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Abstract

Restructuring electricity grids to meet the increased de-
mand caused by the electrification of transport and heat-
ing, while making greater use of intermittent renew-
able energy sources, represents one of the greatest en-
gineering challenges of our day. This modern electric-
ity grid, in which both electricity and information flow
in two directions between large numbers of widely dis-
tributed suppliers and generators — commonly termed
the ‘smart grid’ — represents a radical reengineering
of infrastructure which has changed little over the last
hundred years. However, the autonomous behaviour ex-
pected of the smart grid, its distributed nature, and the
existence of multiple stakeholders each with their own
incentives and interests, challenges existing engineering
approaches. In this challenge paper, we describe why
we believe that artificial intelligence, and particularly,
the fields of autonomous agents and multi-agent sys-
tems are essential for delivering the smart grid as it is
envisioned. We present some recent work in this area
and describe many of the challenges that still remain.

Introduction

To meet the challenge of reducing greenhouse gas (GHG)
emissions and ensuring energy security in the face of dwin-
dling oil and gas reserves, governments around the world
are increasingly setting ambitious targets to transition to a
low carbon economy. For example, the Kyoto Protocol was
ratified by 191 countries, committing them to ensure that av-
erage GHG between 2008-2012 were 5.2% lower than 1990
baseline levels. Going further, the UK has legislated to re-
duce emissions by 80% by 2050 (again compared to 1990
levels). Achieving this aim requires that the direct use of
fossil fuels that we are familiar with today is almost en-
tirely eliminated. Thus, the use of electric vehicles (EVs)
and high-speed electric trains will have to become wide-
spread in order to reduce our reliance on oil for transporta-
tion. Likewise, our homes and offices will have to be heated
by efficient ground and air source heat pumps powered by
electricity rather than existing natural gas and oil fired boil-
ers (UK Department of Energy and Climate Change 2009).
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To avoid further fossil fuel consumption and GHG emis-
sions, this increased demand for electricity will have to be
largely met by renewable sources, such as wind and solar,
rather than the coal and natural gas power plants that we
use today. It is this increased demand for electricity, and
the requirements for its generation, that present perhaps the
greatest challenge. In most countries, the electricity grid has
changed very little since it was first installed, and all ex-
isting grids are predicated on the central idea that electric-
ity is produced by a relatively small number of large fossil
fuel burning power stations and is delivered to a much larger
number of customers, often some distance from these gen-
erators, with the constant requirement that supply should al-
ways match demand. The grid itself relies on ageing infras-
tructure (40 year old transmission lines and transformers,
and 20 year old power stations), is plagued by poor infor-
mation flow (most domestic electricity meters are read at in-
tervals of several months), and has significant inefficiencies
arising from losses within the transmission and distribution
networks (close to 10% in the UK).

However, an electricity grid that makes extensive use of
renewable generation presents significant challenges. Re-
newable generation is both intermittent and distributed, with
the output of such generators being determined by local en-
vironmental conditions that can vary significantly over min-
utes and hours. Thus, it will no longer be possible for sup-
ply to continuously follow the vagaries of consumer de-
mand, but rather, the demand-side will have to be managed
to ensure that demand for electricity is matched against the
available supply. Against this background, there is a grow-
ing consensus that existing grids cannot simply be extended
to address these challenges, but rather, a fundamental re-
engineering of the grid is required; one that envisages the
creation of a smart grid, described by the US Department of
Energy (2003) as:

A fully automated power delivery network that mon-
itors and controls every customer and node, ensuring
a two-way flow of electricity and information between
the power plant and the appliance, and all points in be-
tween. Its distributed intelligence, coupled with broad-
band communications and automated control systems,
enables real-time market transactions and seamless
interfaces among people, buildings, industrial plants,
generation facilities, and the electric network.



Transitioning from our current electricity grid to the smart
grid represents an unprecedented challenge that may take
20-40 years and presents a number of key challenges along
the way. In most countries, the starting point for the deploy-
ment of the smart grid is the installation of smart meters
within domestic and commercial buildings. These meters
measure electricity consumption over short periods of time
(typically 15 to 30 minutes) and facilitate time-of-use elec-
tricity tariffs that better reflect the true cost of the electricity
being supplied; the first step in delivering a grid where de-
mand will follow supply. In the long-term, the smart grid en-
visions smart appliances automatically responding to these
price signals. However, the transition period is likely to see
consumers being faced with more complex electricity pric-
ing to which they will have to respond appropriately.

