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Abstract

The currently dominant approach to domain-independent
planning is planning as heuristic search, with most successful
planning heuristics being based on solutions to delete-relaxed
versions of planning problems, in which the negative effects
of actions are ignored. We introduce a principled, flexible,
and practical technique for augmenting delete-relaxed tasks
with a limited amount of delete information, by introducing
special fluents that explicitly represent conjunctions of fluents
in the original planning task. Differently from previous work,
conditional effects are used to limit the growth of the task
to be linear in the number of such conjunctions, making its
use for obtaining heuristic functions feasible. The resulting
heuristics are empirically evaluated, and shown to be some-
times much more informative than standard delete-relaxation
heuristics.1

Introduction
Planning as heuristic search is currently the dominant ap-
proach to domain independent planning. In both satisfic-
ing and optimal planning, the most informative heuristics
are obtained from the simplified delete-relaxation task, in
which negative effects of actions are ignored, and conditions
that have been achieved are assumed to stay true through-
out the execution of the plan (Helmert and Domshlak 2009;
Bonet and Geffner 2001; Hoffmann and Nebel 2001). Even
more informative heuristics could be obtained, however, if it
were possible to also account for a limited amount of delete
information concerning the planning task.

Recent work in this area has shown that this can be
done by considering the costs of modified planning tasks
with no deletes, that nevertheless encode delete informa-
tion about the original task in their fluents and operators
(Haslum 2009). These formulations explicitly represent the
truth value of conjunctions c in the original task with new
fluents πc, called π-fluents, and modify the initial state, goal,
and operators of the planning task to contain these fluents as
appropriate. The ΠC formulation (Haslum 2012) makes use
of this idea and represents only a chosen set C of conjunc-
tions of arbitrary size, rather than the set of all conjunctions
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1This is a short version of the paper of the same name published
at ICAPS 2012 (Keyder, Hoffmann, and Haslum 2012).

of size ≤ m for some m as in the previously proposed Πm

compilation (Haslum 2009). This more fine-grained formu-
lation allows greater efficiency, avoiding wasting resources
on the representation of conjunctions that are unnecessary
in practice. The drawback to ΠC however, is that it grows
exponentially in the number of conjunctions that are consid-
ered, and in practice quickly becomes large.

Here, we introduce a similar construction ΠC
ce that makes

use of conditional effects to limit the growth of the task to
be linear in |C|. While this gain comes at the price of some
information loss relative to ΠC , ΠC

ce preserves the impor-
tant property that there exists C such that the optimal delete
relaxation cost of ΠC

ce is a perfect heuristic for the original
problem Π, and can be used to obtain informative heuristics
in practice. We discuss the issues that arise in using ΠC

ce to
compute heuristics, and evaluate the resulting partial relax-
ation heuristics, showing that they improve on the state of
the art for satisficing planning.

Background
Our planning model is based on the propositional STRIPS
formalization, to which we add action costs and conditional
effects. States and operators are defined in terms of a set of
propositional variables, or fluents, with a state s ⊆ F given
by the set of fluents that are true in that state. A planning
task is described by a 4-tuple Π = 〈F,A, I,G〉, where F
is a set of such variables, A is the set of actions, I ⊆ F is
the initial state, and G ⊆ F describes the set of goal states,
given by {s | G ⊆ s}. Each action a ∈ A consists of a
4-tuple 〈pre(a), add(a), del(a), ce(a)〉 and a cost cost(a) ∈
R+

0 . Here, pre(a), add(a), and del(a) are subsets of F ;
ce(a) = {ce(a)1, . . . , ce(a)n} denotes a set of conditional
effects, each of which is a triple 〈c(a)i, add(a)i, del(a)i〉 of
subsets of F . If ce(a) = ∅ for all a ∈ A, we say that Π is a
STRIPS planning task.

An action a is applicable in s if pre(a) ⊆ s. The result of
applying it is s[a] = (s \ (del(a) ∪

⋃
{i|c(a)i⊆s} del(a)i)) ∪

(add(a) ∪
⋃
{i|c(a)i⊆s} add(a)i), in other words, all condi-

tional effects whose conditions hold are applied to s. A plan
is a sequence of actions σ = a1, . . . , an such that applying
it in I results in a goal state. The cost of σ is

∑n
i=1 cost(ai),

with an optimal plan σ∗ being a plan with minimal cost.
A heuristic for Π is a function h mapping states of Π
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into R+
0 . The perfect heuristic h∗ maps each state s to

the cost of an optimal plan for s. A heuristic h is admis-
sible if h(s) ≤ h∗(s) for all s. By h(Π′), we denote a
heuristic function for Π whose value in s is given by esti-
mating the cost of the corresponding state s′ in a modified
task Π′. We specify Π′ in terms of the transformation of
Π = 〈F,A, I,G〉 into Π′ = 〈F ′, A′, I ′, G′〉; s′ is obtained
by applying to s the same transformation used to obtain I ′
from I . To make explicit that h is a heuristic computed on
Π itself, we write h(Π).

The delete relaxation Π+ of a planning task is obtained
by discarding the delete effects in all actions and condi-
tional effects. Formally, Π+ = 〈F,A+, I, G〉, where A+ =
{〈pre(a), add(a), ∅, ce+(a)〉 | a ∈ A}, where ce+(a) =
{〈c(a)i, add(a)i, ∅〉 | ce(a)i ∈ ce(a)}, and each action
a+ ∈ A+ has the same cost as the corresponding action
a in A. The optimal relaxation heuristic h+ for Π is defined
as the cost h∗(Π+) of an optimal plan for Π+.

We denote the powerset of F with P(F ). As in the intro-
duction, in the context of ΠC and ΠC

ce we often refer to the
fluent subsets c ∈ C as conjunctions.

