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Abstract 

Saliency detection has been a desirable way for robotic 
vision to find the most noticeable objects in a scene. In this 
paper, a robust manifold based saliency estimation method 
has been developed to help capture the most salient objects 
in front of robotic eyes, namely cameras. In the proposed 
approach, an image is considered as a manifold of visual 
signals (stimuli) spreading over a connected grid, and local 
visual stimuli are compared against the global image 
variation to model the visual saliency. With this model, 
manifold learning is then applied to minimize the local 
variation while keeping the global contrast, and turns the 
RGB image into a multi channel image. After the projection 
through manifold learning, histogram based contrast is then 
computed for saliency modeling of all channels of the 
projected images, and mutual information is introduced to 
evaluate each single channel saliency map against prior 
knowledge to provide cues for the fusion of multiple 
channels. In the last step, the fusion procedure combines all 
single channel saliency maps according to their mutual 
information score, and generates the final saliency map. In 
our experiment, the proposed method is evaluated using one 
of the largest publicly available image datasets. The 
experimental results validated that our algorithm 
consistently outperforms the state of the art unsupervised 
saliency detection methods, yielding higher precision and 
better recall rates. Furthermore, the proposed method is 
tested on a video where a moving camera is trying to catch 
up with the walking person a salient object in the video 
sequence. Our experimental results demonstrated that the 
proposed approach can successful accomplish this task, 
revealing its potential use for similar robotic applications. 

Introduction  
Visual saliency is an efficient way of capturing the most 
noticeable part in a scene, and can give the most usable 
cues for robotic vision (Butko et al 2008, Sarma 2006). 
However, visual saliency is usually a multidisciplinary 
topic involving cognitive psychology (Teuber 1955, Wolfe 
& Horowitz 2004), neurobiology (Desimone & Duncan 
1995, Mannan et al 2009), and computer vision (Itti et al 
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1998, Achanta et al 2009). In human perception systems 
(Teuber 1955), higher cognitive processes in human brains 
can regulate signal intensity through top-down sensitivity 
control to influence the selection of new information and 
thus mediate endogenous attention. On the other hand, 
bottom-up saliency filters automatically enhance the 
response to infrequent stimuli as exogenous attention. 
Hence, visual saliency can be considered as a balanced 
response to both local stimuli (such as pixel and edges) and 
global contrast (such as regions or image structures).  
 Most early work makes more effort to build saliency 
models on low-level image features based on local contrast. 
These methods investigate the rarity of image regions with 
respect to (small) local neighborhoods. Koch and Ullman 
(1985) presented the highly influential biologically inspired 
early representation model, and Itti et al (1998) defined 
image saliency using central surrounded differences across 
multi-scale image features. Harel et al (2006) combine the 
feature maps of Itti et al. with other importance maps and 
highlight conspicuous parts.  Ma and Zhang (2003) used an 
alternative local contrast analysis for saliency estimation. 
Liu et al (2011) found multi-scale contrast in a Difference-
of-Gaussian image pyramid. Such methods using local 
contrast tend to produce higher saliency values near edges 
instead of uniformly highlighting salient objects, as shown 
in Figure 1, making it not applicable for practical image 
analysis. 
 Recent efforts have been made toward global contrast 
based saliency estimation, where saliency of an image 
region is evaluated at the global scale with respect to the 
entire image. Zhai and Shah (2006) defined pixel-level 
saliency based on a pixel’s contrast to all other pixels. It 
can work well when color saliency is dominant, but suffers 
from problems when the background has similar colors. 
Achanta et al.  (2009) proposed a frequency tuned method 
that directly defines pixel saliency using difference of 
Gaussian (DoG) features, and used mean-shift to average 
the pixel saliency stimuli over the whole regions. More 
recently, Goferman et al (2010) consider block-based 
global contrast while global image context is concerned. 
Instead of using fixed-size block, Cheng et al (2011) 
proposed to use the regions obtained from image 
segmentation methods and compute the saliency map from 
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the region-based global contrast. However, it has been 
revealed (Cheng et al 2010) that producing a correct salient 
map is sensitive to the size of regions, and a manual fine 
tuning of the segmentation is a prerequisite for some 
challenging images. In summary, it has been observed that 
most global approaches depend on either regions from 
image segmentation, or blocks with specified sizes. 
 While image structures at global scale are usually an 
important factor for producing salient stimuli, in this paper 
we present a novel approach for saliency modeling, namely 
manifold based saliency estimation. In our approach, we 
propose the balancing of local pixel-level stimuli with 
global contrast, and learn long range salient stimuli through 
unsupervised manifold learning, which provides a local-to-
global abstraction for further saliency detection. 
 In experiments, we extensively evaluated our methods on 
publicly available benchmark data sets, and compared our 
methods with several state-of-the-art saliency methods as 
well as with manually produced ground truth annotations. 
Our experiments show significant improvements over 
previous methods in both precision and recall rates. 
Encouragingly, our approach also provided a convenient 
way for unsupervised saliency detection in video sequence. 
 Fig.1 demonstrates a typical challenging case (raised by 
Goferman et al. in 2010) for all state-of-the-art approaches. 
Our approach not only robustly detected the red leaf, but 
also provided a drastic contrast between the foreground and 
the background. With this advantage, the proposed 
approach can easily be extended to robotic vision tasks, 
such as salient object tracking. 

