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Abstract
The Dempster-Shafer theory of belief functions is an impor-
tant approach to deal with uncertainty in AI. In the theory,
belief functions are defined on Boolean algebras of events. In
many applications of belief functions in real world problems,
however, the objects that we manipulate is no more a Boolean
algebra but a distributive lattice. In this paper, we extend the
Dempster-Shafer theory to the setting of distributive lattices,
which has a mathematical theory as attractive as in that of
Boolean algebras. Moreover, we apply this more general the-
ory to a simple epistemic logic the first-degree-entailment
fragment of relevance logic R, provide a sound and complete
axiomatization for reasoning about belief functions for this
logic and show that the complexity of the satisfiability prob-
lem of a belief formula with respect to the class of the corre-
sponding Dempster-Shafer structures is NP -complete.

1 Introduction
Dealing with uncertainty is a fundamental issue for Ar-
tificial Intelligence (Halpern 2005). Numerous approaches
have been proposed, including Dempster-Shafer theory of
belief functions (Shafer 1976). Ever since the pioneering
works by Dempster and Shafer, belief functions have be-
come a standard tool in Artificial Intelligence for knowledge
representation and decision-making.

Dempster-Shafer belief functions on a finite frame of
discernment S are defined on the power set of S, which
is a Boolean algebra. They have an attractive mathemat-
ical theory and many intuitively appealing properties. Be-
lief functions satisfy the three axioms which generalize the
Kolmogorov axioms for probability functions. Interestingly
enough, they can also be characterized in terms of mass
functions m. Intuitively, for a subset event A, m(A) mea-
sures the belief that an agent commits exactly to A, not the
total belief that an agent commits toA. Shafer (Shafer 1976)
showed that an agent’s belief in A is the sum of the masses
he has assigned to all the subsets of A. This characteriza-
tion of belief functions through mass functions is simply
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an example of the well-known Inclusion-Exclusion princi-
ple in Enumerative Combinatorics (Stanley 1997) and hence
has a strong combinatorial flavor. In this theory, mass func-
tions are recognized as Möbius transforms of belief func-
tions. Moreover, Dempster-Shafer theory of belief functions
is closely related to classical probability theory. On one
hand, a belief function on S is a probability function (also
called Bayesian belief function) if and only if its correspond-
ing mass function assigns positive weights only to single-
tons. On the other hand, a belief function as a generalized
probability function can be regarded as the inner probabil-
ity measure induced by some probability function on some
Boolean algebra (Fagin and Halpern 1991), which implies
that it represents partial belief and hence is the restriction of
some probability function in the language of (Shafer 1976).
There is an immediate payoff to this view of Dempster-
Shafer belief functions: a logic for reasoning about belief
functions can be obtained from that for inner probability
measures (Fagin, Halpern, and Megiddo 1990).

As shown by Grabisch (Grabisch 2009), the theory of be-
lief functions can be transposed in general lattice setting.
This generalized theory has been applied to many objects in
real world problems that may not form a Boolean algebra.
Let us give some examples: set-valued variables in multi-
label classification(Denoeux, Younes, and Abdallah 2010)
(Zhang and Zhou 2007), the set of partitions in ensemble
clustering (Masson and Denoeux 2011) and bi-capacities
in cooperative game theory (Grabisch and Labreuche 2005).
Because of its generality, however, Grabisch’s theory loses
many intuitively appealing properties. For example, since
a lattice does not necessarily admit a probability function
(Grabisch 2009), belief functions in general lattice settings
fail to maintain a close connection with classical probabil-
ity theory and therefore lack many of the desirable proper-
ties associated with this theory as in Dempster-Shafer theory
(Fagin and Halpern 1991).