Likewise, the increased demand for electricity is likely to
create additional strains on the existing distribution infras-
tructure. This is likely to be particularly acute if there is rapid
growth in electric vehicles use (Clement-Nyns, Haesen, and
Driesen 2010). The batteries of these vehicles exhibit charg-
ing rates that are up to three times the typical maximum
demand of a home, and today’s distribution networks were
planned around future additional domestic demand growth
and house building, and not the much faster rate of elec-
tric vehicle take-up. Thus the capacity of the distribution
network, power not energy, is likely to become a scarce re-
source which must be appropriately allocated across the var-
ious competing demands and users; all of whom are likely
to have different incentives and interests.

Finally, the widespread deployment of renewable gener-
ation within the distribution network (often encouraged by
attractive feed-in tariffs) represents a radical departure in the
way in which electricity flows within such networks. Rather
than flowing one way to domestic and commercial buildings
which are simple consumers, electricity will flow in both di-
rections between buildings which are both generators and
consumers depending on the time of day, and on activity
within them. Coordinating and controlling such systems to
avoid overloading networks that are already highly capacity
constrained represents a novel challenge which has previ-
ously not needed to be addressed.

When taken together, the central role that consumers play
in shaping demand, the increasing need to efficiently al-
locate resources across competing demands and users in a
constrained network, and the highly distributed nature of an
electricity network composed of millions of generators and
consumers, presents a challenge for existing power system
engineering approaches. However, providing autonomous
assistance to users in complex decision making tasks, allo-
cating resources efficiently under competing demands and
coordinating decentralised systems have long been the focus
of the artificial intelligence researchers; in particular those
working in the fields of autonomous agents and multi-agent
systems. Hence, in this challenge paper we will describe
why we believe that techniques developed within these fields
can help in delivering the smart grid as it is envisioned. In
particular, we present three illustrative examples', and we

"'We would refer the reader to the original papers, and also to
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Figure 1: Generic refrigerator model showing (a) the appli-
ance power and (b) state transition model.

show (i) how autonomous agents that can learn and model
home energy use to assist consumers in the transition to
time-of-use electricity tariffs, (ii) how scarce resources can
be efficiently allocated by carefully designing novel alloca-
tion mechanism that account for the different incentives of
the participants, and (iii) how the problem of coordinating
generators within a distribution network can be mapped onto
an existing formalism and solved through efficient message
passing algorithms. While this work represents a valuable
first step, many challenges remain, and we highlight these
here in order to suggest an agenda for autonomous agents
and multi-agent systems research within the smart grid.

Supporting Consumers in the
Transition to a Smart Grid

As discussed above, the first step in the transition to a fully
smart grid is the installation of smart meters and the in-
troduction of time-of-use tariffs to encourage energy con-
sumption patterns that better match available supply. To
this end, much work has attempted to address the chal-
lenge of automatically coordinating energy use within the
home, and as such, assumes the existence of networked ap-
pliances whose use can be deferred automatically to peri-
ods when energy is less costly. Such ideas were first in-
troduced by Schweppe, Daryanian, and Tabors (1989), and
more recent work has described fully automated systems to
optimise both appliance use and heating loads given a fixed
energy budget (Yu et al. 2012). In our own previous work,
we have considered the coordination of home energy stor-
age devices and deferrable loads (Vytelingum et al. 2011;
Ramchurn et al. 2011a).

While this is undoubtedly the end state for such as system,
getting there presents a number of challenges. In particu-
lar, the roll-out of smart meters will facilitate more complex
pricing tariffs, and yet, householders already struggle to un-
derstand and control their energy use. Thus, in this section,
we present work that uses autonomous agents to automati-
cally model and predict energy use within the home, in order
to provide feedback and advice to the householders to help
them better manage their energy consumption. This repre-
sents a critical step on the road to a fully autonomous smart
home, but is a necessary one, if the latter is ever to mate-
rialise. Our first example considers the automatic analysis
of electricity consumption from a single aggregate measure-

Ramchurn et al. (2011b), for more details and examples.
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Figure 2: Example of aggregate power demand

ment to advise householders on appliance use, while the sec-
ond, considers home heating optimisation.

