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Abstract 
Goal recognition in digital games involves inferring players’ 
goals from observed sequences of low level player actions. 
Goal recognition models support player adaptive digital 
games, which dynamically augment game events in 
response to player choices for a range of applications, 
including entertainment, training, and education. However, 
digital games pose significant challenges for goal 
recognition, such as exploratory actions and ill defined 
goals. This paper presents a goal recognition framework 
based on Markov logic networks (MLNs). The model’s 
parameters are directly learned from a corpus that was 
collected from player interactions with a non linear 
educational game. An empirical evaluation demonstrates 
that the MLN goal recognition framework accurately 
predicts players’ goals in a game environment with 
exploratory actions and ill defined goals. 

 Introduction   
Digital games have grown increasingly sophisticated in 
their graphical presentations, interaction designs, and 
simulation capabilities. One area in which games have 
experienced slower progress is in their ability to interpret 
and respond to players’ low-level actions in virtual 
environments. Digital games without player models have 
limited capacity to adapt their behavior to individual player 
intentions, abilities, and preferences. For many years, 
digital games have embraced AI techniques for pathfinding 
(Sturtevant, 2011) and non-player character control (Orkin, 
2005). However, player modeling is only now beginning to 
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gain recognition as a promising frontier for game AI 
(Yannakakis, 2012).  One particularly important player 
modeling task is goal recognition, which involves 
automatically inferring a player’s current gameplay 
objective based on observations of low-level actions in a 
virtual environment. 

The prospective roles of goal recognition models in 
digital games are particularly apparent in open world (or 
“sandbox”) games. Open world games, such as the popular 
Elder Scrolls series (Bethesda, 2011) and Minecraft 
(Mojang, 2009), feature vast environments, emergent 
gameplay, and multiple paths for accomplishing game 
objectives. In these games, players choose the goals they 
pursue, and develop their own plans to achieve goals. Goal 
recognition models introduce opportunities for adapting 
gameplay events based on the choices of individual 
players. For example, consider a scenario in which a player 
struggles to scale a steep cliff face. Utilizing a goal 
recognition model, the game could interpret the player’s 
repeated jumps and backsliding as an attempt to reach the 
cliff summit. Armed with inferred knowledge about the 
player’s goal, the game might inform the player about a 
stairway a short distance away, or redirect the player 
toward a different, more useful goal. Without a goal 
recognition model, the game is unable to interpret the 
player’s efforts as anything other than a sequence of co-
located repeating actions. 

Goal recognition, as well as its sibling tasks, plan 
recognition and activity recognition, are long-standing AI 
problems (Kautz and Allen, 1986; Charniak and Goldman, 
1993; Carberry, 2001; Singla and Mooney, 2011). The 
problems are cases of abduction: given domain knowledge 
and a sequence of actions performed by an agent, the task 
is to infer which plan or goal the agent is pursuing. Recent 
work has yielded notable advances in recognizing agents’ 
goals and plans, including methods for recognizing 
multiple concurrent and interleaved goals (Hu and Yang, 
2008), methods for recognizing activities in multi-agent 
settings (Sadilek and Kautz, 2010), and methods for 
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augmenting statistical relational learning techniques to 
better support abduction (Singla and Mooney, 2011). 

Digital games pose significant computational challenges 
for goal recognition models. For example, in many games 
players’ abilities change over time, both by unlocking new 
powers and improving motor skills over the course of 
gameplay. In effect, a player’s action model may change, 
in turn modifying the relationships between actions and 
goals. Action failure is also a critical and deliberate design 
choice in games; in platform games, a poorly timed jump 
often leads to a player’s demise. In multiplayer games, 
multi-agent goals arise that may involve players competing 
or collaborating to accomplish game objectives. Individual 
players may also pursue ill-defined goals, such as 
“explore” or “try to break the game.” In these cases goals 
and actions may be cyclically related; players take actions 
in pursuit of goals, but they may also choose goals after 
they are revealed by particular actions. For these reasons, 
digital games offer promising testbeds for investigating 
different formulations of goal recognition tasks. 

In conjunction with the challenges noted above, digital 
games offer notable benefits for investigating goal and plan 
recognition models. Digital games are highly configurable, 
particularly with the availability of low-cost game 
development tools and level editors. Digital games are 
popular and deployable, which aid in collection of real-
world training data from human users. Games also simplify 
sensor issues in goal recognition. Virtual environment 
states are effectively fully observable, providing highly 
configurable sensor capabilities for monitoring player 
actions. 