An optimal balance between utility and elegance of a the-
ory of belief functions is achieved for distributive lattices,
which is the main contribution of this paper. Not only does
our approach for distributive lattices yields a mathemati-
cal theory as appealing as Dempster-Shafer theory, but also
its applications extend to many non-classical formalisms of
structures in Artificial Intelligence (quantum theory (Ying
2010) is one of very few important exceptions).
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In this paper, we extend Dempster-Shafer theory to the
setting of distributive lattices. The main difficulty in the
extension is how to characterize the class of belief func-
tions without reference to mass assignments. Birkhoff’s fun-
damental theorem for finite distributive lattices solves this
problem. Through this characterization, many fundamental
properties of belief functions in the Boolean case are also
preserved in distributive lattices. We show that, for any lat-
tice (not necessarily distributive), a capacity is totally mono-
tone iff its Möbius transform is non-negative, which an-
swers an open question raised in (Grabisch 2009). More-
over, we prove that belief functions on distributive lattices
can be viewed as generalized probability functions. A be-
lief function Bel on a finite distributive lattice L is a prob-
ability function if and only if all focal elements i.e. those
elements with positive weights assigned by its mass func-
tion are join-irreducible in L and Bel is the inner mea-
sure induced by some probability function. As an applica-
tion, we apply the theory to a simple non-Boolean epistemic
logic the first-degree-entailment fragment of the relevance
logic R (Anderson and Belnap 1975), which is used to deal
with the famous logical-omniscience problem in the foun-
dations of Knowledge Representation (Fagin, Halpern, and
Vardi 1995) (Levesque 1984), and used for reasoning in the
presence of inconsistency in knowledge base systems (Lin
1996). A sound and complete axiomatization is provided for
reasoning about belief functions for first degree entailments,
and finally the complexity of the satisfiability problem of a
belief formula with respect to the class of the corresponding
Dempster-Shafer structures is shown to be NP -complete.

2 Belief function on lattices
All posets and lattices occurring in this paper are supposed
to be finite. The reader is referred to (Davey and Priestley
2002) for all unexplained lattice-theoretical notation and ter-
minology in this paper. Let (L,≤) be a poset having a bot-
tom element ⊥ and a top one > and R be the real field. For
any function f on (L,≤), the Möbius transform of f is the
function m : L→ R defined as the solution of the equation

f(x) =
∑

y≤xm(y).

m is also called the mass function or mass assignment of f .
The expression of m is obtained through the Möbius func-
tion µ : L2 → R by

m(x) =
∑

y≤x µ(y, x)f(y)

where µ is defined inductively by

µ(x, y) =

 1 if x = y,
−
∑

x≤t≤y µ(x, t) if x < y,
0 if x > y.

Note that µ solely depends on L. And the co-Möbius trans-
form of f is defined dually:

q(x) =
∑

y≥xm(y), x ∈ L.

Definition 2.1 Given a lattice 〈L,≤〉, a function f on L is
called a capacity if it satisfies the following three conditions:

1. f(⊥) = 0;
2. f(>) = 1;
3. x ≤ y implies f(x) ≤ f(y).

A function bel : L → [0, 1] is called a belief function if
bel(>) = 1, bel(⊥) = 0 and its Möbius transform is non-
negative. Its co-Möbius transform q : L → [0, 1] is called
the commonality function associated to bel.

�

Note that any belief function is a monotonic function by non-
negativity of m, and hence a capacity.

Definition 2.2 Given a lattice 〈L,≤〉, a function f on L is
called a k-monotone whenever for each (x1, · · · , xk) ∈ Lk,
we have

(∗) : f(
∨

1≤i≤k xi) ≥
∑

J⊂K,J 6=∅(−1)|J|+1f(
∧

j∈J xj)

A capacity is totally monotone if it is k-monotone for every
k ≥ 2. A k-monotone function f is called a k-valuation if
the above inequality degenerates into the following equality:

(∗) : f(
∨

1≤i≤k xi) =
∑

J⊂K,J 6=∅(−1)|J|+1f(
∧

j∈J xj)

It is an∞-valuation if it is a k-valuation for each integer
k. f is called a probability function if it is both a capacity
and an∞-valuation.

�

The following proposition (Barthelemy 2000) tells us that
there is a close relation between belief functions and totally
monotone capacities.