Saliency-Aware Manifold Learning 
Nearly three decades ago, Koch and Ullman (1985) 
proposed a theory to describe the underlying neural 
mechanisms of vision and bottom-up saliency. They 
posited that the human eye selects several features that 

pertain to a stimulus in the visual field and combines these 
features into a single topographical ’saliency map’. In the 
retina, photoreceptors, horizontal, and bipolar cells are the 
processing elements for edge extraction. After visual input 
is passed through a series of these cells, edge information is 
delivered to the visual cortex. In addition, a neural circuit in 
the retina creates opponent cells which receive inhibitory 
and excitory responses from various cones in the eye. 
These systems combine with further processing in the 
lateral geniculate nucleus (LGN), which plays a role in 
detecting shape and pattern information such as symmetry, 
as a preprocessor for the visual cortex to find a saliency 
region. Hence, saliency can be considered as a biological 
response to various stimuli. 

In this paper, we consider the saliency originating from 
the global image structure. The human visual perception 
system usually ignores noise-like ephemeral or evanescent 
stimuli. Instead, more attention is paid to considerably 
longer-lasting stimuli that may have more energy. Bearing 
this in mind, obviously, a structure-aware saliency could be 
locally salient (e.g. a sharp contrast), and on the other hand, 
globally consistent in comparison with other evanescent 
stimuli. To attain this purpose, we introduce a manifold-
based learning scheme to emulate this biological process.  

Considering an image as a set of pixel signals {xi} 
distributed on the manifold over a 2D grid, as shown in 
Fig.2, the saliency computation will naturally tend to 
minimize the local stimuli and maximize the long-range 
stimuli. This means we need to pull neighboring pixels 
together while keeping their long-range contrast that stands 
for salient image structures.  

Given that we have input signals {xi} their connectivity 
graph matrix S can be computed as, 
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Here, ||.|| is the Frobenius norm, S is a similarity matrix, ri 
and rj denote the spatial location of two pixels, and ε 
defines the radius of the local neighborhood that is 
sufficiently small, and greater than zero. When ε is set to be 
1.5, each pixel will have eight connected nearest neighbor 
pixels, namely KNN=4. 

To optimize the local connected stimuli against the 
global image structure, we define an objective function to 
project {xi} into {yi}, as follows:  
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Here W is the projection matrix. The above target function 
is similar to the Laplaican Eigenmap one (Belkin & Niyogi 
2003), a typical manifold learning approach. The only 
difference is that instead of using the distance between xi 
and xj, we use their spatial location to define the 
connectivity matrix S from Eq.(1).  