Energy disaggregation, or non-intrusive appliance load
monitoring (NIALM) as it is often termed, aims to break
down a household’s aggregate electricity consumption into
individual appliances (Hart 1992), such that householders
are empowered to take steps towards reducing their en-
ergy consumption (Darby 2006). Recent contributions in this
field have applied principled machine learning techniques;
using both supervised methods, which assume that sub-
metered (ground truth) data is available for training (Kolter
and Johnson 2011), and also, unsupervised methods (Kim et
al. 2011; Kolter and Jaakkola 2012) in which no prior knowl-
edge of the appliances is assumed, but which often requires
appliances to be manually labelled after disaggregation, or
assumes knowledge of the set of appliances in the home.

While this work grounds NIALM in a principled proba-
bilistic framework, the assumptions made do not address the
most likely real world settings; where sub-metered data and
complete knowledge of the appliance set is not available, but
some prior information about typical appliance performance
might be known. Thus, in our work, we have addressed the
problem using an approach that uses generic appliance mod-
els, that are then trained to the specific appliances within
the home, using only the aggregate electricity measurements
available at the smart meter (Parson et al. 2012).

More formally, the problem we face is that given a dis-
crete sequence of observed aggregate power readings x =
z1,...,T7, we must determine the sequence of appliance

states z(™ = z%n)w..,z(Tn), where n is one of N ap-
pliances. Each appliance state corresponds to an operation
of approximately constant power draw (e.g. ‘on’, ‘off” or
‘standby’) and t represents one of 7' discrete time steps.
Each appliance has K possible states, and the transition
probabilities from state ¢ at £ — 1 to state j at ¢ are repre-

sented by the matrix A such that:
ey

Our approach models each appliance as a variant of the dif-
ference hidden Markov model (HMM), where step changes
in the aggregate power are modelled explicitly as an obser-
vation sequence such that the emission probabilities for x
are described by Gaussian distributions with means and vari-
ances that depend on the particular appliance state transition.

Our training approach takes this generic model of an ap-
pliance type (e.g. a typical refrigerator as shown in Figure 1),
and trains it to a specific appliance instances (e.g. a particu-

Pz = jlze—1 = 1) = A
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Figure 3: Prototype interface of live deployment

lar refrigerator installed in a particular home) using only the
household’s aggregate power demand. It does so by identify-
ing and exploiting periods during which only a single appli-
ance changes state. For example, Figure 2 shows an example
of the aggregate power demand taken from a trial home in
the UK. From hours 1 to 3 it is clear that only the refriger-
ator is cycling on and off. Transitions observed within this
period provide a good match with the generic model, and
the precise parameters of the model can be learnt through
maximum likelihood optimisation. This specific refrigerator
appliance model can then be used to disaggregate the refrig-
erator’s load for the whole duration. Subtracting the refrig-
erator’s load will consequently clean the aggregate load al-
lowing further appliances to be sequentially disaggregated.
To actually perform the disaggregation we use a modified
Viterbi algorithm to infer the most likely appliance state at
each time step, while filtering observations deemed more
likely to have resulted from other appliances.

An evaluation using the Reference Energy Disaggregation
Dataset (REDD) (redd.csail.mit.edu/) shows that our ap-
proach displays performance comparable to that of state of
the art approaches that used sub-metered training data. In ad-
dition, we have applied it to live data collected from six UK
households. Figure 3 shows a prototype of the user interface
to the system. Using the disaggregation algorithm described
above, the system is able to provide the householders with
personalised energy saving suggestions. The figure shows a
comparison of the energy consumption of the shower in a
particular home. To calculate these figures, a prior model
is first estimated from the shower’s operation manual. This
prior model is then trained using the approach presented here
and used to disaggregate its energy consumption. Since the
shower was used entirely on the ‘high’ setting, the system
could use the prior model to estimate the corresponding en-
ergy consumption had the ‘eco’ setting been used. The po-
tential savings are presented in terms of both cost and car-
bon.

Now, while appliance use is a significant source of en-
ergy consumption within the home, energy is also used in
space and water heating. Indeed, in the UK this accounts for
over 60% of domestic energy consumption. The shift to elec-
trified heating and the introduction of variable time-of-use
tariffs creates additional challenges here, since the links be-
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Figure 4: Home heating agent graphical user interface.

tween heating control settings and energy consumption are
already poorly understood by consumers (Kempton 1986).
Thus, it is essential that future home heating systems can
assist users in making appropriate energy use decisions.