Proposition 2.3 Let f : L → [0, 1] be a capacity and m
be its Möbius transform. If f is a belief function, then it is
totally monotone.

Shafer (Shafer 1976) proved that the converse is also true
for any belief function on Boolean algebras. We show that
actually it holds generally for any lattice, which answers an
open question raised in (Grabisch 2009).

Theorem 2.4 Let L be a lattice and f : L → [0, 1] be a
capacity on L andm be its Möbius transform. The following
two statements are equivalent:
• m is nonnegative;
• f is totally monotone.

The proof is based on a structurally inductive construc-
tion of the Möbius transform m from f : m(a) = f(a) −∑

b<am(b).

3 Belief functions on distributive lattices
Given a poset P , J(P ) denotes the lattice of order ideals of
P with the ordinary union and intersection (as subsets of P ).
So J(P ) is distributive.

Proposition 3.1 (Birkhoff’s fundamental theorem for finite
distributive lattices) Let L be a finite distributive lattice.
Then there is a unique (up to isomorphism) finite poset P
for which L ∼= J(P ).
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The following two propositions provide formulas for
Möbius functions and Möbius transforms in distributive lat-
tices.

Theorem 3.2 The Möbius function of the distributive lattice
L = J(P ) is: for any I, I ′ ∈ J(P ),

µ(I, I ′) =

{
(−1)|I

′\I| if [I, I ′] is a Boolean algebra,
0 otherwise.

where [I, I ′] denotes the interval {K ∈ J(P ) : I ⊆ K ⊆
I ′}.

Theorem 3.3 Let L = J(P ) be a distributive lattice for
some poset P . Suppose Bel : L → [0, 1] is the belief func-
tion given by the mass assignment m : L→ [0, 1]. Then

m(A) =
∑

[B,A] is a
Boolean algebra

(−1)|A\B|Bel(B)

for all A ∈ J(P ).

From the above two theorems, we prove the following
proposition along the same line as Theorem 2.1 in (Shafer
1976). It is also the distributive version of Theorem 2.4.

Corollary 3.4 Given a distributive lattice L, a capacity
Bel : L → [0, 1] is a belief function iff it is totally mono-
tonic.

It is easy to see that the intersection of Boolean algebras
is still a Boolean algebra. For any two lattices L1 and L2,
L1 � L2 denotes that L1 can be embedded into L2.

Definition 3.5 A Boolean algebra BL is generated by the
distributive lattice L if BL is the smallest Boolean algebra
into which L can be embedded in the sense that

BL =
⋂
{B : B is a Boolean algebra and L � B}.

�

If L = J(P ) is a distributive lattice for some poset P ,
then the Boolean algebra BL generated by L is the powerset
ofP with the usual set operations (Priestley 1970). However,
it is only true in the finite case although Definition 3.5 also
applies to infinite distributive lattices.

Lemma 3.6 Let L be a distributive lattice and BL be the
Boolean algebra generated by L.

1. If µ is a probability function on L, then µ has a unique
extension of probability function on BL;

2. If µ is a probability function on BL, then the restriction
of µ into L is also a probability function on L.

Lemma 3.7 Let L be a distributive lattice and BL be the
Boolean algebra generated by L.

1. Any belief function Bel on L can be conservatively ex-
tended to a belief function µ on BL in the sense that, for
any x ∈ L, Bel(x) = µ(x).

2. For any belief function Bel on BL, the restriction Bel �L
of Bel into L is a belief function on L.

Shafer showed that a belief function is a probability func-
tion if and only if all of its focal elements are singletons
(Shafer 1976). We have a similar property for distributive
lattices.

Definition 3.8 Let Bel be a belief function on a distributive
lattice D with the sub-poset ID of join-irreducibles in D.
The inner belief function Bel◦ of Bel is defined as follows:

Bel◦(a) =
∑

x∈ID,x≤am(a).