This paper focuses on an investigation of goal 
recognition models in an open-ended game environment 
with ill-defined goals and exploratory player behaviors. 
Given its relationship to abduction, goal recognition 
appears well suited for logical representation and 
inference. However, goal recognition in digital games also 
involves inherent uncertainty. For example, a single 
sequence of actions is often explainable by multiple 
possible goals. Markov logic networks (MLNs) provide a 
formalism that unifies logical and probabilistic 
representations into a single framework. To address the 
problem of goal recognition with exploratory goals in 
game environments, a Markov logic goal recognition 
framework is investigated. 

The MLN goal recognition model is trained on a corpus 
collected from player interactions with an open-ended 
adventure game. The game environment used to train and 
evaluate the goal recognition model is CRYSTAL ISLAND, a 
story-centric educational game for middle grade science. In 
CRYSTAL ISLAND, players are assigned a single high-level 
objective: solve a science mystery. Players interleave 
periods of exploration and deliberate problem solving in 
order to identify a spreading illness that is afflicting 
residents on the island. In this setting, goal recognition 
involves predicting the next narrative sub-goal that the 

player will complete as part of investigating the mystery. 
We present findings that suggest the MLN goal recognition 
framework yields significant accuracy gains beyond 
alternative probabilistic approaches for predicting player 
goals in a nonlinear game environment. 

Related Work 
Recognizing players’ goals and plans offers significant 
promise for increasing the effectiveness of digital game 
environments for education, training, and entertainment. 
Plan recognition, which seeks to infer users’ goals along 
with their plans for achieving them from sequences of 
observable actions, has been studied for tasks ranging from 
natural language understanding to collaborative problem 
solving and machine translation (Carberry 2001; Kautz and 
Allen 1986). In story understanding, plan recognition is 
used to infer characters’ goals from their actions (Charniak 
and Goldman 1993); in dialogue systems, it supports 
natural language understanding and intention recognition 
(Blaylock and Allen 2003). Because plan recognition is 
inherently uncertain, solutions supporting reasoning under 
uncertainty such as Bayesian models (Charniak and 
Goldman 1993), probabilistic grammars (Pynadath and 
Wellman 2000), and variations on Hidden Markov Models 
(Bui 2003) have been investigated. In the restricted form of 
plan recognition that focuses on inferring users’ goals 
without concern for identifying their plans or sub-plans, 
goal recognition models have been automatically acquired 
using statistical corpus-based approaches without the need 
for hand-authored plan libraries (Blaylock and Allen 
2003). 

 The classic goal recognition problem assumes that a 
single agent is pursuing a single goal using deterministic 
actions, and it assumes that a user’s plan can be identified 
using a given plan library. A major focus of recent work on 
goal and plan recognition has been probabilistic 
approaches that relax several of these assumptions. For 
example, Ramirez and Geffner (2010) describe a plan 
recognition approach that does not require the provision of 
an explicit plan library. Hu and Yang (2008) describe a 
two-level goal recognition framework that uses conditional 
random fields and correlation graphs to support recognition 
of multiple concurrent and interleaving goals. Geib and 
Goldman (2009) have devised the PHATT algorithm, 
which is a Bayesian approach to plan recognition that 
focuses on plan execution. PHATT provides a unified 
framework that supports multiple concurrent goals, 
multiple instantiations of a single goal, partial ordering 
among plan steps, and principled handling of unobserved 
actions.  

Recent work has examined using statistical relational 
learning frameworks for plan and activity recognition. 
Sadilek and Kautz (2010) use Markov logic to investigate 
activity recognition in multi-agent applications. Sadilek 

2114



and Mooney (2011) propose a Hidden Cause model and 
novel model construction method to improve the efficiency 
and effectiveness of MLNs for abductive inference. The 
work presented here also uses MLNs, but it focuses on 
goal recognition in complex, nonlinear game 
environments, which often include ill-defined sub-goals 
and cyclical relationships between goals and actions. 
 There have been several investigations of goal and plan 
recognition in digital games. Recent work has explored 
goal recognition to determine players’ objectives in an 
action-adventure game, support dynamic narrative 
planning, and create adaptable computer-controlled 
opponents. Gold (2010) describes training an Input-Output 
Hidden Markov Model to recognize three high-level player 
goals in a simple action-adventure game. Mott, Lee, and 
Lester (2006) explore several probabilistic goal recognition 
models to support dynamic narrative planning. Kabanza, 
Bellefeuille, and Bisson (2010) explore challenges with 
behavior recognition in real-time strategy games and 
present preliminary results for creating adaptable 
computer-controlled opponents. The current work 
investigates a Markov logic network goal recognition 
framework for an educational game environment, with the 
eventual aim of dynamically tailoring game experiences to 
players. 