In recent work, we have described a home heating man-
agement agent that learns the thermal characteristics of the
home in which it is installed, and the environment in which
it operates, and uses the resulting model to provide feedback
to the householder at the thermostat (Rogers et al. 2011). Us-
ing internal and external temperature sensors, and by moni-
toring the activity of the home’s heating system, the agent is
able to learn the thermal characteristics of the home. It does
so by representing the temperature changes within the home
through a set of parameterised stochastic differential equa-
tions in terms of the internal temperature, 7T;,,, the flow of
heat from the homes heating system, R, and the leakage, P,
to the external environment, 7 ,;. The simplest such model
is given by:

T’itrjl = T’itn + Rngn -0 (Tltn - Tet:xvt) + e (2)

where 7!, is an indicator variable stating whether the heater
is on or off in time period ¢, and ¢; is Gaussian noise. A
regression process then fits the parameters of this model to
the observed temperature history.

The agent then predicts the local external temperature
over the next 24 hours by combining local measurements
from the external sensor with predictions from an online
weather forecast. It does so using a multi-output Gaus-
sian process, to create a sife-specific forecast for the next
24 hours; explicitly considering both the periodic nature
of its own sensor data, and the likely correlation with the
online forecast data. Using this prediction, and the ther-
mal model learned above, the agent can predict the con-
sequences of any thermostat setting and provide this in-
formation to the householder at the thermostat; informing
them of the predicted daily cost and carbon consequences of
their intended future actions (see Figure 4 and the video at
www.ideasproject.info/research.php).

Going further, the agent is then able to fully optimise the
use of heating (using either an optimal CPLEX implemen-
tation or a computationally efficient greedy heuristic). In
doing so, it provides the same level of comfort as a stan-
dard thermostat operating at the same set-point temperature
(evaluated using a comfort model based on the ASHRAE
thermal comfort standard — ANSI/ASHRAE Standard 55-
2010) whilst also minimising either cost or carbon. For ex-
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Figure 5: Example showing the optimised heating use to
maintain comfort whilst minimising cost in a setting with
a high price period between 15:00 and 20:00.

ample, Figure 5 shows simulation results for an example set-
ting where the home heating management agent optimises
heating to avoid a critical pricing period (i.e. the time pe-
riod 15:00 to 20:00 where the price of electricity is £0.24
per kWh) by increasing the temperature of the home before
the period (exaggerated for clarity in the plot) to minimise
the heating required within it.

Challenges

While these examples represents an important first step,
in that they both take raw data and use machine learning
techniques to extract meaningful information, there is much
more to do in order to deliver agents that really assist house-
holders; especially if the aim is to elicit behaviour change.
Not only must the machine learning approaches be extended
and made robust to real world deployment, but a principled
approach must be developed such that the agents can explic-
itly model the householders that they interact with, and ap-
ply behavioural change theories and persuasive technologies
to appropriately tailor the feedback that they provide (Fogg
2003). Going further, once capable of autonomous control,
they should incorporate ideas of flexible autonomy such that
they can vary the degree of human intervention required
within their decision making; knowing when they should act
autonomously, and when they should seek approval for their
decisions (noting that the latter also requires the ability to
explain those decisions to the householder).

Allocating Scarce Resources Within A
Constrained Distribution Network

As discussed earlier, promoting the use of electric vehicles
(EVs) is a key element in many countries’ initiatives to tran-
sition to a low carbon economy. However, there are signif-
icant concerns within the electricity distribution industries
regarding the possibility that the widespread use of such ve-
hicles could overload local electricity distribution networks
at peak times. Indeed, in the UK, the Royal Academy of En-
gineering (2010), noted that street-level transformers servic-
ing between 10-200 homes may become significant bottle-
necks in the widespread adoption of EV. Thus, the challenge



of accommodating the demands from electric vehicle charg-
ing serves as an example of how increasing scarce resources
may be allocated within the smart grid. For example, enew-
able generation embedded within the distribution network
may come up against the same local constraints.

To address these concerns, electricity distribution compa-
nies that are already seeing significant EV use have intro-
duced time-of-use pricing plans for electric vehicle charg-
ing that attempt to dissuade owners from charging their
vehicles at peak times, when the local electricity distribu-
tion network is already close to capacity (see for exam-
ple www.pge.com/about/environment/pge/electricvehicles/
fuelrates/). While such approaches are easily understood
by customers, they fail to fully account for the constraints
on the local distribution networks, and they are necessar-
ily static since they require that vehicle owners individually
respond to this price signal and adapt their behaviour (i.e.,
manually changing the time at which they charge their vehi-
cle). Looking further ahead, researchers have also begun to
investigate the automatic scheduling of EV charging. Typ-
ically, this work allows individual vehicle owners to indi-
cate the times at which the car will be available for charg-
ing, allowing automatic scheduling while satisfying the con-
straints of the distribution network (Vandael et al. 2010;
Clement-Nyns, Haesen, and Driesen 2010). However, since
these approaches separate the scheduling from the price paid
for the electricity (typically assuming a fixed per unit price
plan), they are unable to preclude the incentive to misreport
(e.g., an owner may indicate an earlier departure time or a
greater journey length in order to receive preferential charg-
ing).