In other words, Bel◦(a) is the sum of all mass assignments
on join-irreducibles which are less than or equal to a. �

Bel◦ is a probability function on D. In some sense, the
converse of this proposition also holds.

Theorem 3.9 A belief function Bel on a distributive lat-
tice D is a probability function iff its mass assignment m
is given by m(c) = Bel(c) for any join-irreducibles c in D
and m(a) = 0 for all join-reducible elements a ∈ D.

We have provided the condition when a belief function
is a probability function. In the remainder of this section,
we explore one perspective from which a belief function is
regarded as a generalized probability function.

The notion of (non)measurability in measure theory is a
desirable feature in reasoning with probabilities (Fagin and
Halpern 1991) and can be generalized to the setting of dis-
tributive lattices. Let L be a distributive lattice and Bel be a
belief function on L. Define

LBel := {a ∈ L : Bel(a ∨ b) =
Bel(a) +Bel(b)−Bel(a ∧ b) for every b ∈ L}.

Every element a ∈ LBel is calledBel-measurable or simply
measurable when the context is clear. From the main theo-
rem in (Smiley 1940), we prove

Theorem 3.10 LBel is a sublattice of L and hence is dis-
tributive. Moreover, Bel �LBel

is a probability function on
LBel.

Let L′ be a sublattice of L and hence is distributive. If µ is
a probability measure on L′, then, for each element x ∈ L,
we define

• µ∗(x) = sup{µ(y) : y ∈ L′, y ≤ x};
• µ∗(x) = inf{µ(y) : y ∈ L′, y ≥ x}
µ∗ and µ∗ are called inner and outer probability functions

induced by µ on L respectively. Such defined µ∗ is a be-
lief function on L and is called canonical in the language of
(Shafer 1979) in the sense that it gives each element a ∈ L
the minimal degree of belief that is compelled by µ.

Corollary 3.11 For the above belief function Bel on L,
Bel ≥ (Bel �LBel

)∗ in the sense that Bel(a) ≥ (Bel �LBel

)∗(a) for all a ∈ L.
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Although a belief function on a distributive lattice L is
not generally an inner probability function on L, we show
that from a certain perspective it is an inner probability
function on some expanded distributive lattice.

The language Φ0 is defined inductively as follows:

φ := ⊥ | > | p | φ ∧ φ | φ ∨ φ

where p is a propositional letter.

Definition 3.12 A probability structure is a tuple M =
〈L,L′, µ, v〉 where both L and L′ are distributive lattices, L′
is a sublattice of L, µ is a probability function on L′, µ∗ is
the inner probability function induced by µ, and v associates
with each p with an element in L. v can be easily extended
to a homomorphism from Φ0 to L.

�

Definition 3.13 A DS structure is a tuple D = 〈L,Bel, v〉
where L is a distributive lattice, Bel is a belief function on
L and v maps each propositional letter p to an element in
L. Similarly, v can be easily extended to a homomorphism
from Φ0 to L.

�

We call a probability structure M = 〈L,L′, µ, vM 〉 and a
DS structure D = 〈LD, Bel, vD〉 equivalent if

for any formula φ ∈ Φ0, µ∗(vM (φ)) = Bel(vD(φ)).

Theorem 3.14 For any probability structure M =
〈L,L′, µ, vM 〉, there is an equivalent DS-structure. More-
over, for every DS structure D = 〈LD, Bel, vD〉, there is
an equivalent probability structure M = 〈L,L′, µ, vM 〉.

By summarizing the results in the above theorem, we con-
clude that belief functions and inner probability functions
are equivalent on distributive lattices if we view them both as
functions on formulas rather on sets. The following theorem
is simply a corollary of Theorem 3.14 which says that each
belief function on distributive lattices is the restriction of
some probability function in the language of (Shafer 1976).

Corollary 3.15 Given a belief function Bel defined on a
distributive lattice LD, there are a distributive lattice L, a
probability measure µ on a sublattice L′ of L and a sur-
jective homomorphism f : L → LD such that, for each
x ∈ LD, we have Bel(x) = µ∗(f

−1(x)).