The objective function with the choice of symmetric 

 
Fig.1 Saliency maps of a typical challenging case 
computed by various state-of-art methods, and with our 
proposed manifold learning approach. In the first row, 
from the left to the right: Original image, ground truth, SR 
(Hou & Zhang 2007), IT (Itti et al in 1998), GB (Harel et 
al 2006) and MZ (Ma & Zhang 2003). In the second row: 
LC (Zhai & Shah 2006), FT (Achanta et al 2009), CA 
(Goferman et al. in 2010), HC & RC (Cheng et al 2011), 
and our manifold approach. 
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weights Sij incurs a heavy penalty if two pixels xi and xj 
within a small distance are mapped far apart with a large 
distance ||yi-yj|| in their subspace projection. Therefore, 
minimizing the expression in (2) is an attempt to ensure 
that, if two pixels in the image, xi and xj, are “close” in term 
of their location on the spatially connected manifold, their 
projection yi and yj should then be close as well. Thus, this 
strategy using Sij in Eq.(1) sets up a spatial confinement to 
suppress local stimuli while leaving long-distance stimuli 
as they are. 

Following some simple algebraic steps, we can have,  
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where W is the data projection matrix, and  
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L is the Laplacian matrix. Then the problem becomes: 
WXLXW TT

W
minarg

 
      (4) 

Here, the Laplacian graph model is embedded to convert 
the nonlinear problem into a linear problem. 

Fig.2 illustrates the projection results for saliency 
abstraction. The left one shows the image, in which the 
pebbles look quite like a noisy- or texture-style scene. The 
third one shows the manifold base saliency-targeted image 
projection results. It can be seen that the salient yellow 
candy is kept as global stimuli, and other local differences 
among pebbles are drastically smoothed. Fig.2 also uses a 
3D plot to show the comparison between the original image 
in one (red) color channel and the abstraction result in the 
primary projection channel. Obviously, manifold learning 
provides a context-aware saliency preservation. This idea is 
somewhat similar to the purpose of the method by 
Goferman et al. in 2010, which compared the local block 
against its global contrast, though our way is 
mathematically different. 

It is noted that in the proposed manifold learning, the 
abstraction can be sensitive to the parameter ε or KNN, 
which define how many nearest neighbors a pixel can have. 
Fig.3 shows the comparison using different KNN from 4 to 
32. We can see that the more neighbors are allowed, the 
higher the local-global contrast could be. However, it may 
blur the edges to smooth using more neighbors for each 
pixel. In this paper, we typically set KNN as 8.  

Histogram-based Saliency Detection 
Through the above manifold learning, an RGB image is 
actually turned into a multi-channel image with up to more 
than ten projected dimensions. The multiplication of 

    

Fig.2 Manifold-based image abstraction. From left to 
right: Original image, terrain view of its red channel, 
results after abstraction and its terrain. 

 
Fig.3 Manifold-based image abstraction with different 
KNN. From left column to right: Original images, KNN =4, 
KNN =8, KNN =16, KNN =24, and  KNN =32.  

   
(a)  The computation of histogram saliency φk. From left 
to right: Single-channel 1D histogram; Computed bin’s 
histogram saliency; Original image and one of its single-
channel saliency maps. 

 
(b) Single-channel saliency map estimation in each 
channel (10 channels listed). 

 
(c) Priori map and the fusion result  

Fig.4 Saliency estimation per channel and the fusion of all 
results using mutual information. 
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channels can give the saliency detection scheme more 
information and thus better accuracy. On the other hand, it 
also results in more data to process. 
 As it has been discussed, global contrast [Achanta et al 
2009] has been proved to give better accuracy than most 
local methods. Cheng et al (2011) proposed to model the 
saliency using a 3D histogram from Lab color channels. 
With its simplicity and reliability, we choose to use 
histogram contrast estimation for our saliency detection. 
However, given the number of dimensions after manifold 
projection, it is unlikely to put all channels together, since 
the number of histogram bins will be overwhelming. 
Instead, in our proposed scheme, we first estimate saliency 
per channel, and then combine them together to attain 
robust saliency estimation. 
 It is noticed that region-based saliency estimation (Cheng 
et al 2011) has attained great success in its recall-precision 
performance. However, as has been shown, this technique 
needs a manual-tuning of image segmentation, making it 
not applicable for robotic applications, where automatic 
detection is the primary concern. 
 In mathematics, the pixel-level saliency can be 
formulated by the contrast between histogram bins, 

