikhailov, I. 2007. RDF support in the
virtuoso DBMS. 1In Auer, S.; Bizer, C.; Miiller, C.; and
Zhdanova, A. V., eds., CSSW, volume 113 of LNI, 59-68. GI.
Gray, J., ed. 1991. The Benchmark Handbook for Database
and Transaction Systems (1st Edition). Morgan Kaufmann.
Klyne, G., and Carroll, J. J. 2004. Resource description
framework (RDF): Concepts and abstract syntax. W3C Rec-
ommendation.

Lehmann, J.; Bizer, C.; Kobilarov, G.; Auer, S.; Becker, C.;
Cyganiak, R.; and Hellmann, S. 2009. DBpedia - a crystal-
lization point for the web of data. Journal of Web Semantics
7(3):154165.

Minack, E.; Siberski, W.; and Nejdl, W. 2009. Benchmarking
fulltext search performance of RDF stores. In ESWC2009,
81-95.

Morsey, M.; Lehmann, J.; Auer, S.; and Ngonga Ngomo, A.-
C. 2011. Dbpedia sparql benchmark performance assessment
with real queries on real data. In ISWC 2011.

Morsey, M.; Lehmann, J.; Auer, S.; Stadler, C.; ; and Hell-

2140

mann, S. 2012. Dbpedia and the live extraction of structured
data from wikipedia. Program: electronic library and infor-
mation systems 46:27.

Ngonga Ngomo, A.-C., and Auer, S. 2011. Limes - a time-
efficient approach for large-scale link discovery on the web
of data. In Proceedings of IJCAL

Ngonga Ngomo, A.-C., and Schumacher, F. 2009. Border-
flow: A local graph clustering algorithm for natural language
processing. In CICLing, 547-558.

Ngonga Ngomo, A.-C. 2011. A time-efficient hybrid ap-
proach to link discovery. In Proceedings of OM@ISWC.

Owens, A.; Seaborne, A.; Gibbins, N.; and mc schraefel.
2008. Clustered TDB: A clustered triple store for jena. Tech-
nical report, Electronics and Computer Science, University
of Southampton.

Owens, A.; Gibbins, N.; and mc schraefel. 2008. Effective
benchmarking for rdf stores using synthetic data.

Pan, Z.; Guo, Y.; ; and Heflin, J. 2005. LUBM: A bench-
mark for OWL knowledge base systems. In Journal of Web
Semantics, volume 3, 158-182.

Prud’hommeaux, E., and Seaborne, A. 2008. SPARQL query
language for RDF. W3C recommendation, W3C.

Schmidt, M.; Hornung, T.; Lausen, G.; and Pinkel, C. 2009.
SP2Bench: A SPARQL performance benchmark. In /ICDE,
222-233. IEEE.

Stadler, C.; Lehmann, J.; Ho?ffner, K.; and Auer, S. 2011.
Linkedgeodata: A core for a web of spatial open data. Se-
mantic Web Journal.