Just as in (Fagin and Halpern 1991), there is an immediate
payoff to this view of belief functions as generalized proba-
bility functions: a logic for reasoning about belief functions
for the first degree entailments in the last section is obtained
from that for inner probability functions (Fagin, Halpern,
and Megiddo 1990).

4 Belief functions on de Morgan lattices
An important issue for belief functions, each of which can
be viewed as representing a distinct body of evidence, is how
to combine them to obtain a new belief function that reflects
the combined evidence. A way of doing so is provided by
Dempster’s rule of combination (Shafer 1976). The defini-
tion of rule of combination is usually given in terms of mass
functions.

In this section, we first address the combination of belief
functions on distributive lattices and then apply this result to
define belief functions on de Morgan lattices through a du-
ality theorem for finite de Morgan lattices which is similar
to Birkhoff’s theorem for finite distributive lattices. A belief
function is defined on a de Morgan lattice through the com-
bination of two district beliefs, one of which accounts for
“true” facts of a knowledge base and the other for “false”
facts. Note that de Morgan lattices provide the algebraic se-
mantics for the relevance logic R (Dunn 1986).

Definition 4.1 Let Bel1, Bel2 be two belief functions on a
distributive lattice L with the corresponding mass assign-
ments m1 and m2, respectively. Let m1 ⊕m2 be a function
on L defined as (m1 ⊕ m2)(a) = c

∑
b∧c=am1(b)m2(c)

for any a ∈ L where c = (
∑

b∧c6=⊥m1(b)m2(c))−1. It is
easy to see that so defined m1 ⊕m2 is a belief function on
L and c is actually the normalizing constant. If there is no
pair b, c ∈ L such that b∧ c 6= ⊥ and m1(b)m2(c) > 0, then
we can not find such a constant c and hence m1 ⊕m2 is un-
defined. Bel1 ⊕ Bel2 denotes the combined belief function
which corresponds to m1 ⊕m2. �

Next we apply the above combination rule to define belief
functions on de Morgan lattices. We need the following du-
ality theorem for finite de Morgan lattices which is adapted
from (Dunn 1986), (Urquhart 1979) and (Priestley 1970):

Theorem 4.2 Any finite de Morgan lattice D can be repre-
sented as the lattice J(PD) of order ideals in the sub-poset
PD of join-irreducibles with an order-reversing involution g.
And there is a one-to-one correspondence between de Mor-
gan lattices and posets with order-reversing involutions.

Given a de Morgan lattice D, we know from the repre-
sentation theorem about finite de Morgan lattice that it can
be represented as a concrete lattice J(P ) of all order ideals
in P for some poset P with an order-reversing involution g.
LetE(P ) be the concrete lattice of order filters in P with the
usual set operations. It is easy to see that E(P ) is distribu-
tive and g is a dual isomorphism between lattices J(P ) and
E(P ). Based on the poset P , another concrete lattice D(P )
on {(I, F ) : I ∈ J(P ), F ∈ E(P ))} is defined as follows:

• (I1, F1) ∧ (I2, F2) = (I1 ∩ I2, F1 ∩ F2);

• (I1, F1) ∨ (I2, F2) = (I1 ∪ I2, F1 ∪ F2);

• ∼ (I, F ) = (F c, Ic) where F c and Ic are the comple-
ments of F and I with respect to P , respectively.

Such defined lattice D(P ) is a de Morgan lattice but not
necessarily Boolean. Dr(P ) := {(I, F ) : I ∈ J(P ), F =
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g(I)} is a sublattice of D(P ). Moreover, it is also a con-
crete representation of the distributive lattice D, i.e., D is
isomorphic to Dr(P ) (Dunn 1986).