Observation Corpus 
In order to investigate goal recognition in a nonlinear game 
environment involving many possible goals and player 
actions, data collected from player interactions with the 
CRYSTAL ISLAND educational game were used.  
 CRYSTAL ISLAND (Figure 1) is an educational game 
about middle grade microbiology. It is built on Valve 
Software’s SourceTM engine, the 3D game platform for 
Half-Life 2. The environment features a science mystery 
where players attempt to discover the identity and source 
of an infectious disease that is plaguing a research team 
stationed on the island. Players adopt the role of a visitor 
who has recently arrived, but was promptly drawn into a 
mission to save the research team from the outbreak. 
Players explore the camp (Figure 2) from a first-person 
viewpoint and manipulate virtual objects, converse with 
characters, and use lab equipment and other resources to 
solve the mystery. Now in its fourth major iteration, 
CRYSTAL ISLAND has been the subject of extensive 
empirical investigation, and has been found to provide 
substantial learning and motivational benefits (Rowe et al. 
2011). Middle school students consistently demonstrate 
significant learning gains after using CRYSTAL ISLAND, and 
they report experiencing boredom less frequently than in 
alternative instructional software. CRYSTAL ISLAND is also 
challenging, with fewer than 50% of students solving the 
mystery in less than an hour. The current investigation of 

goal recognition models contributes to an overarching 
research agenda to devise user-adaptive computational 
models to dynamically shape players’ interactions with 
game-based learning environments. Prior work has focused 
on a range of computational modeling tasks, including 
probabilistic representations for user knowledge modeling 
(Rowe and Lester 2010) and machine learning frameworks 
for driving characters’ affective behaviors (Robison, 
McQuiggan, and Lester 2009). 

The following scenario illustrates a typical interaction 
with CRYSTAL ISLAND. The scenario begins with the 
player’s arrival at the research camp. The player 
approaches the first building, an infirmary, where several 
sick patients and a camp nurse are located. A conversation 
with the nurse is initiated when the player approaches the 
character and clicks the mouse. The nurse explains that an 
unidentified illness is spreading through the camp and asks 
for the player’s help in determining a diagnosis. The 
conversation with the nurse takes place through a 
combination of dialogue menu selections and multimodal 
character dialogue integrating spoken language, gesture, 
facial expression, and text. Character dialogue is provided 
by voice actors and utilizes a deterministic branching 
structure. 

After speaking with the nurse, the player has several 
options for investigating the illness. Inside the infirmary, 
the player can talk to sick patients lying on medical cots. 
Clues about the team members’ symptoms and recent 
eating habits can be discussed and recorded using in-game 
note-taking features. Alternatively, the player can move to 
the camp’s dining hall to speak with the camp cook. The 
cook describes the types of food that the team has recently 
eaten and provides clues about which items warrant closer 
investigation. In addition to learning about the sick team 
members, the player has several options for gathering 
information about disease-causing agents. For example, the 
player can walk to the camp’s living quarters where she 
will encounter a pair of virtual scientists who answer 
questions about viruses and bacteria. The player can also 
learn more about pathogens by viewing posters hanging 
inside of the camp’s buildings or reading books located  in 

Figure 1. CRYSTAL ISLAND game environment 

2115



a small library. In this way, the player can gather 
information about relevant microbiology concepts using 
resources that are presented in multiple formats. 

Beyond gathering information from virtual scientists and 
other instructional resources, the player can conduct tests 
on food objects using the laboratory’s testing equipment. 
The player encounters food items in the dining hall and 
laboratory, and she can test the items for pathogenic 
contaminants at any point during gameplay. A limited 
number of tests are allocated to the player at the start of the 
scenario, but additional tests can be earned by answering 
microbiology-themed questions posed by the camp nurse.  