  � ��
j

jk Njk�       (5) 

where, Nj is the number of pixels in the j-th bin, and φk is 
the initially computed saliency for the k-th bin. Fig.4-a) 
shows the procedure for computing the histogram saliency 
φk. First, the histogram Nj is computed, as shown on the 
left. Then with the above equation, φk is obtained 
accordingly, as shown on the right. 
 With the above simple scheme, we can easily obtain the 
initial saliency map for each channel of a projected image. 
Fig.4-b) shows an example, where the saliency maps are 
computed for the first ten channels, respectively. However, 
it is obvious these initial estimations are far from accurate. 
We then introduce a mutual information scheme to refine 
these initial results by a weighted fusion procedure. 

Fusion of Multiple Channels 
To attain an accurate and coherent fusion of multiple 
channels, we introduce mutual information to weight the 
initially estimated saliency maps. Basically, we can assume 
a priori knowledge that human perception always pays 
attention to the objects around the center of a scene. We 
can model this using a centered anisotropic Gaussian 
distribution, as shown in the left image in Fig.4-c). With 
this expectation, we can then evaluate the initial estimation 
against this priori map. 
 Mutual information (MI) can be considered a statistic for 
assessing independence between a pair of variables, and has 
a well-specified asymptotic distribution. To calculate the 
MI score between a saliency map in Fig.4-a) and the priori 
map in Fig.4-b), we first convert these two 2D matrices into 

vectors, namely Sk and Pr, and we compute their MI score 
as: 


 � 
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Here, hX stands for the histogram of the variable X. Details 
on MI can be found in the survey by Verdu et al (1999). In 
Fig.4-b), the computed MI score is tagged on every single-
channel saliency map. 
 Once we have the estimated mutual score, it becomes 
simple to fuse the multi-channel saliency map, which can 
be expressed as a weighted totaling, 
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where, (x, y) stands for the coordinates of a pixel in its 
saliency map.  
 The right image in Fig.4-c) shows the final added-up 
saliency map for the original image in the middle. In Fig.5, 
several more examples are demonstrated. We can see that 
in comparison to single-channel saliency maps, the fusion 
results computed by the proposed fusion scheme have been 
greatly enhanced, and a robust performance is attained. 

Experimental Comparison 
In our experiment, we evaluated our approach on the 
publicly available database provided by Achanta et al 
(2009). To the best of our knowledge, this database is the 
largest of its kind, and has ground truth in the form of 

 

 

 

 

 
Fig.5 Examples of single-channel saliency estimation 
and their fusion. The last two columns are the original 
images and the fusion results, and the foregoing columns 
are the estimated single channel saliency maps. (In the 
figure, ‘jet’ colormap was applied to make the saliency 
contrast visually easy to evaluate). 
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accurate human-marked labels for salient regions.  
 The average size of test images in the dataset is around 
400×300 pixels each. Our system was implemented in 
MATLAB, on a PC with 2GB RAM and a 3GHz dual-core 
CPU. The test images were input by the standard interface 
provided by the MATLAB library. 
 We compared the proposed method with eight state-of-
the-art saliency detection methods, namely: 1) SR (Hou & 
Zhang 2007); 2) IT (Itti et al in 1998); 3) GB (Harel et al 
2006); 4) MZ (Ma & Zhang 2003); 5) LC (Zhai & Shah 
2006); 6) FT (Achanta et al 2009); 7) CA (Goferman et al 
2010); 8) HC(Cheng et al 2011). While our algorithm is 
implemented in MATLAB, the average computation time 
for each image is around 1.056 seconds. 
 For the other methods, we took the authors’ published 
results provided from Cheng et al 2011 and Achanta et al 
2009 for our evaluation and comparison. We did not 
compare our approach with the RC method by Cheng et al 

