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Abstract

In case of a plan failure, plan-repair is a more promising
solution than replanning from scratch. The effectiveness of
plan-repair depends on knowledge of which plan action failed
and why. Therefore, in this paper, we propose an Extended
Spectrum Based Diagnosis approach that efficiently pinpoints
failed actions. Unlike Model Based Diagnosis (MBD), it does
not require the fault models and behavioral descriptions of ac-
tions. Our approach first computes the likelihood of an action
being faulty and subsequently proposes optimal probe loca-
tions to refine the diagnosis. We also exploit knowledge of
plan steps that are instances of the same plan operator to opti-
mize the selection of the most informative diagnostic probes.
In this paper, we only focus on diagnostic aspect of plan-
repair process.

Introduction
Classical planning assumes that the world is deterministic
so that every action produces the intended effects. However,
this assumption is not true in the real world where actions
can fail because of unexpected events. Execution of a plan
will lead to an unexpected goal state if one or more actions
are behaving abnormally. When such incidents happen one
possible way to achieve the desired goal state is repairing the
original plan by adding/removing some actions.

In the case of partial observability, the idea of Model
Based Diagnosis (MBD) can be further extended to diag-
nose faulty actions to detect the faulty action instances, in
a plan where the plan can be seen as a system and the ac-
tion can understood as a component (Roos and Witteveen
2009). While powerful, model-based techniques require ac-
curate fault models which are expensive to develop and in
some cases the required data cannot be obtained at all. The
proposed Spectrum Based Diagnosis (SBD) approach makes
use of abstract frequency statistics to reveal possible causes
of a problem without a fault model of the system. SBD
has been successfully applied for software fault localiza-
tion (Abreu et al. 2009) and hardware diagnosis (Arjan
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Van Gemund and Abreu 2011). We use SBD to determine
the health state of a plan step which infers the health state
of corresponding action. In the planning domain, it is com-
mon for a single plan operator to be instantiated many times
for different plan steps. All plan steps that are instantiated
from the same operator will fail if resource associated with
the plan operator fails. For instance, every attempt to sched-
ule a shipment on a blocked road will fail. In the online
replanning context, we are given the plan ahead of time, so
we can exploit knowledge about the operator dependencies
of actions within a plan. We propose Extended Spectrum
Based Diagnosis which is able to exploit available informa-
tion about such dependencies in the plan by elegantly ex-
tending the spectrum matrix. Diagnosis is further refined by
proposing optimal probing locations. The probing strategy
uses minimal information criteria to select a probing loca-
tion.

Extended Spectrum Based Plan Diagnosis
Plan Execution and Monitoring A plan is a tuple P =
〈O, S,<〉 where S ⊆ inst(O) is a set of plan steps occur-
ring in O and (S,<) is a partial order. The partial order re-
lation < specifies an execution relation between plan steps:
for each s ∈ S it holds that s is executed immediately after
plan step s′ such that s′ < s have been finished. Figure 1
illustrates a partially ordered plan.

Plan execution is validated by continuously monitoring
the goal state. The difference in the observed value σgoal(v)

′
of any variable v in the goal state from the expected value
σgoal(v) implies the plan execution failure. Suppose plan
shown in Figure 1 represents a multimodal transportation
plan where five goods (v1, . . . , v5) need to be delivered from
initial location to goal location using transportation modes
(s1, . . . , s8). In the final destination, it is observed that two
goods (v2 and v3) have not arrived which implies one or
more plan steps are faulty. We apply SBD to isolate such
faulty plan steps. The basic principle of SBD can be de-
scribed as follows: if the value of a variable in the goal state
is incorrect, then one or more plan steps involved in genera-
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Figure 1: Plans and plan steps. Each state characterizes
the values of five variables v1, v2, v3, v4 and v5. States are
changed by application of plan steps si for i = 1, 2, . . . , 8.
Plan steps having the same color (e.g. s1 and s7, and s2 and
s5) are instantiations of the same plan operator.

tion of that variable are faulty.