After running several tests, the player discovers that the 
sick team members have been consuming milk that is 
contaminated with bacteria. The player can use the camp’s 
books and posters in order to investigate bacterial diseases 
that are associated with symptoms matching those reported 
by the sick team members. Once she has narrowed down a 
diagnosis and recommended treatment in a diagnosis 
worksheet, the player returns to the infirmary in order to 
inform the camp nurse. If the player’s diagnosis is 
incorrect, the nurse identifies the error and recommends 
that the player keep working. If the player correctly 
diagnoses the illness and specifies an appropriate 
treatment, the mystery is solved. 

All player actions are logged by the CRYSTAL ISLAND 
software and stored for later analysis. The data used for 
creating the MLN goal recognition system was collected 
from a study involving the eighth grade population of a 
public middle school. There were 153 participants in the 
study. Data for sixteen of the participants was removed 
from the analysis due to incomplete data or prior 
experience with CRYSTAL ISLAND. Participants whose data 
was included had no prior experience with the software.  

Goal Recognition with MLN
Following previous work on goal recognition (Blaylock 
and Allen 2003; Mott, Lee, and Lester 2006), this work 
defines goal recognition as the task of predicting the most 
likely goal for a given sequence of observed player actions 
in the game environment. Current work assumes that a 
given sequence of actions maps to a single goal, and no 
interleaving occurs between actions associated with 
different goals. Under these conditions, goal recognition is 
cast as a classification problem, in which a learned 
classifier predicts the most likely goal associated with the 
currently observed player action.  

The data described in the previous section poses 
significant challenges for goal recognition. First, individual 
goals are not independent of one another. Goals in our data 
represent milestone activities players take in the course of 
solving the science mystery. Some of these activities 
naturally occur in a sequential manner. The layout of the 
island can also impose co-occurrence patterns among 
goals. To model these associations among the milestone 
activities, goals should be inferred in relation with one 
another rather than in isolation. Second, the causality 
between actions and goals is ambiguous. In CRYSTAL 
ISLAND, players are not provided explicit goals to achieve. 
Instead, players discover goals while interacting with the 
virtual environment. Thus, causality between player 
actions and goals is bidirectional: a goal could influence a 
player’s current action if she has a particular goal in mind, 
and it is also possible that the player’s current action 
reveals which goal needs to be pursued. For instance, a 
player can enter a new location without a particular goal in 
mind, and afterward she can engage a character in 
conversation which reveals a new goal. 

To address these challenges, the current work utilizes 
the statistical relational learning framework provided by 
Markov logic networks (MLNs) (Richardson and 
Domingos 2006). Statistical relational learning frameworks 
effectively handle machine learning tasks in domains with 
complex associations among modeled entities. MLNs, in 
particular, encode undirected probabilistic graphical 
models with structures that are determined by first-order 
logic formulae and associated weights. In contrast to 
directed graphical models (e.g., Bayesian networks, hidden 
Markov models), undirected graphical models are well 
suited for representing bidirectional relationships between 
entities, such as ambiguous causality between actions and 
goals in our data. In addition, MLNs offer the 
representational expressiveness of first-order logic. This 
capability allows for more compact representation of the 
domain, compared with traditional machine learning 
frameworks that rely on propositional expressions, such as 
Bayesian networks and hidden Markov models. 

Figure 2. Map of the CRYSTAL ISLAND research camp 
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MLNs have recently been applied to tasks that are 
related to goal recognition, such as probabilistic abduction 
for plan recognition (Kate and Mooney 2009) and multi-
agent activity recognition (Sadilek and Kautz 2010).  

Features 
Similar to previous work by Mott, Lee, and Lester (2006), 
the current work encodes player actions in the game 
environment using three properties: action type, location, 
and narrative state.  

• Action Type: Type of action taken by the player, such 
as moving to a particular location, opening a door, and 
testing an object using the laboratory’s testing equipment. 
Our data includes 19 distinct types of player actions.  
• Location: Place in the virtual environment where a 
player action is taken. This includes 39 fine-grained and 
non-overlapping sub-locations that decompose the seven 
major camp locations in CRYSTAL ISLAND. 
• Narrative State: Representation of the player’s progress 
in solving the narrative scenario. Narrative state is 
encoded as a vector of four binary variables, each of 
which represents a milestone event within the narrative.  