However, the allocation of scarce resources (in this case
the capacity of the local transformer which limits the num-
ber of electric vehicles that can charge simultaneously) that
are subject to the conflicting demands of multiple users has
long been an area of research within the multi-agent systems
community. Specifically, the field of computational mecha-
nism design provides a mathematical framework for design-
ing effective allocation mechanisms. It departs from stan-
dard game theory in that it also considers the computational
and algorithmic resources imposed by the mechanism since
the participants are assumed to be computational entities
rather than unbounded rational agents (Dash, Parkes, and
Jennings 2003). A key aim within this area is the design
of incentive compatible allocation mechanisms (often based
upon canonical the Vickrey-Clarke-Groves (VCG) mecha-
nism) in which it is in the best interest of each participant to
truthfully declare their requirements (their type) to the allo-
cation mechanism. This removes the need for each partici-
pant to strategise over their actions (in our setting, this might
correspond to a vehicle owner misreporting when they will
need their car, or delaying plugging in their vehicle on arriv-
ing home, depending on the actions of their neighbours). It
ensures that the resources are allocated to those who value
them most, and that each participants pays an appropriate
price for the resource that they receive.

The setting described here is a special case of online
mechanism design, since allocation decisions must be made
sequentially as participants arrive and depart over time
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(Parkes 2007). However, the setting also poses new chal-
lenges for mechanism design researchers. Unlike more tra-
ditional settings where a single item is being allocated and
each participant has a single parameter describing the value
that they attribute to it (so-called single-valued domains),
our participants require multiple units of electricity. Further-
more, they have reducing marginal utility for each kilowatt
hour (kWh) of electricity that they receive, since journey
length is uncertain, and any shortfall in battery charge will
have to be made up by using the vehicle’s more costly in-
ternal combustion engine (in the case of plug-in hybrid or
range-extended electric vehicles).

In recent work, we have shown that it is possible to de-
rive an incentive compatible mechanism in this setting. In
an evaluation using data from a real EV trial in the UK, the
mechanism was shown to increase the efficiency with which
charging capacity was allocated; allowing up to 40% more
electric vehicles to share the same constrained local network
(Gerding et al. 2011). Furthermore, it has proved possible to
consider a number of more complex settings in which vehi-
cles charge at different rates, and the increased share of the
capacity, that the high speed chargers use, is appropriately
reflected in the price that they pay (Robu et al. 2011).

Challenges

These results indicate the mechanism design is a powerful
tool for designing novel allocation mechanisms and pay-
ment schemes. Rather than designing allocation rules and
testing their properties empirically, mechanism design pro-
vides a framework to formally describe the desired proper-
ties of the allocation mechanism and to evaluate candidate
solutions against these criteria. However, many of the core
assumptions of mechanism design need to be carefully con-
sidered in these settings. People often behave in irrational
ways (Kahneman 2011), and have difficulty assessing mul-
tiple competing alternatives in a consistent manner (Ariely
2008). Thus, eliciting the preferences of the users, such that
they can be effectively represented within the mechanism, is
a challenging task in all but the simplest of settings.

Likewise, while we have only discussed electric vehi-
cle charging here, the same approaches find application is
other diverse areas such as distributing payments within
collectives of renewable power plants (so called virtual
power plants), scheduling access to local generation within
a micro-grid, or facilitating novel collaborative energy pur-
chasing mechanisms. The last example is particularly chal-
lenging, as it opens up the possibility of extremely large
numbers of participants, thus requiring allocation mecha-
nisms that not only have attractive economic properties, but
are also computationally tractable at scale.