Obtaining Spectrum Matrix The spectrum matrix shows
for every variable in σgoal which plan steps are involved
from the state σ0 to σgoal. It records, in the goal state,
whether a particular variable vi has the expected value or
not. The spectrum matrix (A, e), where A = [aij ] is the
plan spectrum and e is the error vector can be constructed
as follows: The plan spectrum A has N rows (one for each
variable) and M columns (one for each plan step). We have
aij = 1 if a plan step sj is involved in the generation of vari-
able vi in σgoal, else aij = 0. The vector e stores whether
the outcome for variable vi has the expected value (ei = +)
or not (ei = −). The spectrum matrix for the partial order
plan presented in Figure 1 is given as

s1 s2 s3 s4 s5 s6 s7 s8 e
v1 1 0 1 0 0 1 0 0 +
v2 1 0 1 0 0 1 0 0 -
v3 1 1 1 1 0 0 1 0 -
v4 1 1 0 1 1 0 0 1 +
v5 1 1 0 1 1 0 0 1 +

The above spectrum matrix generates correct diagnosis
for systems where components are assumed to be failed in-
dependently. However, in the planning domain this assump-
tion is not true.In a plan, several plan steps can be instances
of same plan operator, hence they are dependent, we define
such plan steps as related plan steps. In our example shown
in Figure 1, plan step s1 and s7 use the same truck and there-
fore, they are related in terms of a resource. Similarly, s2 and
s5 are related. To take such related plan steps into account,
the relations are encoded in the matrix A itself. Suppose that
plan steps s and s′ are related. If s is detected as faulty and
s < s′, it seems reasonable to consider s′ as faulty as well.
We assume that failures can occur during plan execution and
once a failure occurs, it persists. Formally, we calculate the
extended spectrum matrix A′ = [a′ij ] from A as follows:

a′ij =
∨

j′<j,o(j′)=o(j)

a′ij′ ∨ aij (1)

With respect to the plan depicted in Figure 1, the above
definition results in the following spectrum matrix (new en-
tries appear in bold face):

s1 s2 s3 s4 s5 s6 s7 s8 e
v1 1 0 1 0 0 1 1 0 +
v2 1 0 1 0 0 1 1 0 -
v3 1 1 1 1 1 0 1 0 -
v4 1 1 0 1 1 0 1 1 +
v5 1 1 0 1 1 0 1 1 +

Probability and Mutual Information Calculation Ap-
plication of minimal hitting set algorithm on extended ma-
trix A′ will generate diagnoses candidates (ck) {c1 =<
s1 >, c2 =< s3 >, c3 =< s7 >, c4 =< s2, s6 >
, c4 =< s4, s6 >, c5 =< s7, s6 >, c6 =< s5, s6 >}.
Bayes’ rule is applied on these candidates to derive a rank-
ing in which all diagnosis are ranked according to their fault
probabilities(Pr(si)). To identify a suitable location for a
new probe the mutual information criterion can be used to
evaluate and compare measurement choice based on their in-
formation contribution (Juan Liu and Zhou 2008), we have
adapted same criterion in this paper. If X is a diagnostic
state of a plan and Y is the measure value of a variable at a
probing location then mutual information is represented as
I(X;Y ). Table 1 summarizes results obtained for example
shown in Figure 1.

si Pr(si) Pr′(si) I(X;Y ) I′(X;Y )
s1 0.200 0.160 0.512884 0.512884
s2 0.002 0.002 0.008762 0.008762
s3 0.800 0.762 0.016707 0.016707
s4 0.002 0.002 0.264348 0.264348
s5 0.000 0.002 0.004198 0.011041
s6 0.007 0.008 0.000000 0.000000
s7 0.003 0.160 0.000000 0.000000
s8 0.000 0.000 0.074128 0.074128

Table 1: Pr(si) and I(X;Y ) are derived for original matrix
A. Pr′(si) and I ′(X;Y ) are derived for extended matrix A′

Analysis
In the plan described in Figure 1, s3 has the strongest partic-
ipation in the unexpected goal state outcomes for variables,
v2 and v3. In our results s3 the highest probability of fail-
ure. The standard spectrum A assigns different probabilities
to plan steps s1 and s7. The extended spectrum, increased
the fault probability of related plan steps s7 and now s7 and
s1 have equal probability. Without any ambiguity both the
spectrum matrices suggest that s1 is the most informative
location to probe and that s7 is the least. Since s7 is in the
goal state of the plan therefore no extra information can be
gained which matches our mutual information computation.
At the same time, extending the matrix reveals the informa-
tion content at the output of plan step s5 to the diagnoser.
In this case, s5 is closer to the middle of the plan than s2
which means that it better splits the hypothesis space about
possible causes of failure and therefore is more informative.
Therefore, we conclude that the extended spectrum matrix
opens up new options to increase the accuracy and decrease
the cost of diagnosis in plans with related plan steps.
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