in 2011. This RC method was shown (Cheng et al 2011) to 
attain high precision, but sometime it depends on the user’s 
interactive tuning of its image segmentation procedure, 
which is sensitive in producing correct regions for saliency 
estimation. It may fit well for image editing applications 
but not so useful for robotic applications. In the later case, 
unsupervised saliency estimation is required. 
 Fig.6 demonstrates the qualitative comparison results on 
several challenging cases that most existing methods failed 
to extract the correct saliency map from. We can clearly see 
that the proposed manifold-based method can robustly 
tackle these cases with  high saliency contrast ratio between 
the salient regions and the background. 
 Fig.7 shows the statistical results of precision-recall 
curves. The curves were obtained in the same way as 
Achanta (2009) proposed, where naïve thresholding was 
applied from 0 to 255 to obtain successively a  list of both 
precision and recall rates when subtracting the binarized 
saliency maps with their corresponded ground truth. The 
experimental results clearly validate that our proposed 
approach (the red curve in Fig.7) has consistently 
outperformed all state-of-the-art approaches. With the 
proposed manifold learning and fusion scheme, we can see 
that a robust unsupervised saliency estimation scheme has 
been successfully developed and validated. 

Additional Experimental Results 
In most robotic vision applications, the input signals are 
consecutive frames from the video camera. This means a 
robust saliency detector needs to tackle video-style visual 

 
Fig.7 Precision-recall curves for naive thresholding of 
saliency maps using 1000 publicly available benchmark 
images. Our method is compared with 1) SR (Hou & 
Zhang 2007); 2) IT (Itti et al in 1998); 3) GB (Harel et al 
2006); 4) MZ (Ma & Zhang 2003); 5) LC (Zhai & Shah 
2006); 6) FT (Achanta et al 2009); 7) CA (Goferman et 
al 2010) ; 8) HC(Cheng et al 2011).  It is shown that the 
proposed approach can consistently outperform the state-
of-art approaches. 

 

 

 

 

 

 

 
Fig.6 Visual comparison of saliency maps. From left to 
right columns: 1) original image, 2) ground truth, 3) FT 
(Achanta et al 2009), 4) CA (Goferman et al 2010), 5) 
HC(Cheng et al 2011), 6) RC(Cheng et al 2011), and our 
manifold-based method. It can be observed that our 
algorithm can robustly tackle challenging cases which 
most algorithms failed to tackle. 
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data. A challenging problem for many robotic tracking 
applications is the demand to analyze the scene instantly 
with a moving background, while the camera equipped on a 
robot usually moves arbitrarily due to the random motion of 
the robot.  
 For most state-of-the-art computer vision approaches, it 
is still very tricky to detect a moving object consistently in 
front of an arbitrary moving background. Conventional 
approaches such as GMM-based motion segmentation and 
optical flow can easily fail in these challenging cases. They 
are also compute-intensive, making it hard to be 
implemented on embedding systems that can be 
accommodated on robots. Instead, saliency detection can 
instantly capture the salient object with no need for pixel-
level motion field analysis or motion segmentation, making 
it a promising solution provided for robotic vision to 
overcome this sort of challenge. 
 While our initial evaluation on static images has 
demonstrated the advantages of our approach, we have 
further tested our approach on test videos. Fig.8 shows our 
estimated saliency maps of consecutive frames in a test 
video, where the camera tracks the person walking in front 
of the textured wooden fence from the left to the right. 
 As shown in Fig.6, our algorithm can easily detect the 
walking person across the whole video shot. In all 180 
frames, the algorithm detected the person in all frames with 
no object-level false positive detection. Such unsupervised 
salient object detection can greatly facilitate the robotic 

vision to cope with various tasks in practical applications. 

Conclusion 
In conclusion, a robust manifold-based saliency estimation 
method has been proposed for robotic vision to capture the 
most salient objects in the observed scenes. In the proposed 
approach, an image is considered as a manifold of visual 
signals (stimuli) spreading over a connected grid, and 
projected into a multi-channel format through manifold 
learning. Histogram-based saliency estimation is then 
applied to extract the saliency map for each single channel, 
respectively, and a fusion scheme based on mutual 
information is introduced to combine all single-channel 
saliency maps together according to their mutual 
information score.  In our experiment, the proposed method 
is evaluated using a well-known large image dataset. The 
experimental results validated that our algorithm attained 
the best prevision and recall rates among several state-of-
art saliency detection methods. Furthermore, the proposed 
method has been demonstrated on a test video to show its 
potential use for robotic applications, such as tracking a 
moving target in an arbitrary scene while the camera  is 
moving with a robot. The experimental results show that 
the proposed approach can successfully accomplish this 
sort of tasks, revealing its potential use for similar robotic 
applications. 