MLN for Goal Recognition 
A Markov Logic Network (MLN) consists of a set of 
weighted first-order logic formulae. A weight reflects the 
importance of the constraint represented by its associated 
logic formula in a given model. Figure 3 shows 13 MLN 
formulae that are included in the current goal recognition 
model. Formula 1 represents a hard constraint that needs to 
be satisfied at all times. This formula requires that, for each 
action a at each time step t, there exists a single goal g. The 
formulae 2-13 are soft constraints that are allowed to be 
violated. Formula 2 reflects prior distribution of goals in 
the corpus. Formula 3-13 predict the player’s goal g at time 
t based on the values of the three action properties, action 
type a, location l, and narrative state s, as well as previous 
goal. The weights for the soft formulae were learned with 
theBeast, an off-the-shelf tool for MLNs that uses cutting 
plane inference technique (Riedel 2008). 

Evaluation 
To evaluate the MLN goal recognition model, the collected 
data was preprocessed in several steps. First, all player 
actions that achieve goals were identified. Second, all 
actions in the observation sequence that precede the current 
goal but follow the previous goal were labeled with the 
current goal. Third, actions that achieve goals were 
removed from the data. Removing goal-achieving actions 
was necessary to ensure that model training was fair, 
because it would be trivial to predict goals from the goal-

achieving actions. Finally, all actions that were taken after 
achievement of the last goal were removed, since those 
actions have no direct mapping to any goal. Table 1 shows 
summary statistics of the resulting corpus, which includes 
77,182 player actions and 893 achieved goals, with an 
average of 86.4 player actions per goal. Table 2 shows the 
set of goals considered in this work and their frequencies in 
the processed corpus data. 

The performance of the proposed MLN goal recognition 
model was compared to one trivial and two non-trivial 
baseline models. The trivial baseline was the majority 
baseline, which always predicted the goal that appears 
most frequently in the training data. The non-trivial 
baselines were two n-gram models, unigram and bigram. 
The unigram model predicted goals based on the current 
player action only, while the bigram model considered the 
previous action as well. In the n-gram models, player 
actions were represented by a single aggregate feature that 
combined all three action properties: action type, location, 

Hard Formula 

  (1) 

Soft Formulae 
∀t,g : goal(t,g)  (2) 
∀t,a,g : action(t,a) ⇒ goal(t,g)  (3) 
∀t,l,g : loc(t,a) ⇒ goal(t,g)  (4) 
∀t,s,g : state(t,a) ⇒ goal(t,g)  (5) 
∀t,a,s,g : action(t,a)∧ state(t,s) ⇒ goal(t,g)  (6) 
∀t,a, g : action(t −1,a) ⇒ goal(t, g)  (7) 
∀t,l,g : loc(t −1,a) ⇒ goal(t,g)  (8) 
∀t,s,g : state(t −1,a) ⇒ goal(t,g)  (9) 
∀t,a,s,g : action(t −1,a)∧ state(t −1,s) ⇒ goal(t,g)  (10) 
∀t,a1,a2 , g : action(t 1,a1)∧action(t,a2 ) ⇒ goal(t, g)  (11) 
∀t,g1,g2 : goal(t 1,g1) ⇒ goal(t,g2 )  (12) 

  (13) 

Figure 3. Formulae for MLN goal recognition model 

Total Number of Observed Player Actions 77,182 
Total Number of Goals Achieved 893 
Average Number of Player Actions per Goal 86.4 

Table 1.  Number of actions and goals in corpus 

Running laboratory test on contaminated food 26.6% 
Submitting a diagnosis 17.1% 
Speaking with the camp’s cook  15.2% 
Speaking with the camp’s bacteria expert 12.5% 
Speaking with the camp’s virus expert 11.2% 
Speaking with a sick patient 11.0% 
Speaking with the camp nurse 6.4% 

Table 2. Goals and their frequencies in corpus 

∀t,a : action(t,a) ⇒ ∃g : goal(t, g) =1

∀t,a1,a2 ,g1,g2 : action(t 1,a1)∧ goal(t 1,g1)∧action(t,a2 )
⇒ goal(t,g2 )
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and narrative state. N-gram models have been used in 
previous goal recognition work for spoken dialogue 
systems (Blaylock and Allen 2003) and interactive 
narrative game environments (Mott, Lee, and Lester 2006). 
Although simplistic, the n-gram models were shown to be 
effective. Mott, Lee, and Lester (2006) found that unigram 
and bigram models achieved higher prediction accuracies 
than a more sophisticated Bayesian Network model. The n-
gram comparison models were also created as simple 
MLNs. The unigram model consisted of the single 
weighted formula (14). The weighted formula defined for 
the bigram model was similar but considered two 
consecutive player actions at the same time. 