Coordinating a Decentralised Smart Grid

Finally, we consider the challenges posed by embedding re-
newable generation within the distribution network. Such
networks were originally designed to distribute electricity
in a single direction from the national transmission network
to individual domestic and commercial buildings. However,
the widespread deployment of renewable generation, and the
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Figure 6: A typical electricity distribution network with (a) embedded generators, loads and capacity constrained distribution
cables, (b) a factor graph representation with exemplar groupings of graph elements, and (c) the equivalent agent tree.

constrained capacity of the existing infrastructure, suggest
that flows within the distribution networks will have to be
actively managed to make optimal use of renewable gen-
eration without overloading the network. While this form
of optimal dispatch is common in the transmission network
(Davidson et al. 2009), the far greater scale of the distribu-
tion network (with millions of loads and generators), sug-
gests that existing centralised approaches are inappropriate,
and thus, a more efficient decentralised solution is required.

Now, decentralised algorithms that allow collective coor-
dinated decisions to be reached through local computation
and communication have long been the focus of research
within the multi-agent systems community. Many such al-
gorithms address the formalism of the distributed constraint
optimisation problem (DCOP), and our own recent work
has addressed the challenge of casting the optimal dispatch
problem into a DCOP (Miller, Ramchurn, and Rogers 2012).

In more detail, we have considered a typical distribution
network consisting of a set of k¥ nodes {vy,...,vx}. Dis-
tributed across these nodes are n generators {g, ..., gn},
each of which has a certain discrete power output variable
a; € S; (kW), where S; = {s}, ..., s}, } and g; is the number
of power output values for generator g;, and a set of m loads
{l1, ..., }. Finally, a set of s distribution cables connect the
nodes within the network, and each has an associated ther-
mal capacity, t;; (kW), which is the maximum power that it
can safely carry. See an example network in Figure 6a.

We show that given a particular criteria, such as minimis-
ing the carbon emissions of the generators within the net-
work, we can construct a constrained optimisation problem
that will optimise this criteria whilst also ensuring that over-
all demand and supply are in balance, and that the thermal
capacity constraints of the cables are satisfied. To do so,
we construct a factor graph representation of the problem,
where function nodes, U, represent the objective function
and constraints, and decision variables, x, represent the gen-
erator outputs and cable flows on which they depend (see

2171

Figure 6b). The resulting factor graph can then be optimally
solved by allocating elements of the factor graph to compu-
tational agents located at the nodes of the original electric-
ity network (see Figure 6¢), and using an appropriate mes-
sage passing algorithm, such as those based on the gener-
alised distributive law (Aji and McEliece 2000). Since, the
tree-like structure of distribution network is explicitly repre-
sented within the optimisation algorithm, a computationally
efficient algorithm results.

Challenges

While we have made progress in solving such problems,
many challenges remain. Distribution networks are not al-
ways structured as trees. Indeed, cyclic networks would be
more robust to component failures; reducing the chances
of a blackout occurring due to a single component or ca-
ble failure. However, the power flows within such networks
are much more complex, and thus, with current manual ap-
proaches to configuring and managing the distribution net-
work, they are rarely used. Thus computationally efficient
decentralised algorithms that could autonomously manage
complex network topologies would have great value.
However, this is not straightforward since the power flow
equations that describe how the electricity flows within these
networks cannot easily be represented and computed locally.
The tree structured network that we have considered is a spe-
cial case where doing so is more straightforward. While it-
erative algorithms for solving the power flow equations do
exist within the power system engineering literature, decen-
tralised versions which address the scale required for the
smart grid have yet to be demonstrated. Thus, hybrid ap-
proaches that combine the formalism of the decentralised
constraint optimisation problem, and existing iterative ap-
proaches, may be the way forward. Furthermore, it may be
necessary to sacrifice overall efficiency while still ensuring
that the capacity constraints of the network are not exceeded;
calculating bounded, rather than optimal, solutions.



Conclusions

In this challenge paper we have argued that many of the
problems posed by the transition to a smart grid have long
been the focus of research within the field of autonomous
agents and multi-agent systems research. Thus, we contend
that these tools will be essential for delivering the smart grid
as it is envisioned. While work that has been done in this
area to date represents a valuable first step, the smart grid
domain represents many new challenges. Not least, as in the
examples discussed here, the need for autonomous agents
that can apply persuasive technologies and flexible auton-
omy in order to encourage behaviour change and coordinate
energy use within the home, novel computational mecha-
nism design approaches that effectively elicit the preferences
of the user and scale to potentially millions of participants,
and efficient decentralised coordination approaches that can
address the full complexity of settings where non-local con-
straints exist. For these reasons, we believe that addressing
the challenge of delivering the smart grid represents a com-
pelling research agenda for the field of autonomous agents
and multi-agent systems research.
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