Let Bel1, Bel2 be two belief functions on distributive lat-
tices J(P ) and E(P ), respectively. They can also be re-
garded as belief functions on the following two sub-lattices
of D(P ):

• D1(P ) = {(I, F ) : I ∈ J(P ), F = P};
• D2(P ) = {(I, F ) : I = P, F ∈ E(P )}.
becasue these two distributive lattices D1(P ) and D2(P )
are isomorphic to J(P ) and E(P ), respectively. Elements
in D1(P ) (D2(P )) are called t-grounded (f -grounded) in
D(P ) in the language of (Ginsberg 1988). So we may also
regard Bel1 and Bel2 as belief functions on these two sub-
lattices ofD(P ). Intuitively,Bel1 is the support function for
the true facts in a knowledge base system while Bel2 is that
for the false facts. Let m1 and m2 be their corresponding
mass assignments. Bel∗1 is defined to be the extension of
Bel1 as follows: for any a ∈ D(P ),

m∗1(a) =

{
m1(a) if a ∈ D1(P )

0 otherwise.

Bel∗2 is defined similarly through the extension m∗2 of m2 to
D(P ). Now we define a combined belief function of Bel∗1
and Bel∗2 . For, any (I, F ) ∈ D(P ),

(m∗1 ⊕m∗2)(I, F ) =
∑

A∧B=(I,F )

m∗1(A)m∗2(B)

= m∗1(I, P )m∗2(P, F )

= m1(I)m2(F )

Since
∑

I⊆P,F⊆P (m∗1 ⊕ m∗2)(I, F ) = 1, m∗1 ⊕ m∗2 is the
mass assignment for the combined belief function Bel∗1 ⊕
Bel∗2 , which is simply written as Bel∗.

In order to define the combined belief function onDr(P ),
which is isomorphic to D, through the two individual belief
functions Bel1 and Bel2, we only need the following nor-
malizing constant:

cD := (
∑

I⊆P m1(I)m2(g(I)))−1.

Note that the above argument can be reversed to show that
any belief function on the de Morgan lattice D is the combi-
nation of two “independent” belief functions in which one
accounts for “true” propositions and the other for “false”
ones. The main purpose of this section is to provide seman-
tics for the following section.

5 Reasoning about belief functions for
first-degree entailments

In this section, we first present the syntax and semantics of
first degree entailments. Here we choose the Routley seman-
tics with the well-known Routley star dealing with negation
(Routley and Routley 1972). Next we define belief structures
for this semantics through belief functions on de Morgan lat-
tices in Section 4 and show that the consequence relation
with respect to the class of belief structures is the same as

that with respect to the Routley semantics. In addition, we
extend the above language to include belief formulas which
can express the linear relations of different beliefs and give
a sound and complete axiomatization of validity in the class
of belief structures.

The syntax of first degree entailments is very similar to
that of propositional logic. We start with a fixed finite set
P := {p1, p2, · · · , pn} of propositional letters, which can
be thought of as corresponding to basic “events”. A formula
φ is formed by the following syntax:

φ := ⊥ | > | p |∼ φ | φ1 ∧ φ2 | φ1 ∨ φ2
The following is the deductive system Rfde which is

the well-known first-degree entailment fragment of the rel-
evance logic R (Dunn 1986). Without further notice, ` de-
notes `Rfde

. The bi-entailment φ a` γ is short for φ ` γ
and γ ` φ.

Axioms:

φ ` φ
φ ∧ ψ ` φ, φ ∧ ψ ` ψ
φ ` φ ∨ ψ, ψ ` φ ∨ ψ

φ ∧ (ψ ∨ γ) ` (φ ∨ ψ) ∧ (ψ ∨ γ) φ a`∼∼ φ
∼ (φ ∧ ψ) a`∼ φ∨ ∼ ψ
∼ (φ ∨ ψ) a`∼ φ∧ ∼ ψ

Rules:

• From φ ` ψ and ψ ` γ, infer φ ` γ (Transitivity)
• From φ ` ψ and φ ` γ, infer φ ` ψ ∧ γ (∧-introduction)
• From φ ` γ and ψ ` γ, infer φ ∨ ψ ` γ (∨-introduction)
• From φ ` ψ, infer ∼ ψ `∼ φ (Contraposition)

Definition 5.1 A Routley structure is a tuple S = 〈S,≤
, g, v〉 where

• 〈S,≤, g〉 is a poset with an order-reversing involution g;
• v is a valuation on the set of propositional letters:
v(s)(p) ∈ {true, false} for all p which satisfies the
following persistency condition: for any s1, s2 ∈ S and
propositional letter p,

if s1 ≤ s2 and v(s1)(p) = true, then v(s2)(p) = true.