The two n-gram models and the proposed MLN model 
were evaluated with ten-fold cross validation. The entire 
data set was partitioned into ten non-overlapping subsets, 
ensuring data from the same player did not appear in both 
the training and the testing data. Each subset of the data 
was used for testing exactly once. The models’ 
performance was measured using F1, which is the 
harmonic mean of precision and recall1. Table 3 shows the 
average performance of each model over ten-fold cross 
validation. The MLN model scored 0.484 in F1, achieving 
an 82% improvement over the baseline. The unigram 
model performed better than the bigram model. A one-way 
repeated-measures ANOVA confirmed that the differences 
among the three compared models were statistically 
significant (F(2,18) = 71.87, p < 0.0001). A post hoc 
Tukey test revealed the differences between all pairs of the 
three models were statistically significant (p < .01). 

Discussion 
All three models performed better than the baseline. The 
best performance was achieved by the MLN model, which 
suggests that the proposed MLN goal recognition 
framework is effective at predicting player goals from 
actions in a complex game environment.  The F1 score of 
0.484 achieved by the MLN model may appear somewhat 
low. However, this is an encouraging result given the 
challenges posed by the data. The superiority of the MLN 
                                                
1 It should be noted that in the current work the values of precision, recall, 
and F1 are the same, because each observed player action is associated 
with a single goal in our data and the goal recognition model predicts a 
single most likely goal for each player action. 

model over the n-gram models can be partially explained 
by the MLN’s relational learning framework, which 
facilitates explicit modeling of associations between goals. 
Furthermore, the structural flexibility of undirected 
graphical models, which permit bidirectional causality, 
enables MLNs to model richer relations between actions 
and goals than n-gram models. The unigram model 
achieved higher performance than the bigram model, 
which is consistent with the result reported by Mott, Lee, 
and Lester (2006). Among the possible reasons for this is 
data sparsity; the bigram model considers two consecutive 
previous goals, which would lead to the training instances 
for each bigram become sparser than in the unigram model.     

Inducing accurate goal recognition models has several 
prospective benefits for intelligent game-based learning 
environments. First, goal recognizers can be used to inform 
player-adaptive decisions by narrative centered tutorial 
planners, which comprise a particular class of player-
adaptive systems that tailor events during students’ game-
based learning experiences in order to individualize 
pedagogical scaffolding and promote student engagement. 
Data-driven approaches to narrative-centered tutorial 
planning are the subject of active investigation by the 
CRYSTAL ISLAND research team. Second, goal recognizers 
can be used during data mining to inform the iterative 
refinement of intelligent game-based learning 
environments. By automatically recognizing players’ 
goals, and identifying which actions are likely to be 
associated with those goals, goal recognition models can 
enable educational game designers to better understand 
common families of problem-solving paths and to identify 
key challenges encountered by students. Finally, 
recognizing players’ goals will enrich in-game assessments 
of student learning, problem solving, and engagement, 
which are critical challenges for the educational games 
community.  

Conclusions 
Effective goal recognition holds considerable promise for 
player-adaptive games. Accurately recognizing players’ 
goals enables digital games to proactively support 
gameplay experiences that feature nonlinear scenarios 
while preserving cohesion, coherence and believability. 
This paper has introduced a goal recognition framework 
based on Markov logic networks that accurately recognizes 
players’ goals. Using model parameters learned from a 
corpus of player interactions in a nonlinear game 
environment, the framework supports the automated 
acquisition of a goal recognition system that outperforms 
three baseline models.  

∀t,a, l,s,g : action(t,a)∧ location(t, l)∧ state(t,s) ⇒ goal(t,g)  (14) 

 Baseline Unigram Bigram MLN 
F1 0.266 0.396 0.330 0.484 

Improvement 
over Baseline N/A 49% 24% 82% 

Table 3. F1 scores for MLN and baseline goal recognition models 
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