The ΠC and ΠC
ce Compilations

ΠC is constructed from the original planning task Π given
a set of subsets C of the set of fluents of the planning task.
Each of the sets c ∈ C is represented in ΠC by a special flu-
ent πc whose truth value represents whether all of the fluents
p ∈ c are simultaneously true. These π-fluents are added to
the initial state and goal of the problem, and to the precon-
ditions and effects of all actions, when they appear as sub-
sets of these sets. Furthermore, representatives of actions
are created that model the situation in which some subset of
a set of fluents c is already true, and the application of an
action makes the remaining fluents in c true while deleting
none of them, thereby also making πc true.

To ensure that h+(ΠC) is admissible, ΠC must contain
action representatives that are capable of making multiple
different π-fluents true at once. ΠC therefore constructs
an action representative for each possible subset C ′ ⊆ C,
leading to an exponential number of action representatives
being created. In contrast, ΠC

ce achieves the same outcome
by creating for each c′ ∈ C a single conditional effect. In
other words, while ΠC creates an action representative for
each possible situation in which a different set of π-fluents
is made true by an action, ΠC

ce implicitly describes the con-
ditions under which each individual π-fluent becomes true.

Theoretical Properties of ΠC
ce

We state some theoretical properties of ΠC
ce, considering

its optimal delete-relaxation cost h+(ΠC
ce) instead of more

practical approximations:

Theorem 1 (Consistency and admissibility) h+(ΠC
ce) is

consistent and admissible.

Theorem 2 (h+(ΠC
ce) dominates h+(Π)) Given a plan-

ning task Π and a set of conjunctionsC, h+(ΠC
ce) ≥ h+(Π).

There are cases where the inequality is strict.

Though h+(ΠC
ce) dominates h+(Π), ΠC

ce incurs a slight
loss of information compared to ΠC , as there are certain
π-fluents that appear as preconditions of representatives of
actions in ΠC yet do not appear in the condition of any con-
ditional effect in ΠC

ce. For the same set of conjunctions C,
we then have that the optimal delete relaxation heuristic for
ΠC strictly dominates that obtained with ΠC

ce. However, ΠC
ce

preserves an important property of ΠC , which is that there
exists a set C such that the optimal delete relaxation cost of
ΠC

ce is a perfect heuristic for Π:

Theorem 3 (h+(ΠC
ce) is perfect in the limit) Given a plan-

ning task Π, there exists C such that h+(ΠC
ce) = h∗(Π).

Practical Aspects of Using ΠC
ce

In order to use ΠC
ce in practice, we must develop strategies

for choosing the set C. Here we follow a strategy that is
similar to that previously proposed in the context of ΠC

(Haslum 2012). This strategy attempts to detect ways in
which the relaxed plan generated for the initial state of the
task will fail in the real problem, and to add conjunctions to
C that prevent valid relaxed plans from failing in the same
way in the original problem Π. As an example, consider a
planning task with goal G = {p, q}, and a relaxed plan that
uses an action ap to achieve p that deletes q. The addition of
{p, q} to C will then introduce a π-fluent π{p,q} which will
be part of the goal, and π{p,q} will be unachievable by ap
since it deletes q. The relaxed plan generated for ΠC

ce will
then have to achieve p with a different action. This process
is iterated until either the relaxed plan obtained for ΠC

ce is
also a plan for Π, or some resource bound is reached that
prevents further conjunctions from being added to C.

A second issue that is peculiar to ΠC
ce is the problem of

generating high-quality relaxed plans in the presence of con-
ditional effects. To address this problem, we use a graph
structure that represents dependencies between the effects
included in a relaxed plan, and use it to generalize a pre-
vious technique (Hoffmann and Nebel 2001) for detecting
when two conditional effects of the same action can be ob-
tained with a single application of the action.

Experimental Results
We evaluated the non-admissible heuristic obtained as the
cost of a suboptimal plan for ΠC

ce in the context of a state-
of-the-art variant of greedy best-first search (Helmert 2006).
We varied a parameter x that measures the size of the ΠC

ce
problem compared to the size of the original delete relax-
ation problem Π+. When x = 1, no conjunctions are added
and ΠC

ce is equivalent to Π+. As x grows, ΠC
ce becomes more

informative, however the size of the problem representation
and the difficulty of computing good relaxed plans in each
state grow as well. We tested values of x between 1 and 3.

We ran the resulting planner on problems from the most
recent International Planning Competition (IPC), the bien-
nial forum in which top planners compete to solve a fixed
set of planning tasks. Using ΠC

ce rather than Π+ results in
a more informative heuristic in several sets of tasks (do-
mains), most strikingly in the “Floortile” domain, in which a
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robot must paint the floor of a room with alternating colors.
The delete relaxation ignores the fact that the robot cannot
pass through tiles that it has previously painted, leading to
poor performance. Using ΠC

ce however, all 20 Floortile IPC
benchmark tasks are solved within 5 seconds for x = 2.5.
In comparison, no other planner participating in the most
recent planning competition solves more than 9 instances
within the 30 minute time bound. When the available time
is shared between our planner and LAMA, the winner of the
most recent competition, a total of 264 of the 280 tasks in all
the domains can be solved, compared to 250 for LAMA.

Conclusion
ΠC

ce is a principled and flexible method for improving delete-
relaxation heuristics with a limited amount of delete infor-
mation, providing a smooth continuum of tradeoffs between
problem size and informativeness. Its linear, rather than ex-
ponential, growth in the size of C means that it is possible to
use ΠC

ce in practice to obtain partial delete relaxation heuris-
tics. Our results show that the computational investment is
worthwhile in certain domains, where search with heuristics
based on ΠC

ce very effectively finds solutions for tasks that
are not solved by any other planner.
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