It is called a Boolean structure if≤ is the identity relation
and g is the identity function on S. �

A satisfaction relation |= between states and formulas is
defined inductively as follows:

• S, s |= p if v(s)(p) = true;

• S, s |= φ1 ∧ φ2 if S, s |= φ1 and S, s |= φ2;

• S, s |= φ1 ∨ φ2 if S, s |= φ1 or S, s |= φ2;

• S, s |=∼ φ if S, g(s) 6|= φ.

Definition 5.2 A formula φ logically implies a formula ψ
(denoted as φ |= ψ) if, for any Routley structure S =
〈S, g, v〉, S, s |= φ implies S, s |= ψ. �
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Actually the logical implication relation in the class of
Routley structures coincides with the above consequence re-
lation ` (Dunn 1986) and the complexity of logical implica-
tion is the same as that in standard propositional logic (Fa-
gin, Halpern, and Vardi 1995).

Now we add belief functions to Routley structures just as
Shafer did to Boolean structures (Shafer 1976).

Definition 5.3 A Dempster-Shafer structure B (DS-
structure for short) for the first degree entailments is a tuple
〈S,≤, g, v, Bel〉 where
• S = 〈S,≤, g, v〉 is a Routley structure;
• Bel1 is a belief function on J(S) = {I ⊆ S : I is an

ideal in 〈S,≤〉} and Bel2 a belief function on E(S) =
{F ⊆ S : F is a filter in 〈S,≤〉};
• Bel = Bel1 ⊕ Bel2 which is the combination of the two

belief functions Bel1 and Bel2 on the de Morgan lattice
Dr(S)(= {(I, g(I)) : I ∈ J(S)}).

�

For the Routley structure 〈S,≤, g, v〉, [[φ]]S denotes the
set of states where φ is satisfied, i.e., [[φ]]S = {s ∈ S :
S, s |= φ}, which is a filter in S. So, for any formula φ,
[[φ]]B := (g([[φ]]S), ([[φ]]S)) ∈ D(S). The belief in the
formula φ is defined to be Bel([[φ]]B), which is equal to
(Bel1 ⊕Bel2)(g([[φ]]S), [[φ]]S).

Definition 5.4 For any two formulas φ and ψ in Φ, φ
probabilistically entails ψ (denoted as φ |=DS ψ) if, for
any DS-structure B = 〈S,≤, g, v, Bel〉, Bel([[φ]]B) ≤
Bel([[ψ]]B). �

The following theorem tells us that the deductive system
` of first degree entailments provides a sound and complete
system for both logical implication but also probabilistic en-
tailment.

Theorem 5.5 For any formulas φ and ψ in Φ, φ ` ψ if and
only if φ |=DS ψ.

For the above given set Φ of formulas, a term is an expres-
sion of the form a1bel(φ1) + a2bel(φ2) + · · ·+ akbel(φk),
where a1, a2, · · · , ak are integers and φ1, φ2, · · · , φk are
formulas in Φ. A basic belief formula is one of the form
t ≥ b, where t is a term and b is an integer. A belief for-
mula is a Boolean combination of basic belief formulas. We
can always allow rational numbers in our formulas as abbre-
viations for the formula that would be obtained by clearing
the dominator. And other derived relations =,≤, < and >
can be defined as usual.

Given a DS-structure B = 〈S,≤, g, v, Bel〉 and a ba-
sic belief formula f := a1bel(φ1) + a2bel2(φ2) + · · · +
akbel(φk) ≥ b, B satisfies f (denoted as B |= f ) if
a1Bel([[φ1]]B)+a2Bel([[φ2]]B)+ · · ·+akBel([[φk]]B) ≥
b. We then extend the above |= in the obvious way to all
belief formulas. Let B be a class of Dempster-Shafer struc-
tures. A belief formula f ′ is satisfiable with respect to B if
it is satisfied in some B ∈ B. It is valid with respect to B if
B |= f for all B ∈ B.

The axiomatization Bfde of reasoning about belief func-
tions for first degree entailments consists of three parts: the
first-degree entailments, reasoning about linear inequalities
and reasoning about belief functions.

1. First-degree entailments
• The complete system ` of first degree entailments;

2. Reasoning about linear inequalities
(a) a1bel(φ1) + a2bel(φ2) + · · · + akbel(φk) ≥ b

iff a1bel(φ1) + a2bel(φ2) + · · · + akbel(φk) +
0bel(φk+1) ≥ b;

(b) a1bel(φ1) + a2bel(φ2) + · · · + akbel(φk) ≥ b iff
aj1bel(φj1) + aj2bel(φj2) + · · · + ajkbel(φjk) ≥ b
where j1, j2, · · · , jk is a permutation of 1, 2, · · · , k;

(c) a1bel(φ1) + a2bel(φ2) + · · · + akbel(φk) ≥ b iff
ca1bel(φ1)+ca2bel(φ2)+· · ·+cakbel(φk) ≥ cbwhere
c > 0;

(d) (a1 + a′1)bel(φ1) + (a2 + a′2)bel(φ2) + · · · + (ak +
a′k)bel(φk) ≥ b+ b′ if a1bel(φ1) + a2bel(φ2) + · · ·+
akbel(φk) ≥ b and a′1bel(φ1) + a′2bel(φ2) + · · · +
a′kbel(φk) ≥ b′;

(e) Either t ≥ b or t ≤ b where t is a term;
(f) t ≥ b implies t > b′ where t is a term and b′ < b.

3. Reasoning about belief functions
(a) bel(φ) ≥ 0 for all formulas φ ∈ Φ;
(b) bel(>) = 1

(c) bel(⊥) = 0;
(d) bel(φ1 ∨ φ2 ∨ · · · ∨ φn) ≥∑

I⊆{1,2,··· ,n}(−1)|I|+1bel(∧i∈Iφi);

(e) bel(φ) ≤ bel(ψ) if φ ` ψ.

Item 3e (also Theorem 5.5) connects first degree entail-
ments to reasoning about belief functions.

Theorem 5.6 Bfde is a sound and complete axiomatization
of belief formulas with respect to the class ofDS-structures.

Theorem 5.7 The time complexity of deciding whether a
belief formula is satisfiable with respect to the class of DS-
structures is NP -complete.

6 Conclusion
The main contribution of this paper is the extension of
Dempster-Shafer theory of belief functions on Boolean al-
gebras to the setting of distributive lattices and show that
many intuitively appealing properties in the theory are trans-
posed to this more general case. As an application, we ap-
ply this general theory to a non-classical formalism in the
foundations of Knowledge Representation the first-degree-
entailment of the relevance logic R.

This paper is a theoretical framework for our ongoing
project to apply belief functions to multi-valued reasoning
in AI (Ginsberg 1988), decision-making with bipolar infor-
mation (Dubois and Prade 2008) and adding belief annota-
tions to databases (Gatterbauer et al. 2009) with incomplete
and/or inconsistent knowledge where structures of interest
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are usually assumed to be no more Boolean but distribu-
tive. Our immediate task is to investigate information fusion
in belief functions for distributive bilattice reasoning (Gins-
berg 1988). Another ongoing further project, which is prob-
ably more of theoretical interest, is to develop a theory of
belief functions for quantum structures (not necessarily dis-
tributive) which would relate quantum computation and AI
(Ying 2010).
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