     

     

     

     
Fig.8 Video saliency detection in the challenging camera-moving case. In the test video, the camera tracks the person 
walking in front of the textured fence from the left to the right. From the test, the detected saliency is stably allocated on the 
walking person, though the background is moving in the reverse direction of camera motion. 

2008



References 
R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency
tuned salient region detection. In CVPR, pages 1597 1604, 2009. 
M. Belkin and P. Niyogi, “Laplacian Eigenmaps for 
Dimensionality Reduction and Data Representation,” Neural 
Computation, vol. 15, no. 6, pp. 1373 1396, 2003. 
Butko, N.J., Zhang, L. Cottrell, G.W. and Movellan, J.R. (2008) 
Visual saliency model for robot cameras. In International 
Conference on Robotics and Automation (ICRA 2008). 
Ming Ming Cheng, Guo Xin Zhang, Niloy J. Mitra, Xiaolei 
Huang, Shi Min Hu. Global Contrast based Salient Region 
Detection. IEEE CVPR, p. 409 416, Colorado Springs, USA, June 
21 23, 2011. http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/ 
R. Desimone and J. Duncan. Neural mechanisms of selective 
visual attention. Annual review of neuroscience, 18(1):193 222, 
1995. 
S. Goferman, L. Zelnik Manor, and A. Tal. Context aware 
saliency detection. In CVPR, 2010. 
J. Harel, C. Koch, and P. Perona. Graph based visual saliency. In 
NIPS, pages 545 552, 2006. 
X. Hou and L. Zhang. Saliency detection: A spectral residual 
approach. In CVPR, pages 1 8, 2007. 
L. Itti, C. Koch, and E. Niebur. A model of saliency based visual 
attention for rapid scene analysis. IEEE TPAMI, 20(11):1254
1259, 1998. 
C. Koch and S. Ullman. Shifts in selective visual attention: 
towards the underlying neural circuitry. Human Neurbiology, 
4:219 227, 1985. 
T. Liu, Z. Yuan, J. Sun, J.Wang, N. Zheng, T. X., and S. H.Y. 
Learning to detect a salient object. IEEE TPAMI, 33(2):353 367, 

2011. 
Y. F. Ma and H. J. Zhang. Contrast based image attention 
analysis by using fuzzy growing. In ACM Multimedia, pages 
374 381, 2003. 
S. K. Mannan, C. Kennard, and M. Husain. The role of visual 
salience in directing eye movements in visual object agnosia. 
Current biology, 19(6):247 248, 2009. 
J. Reynolds and R. Desimone. Interacting roles of attention and 
visual salience in v4. Neuron, 37(5):853 863, 2003. 
C. Rother, V. Kolmogorov, and A. Blake. “Grabcut”  Interactive 
foreground extraction using iterated graph cuts. ACM Trans. 
Graph., 23(3):309 314, 2004. 
U. Rutishauser, D. Walther, C. Koch, and P. Perona. Is bottom up 
attention useful for object recognition? In CVPR, pages 37 44, 
2004. 
Subramonia Sarma, Yoonsuck Choe. 2006. Salience in 
orientation filter response measured as suspicious coincidence in 
natural images. in Proceedings of AAAI 2006  Volume 1. 
H. Teuber. Physiological psychology. Annual Review of 
Psychology, 6(1):267 296, 1955. 
A. M. Triesman and G. Gelade. A feature integration theory of 
attention. Cognitive Psychology, 12(1):97 136, 1980. 
J. M. Wolfe and T. S. Horowitz. What attributes guide the 
deployment of visual attention and how do they do it? Nature 
Reviews Neuroscience, pages 5:1 7, 2004. 
Y. Zhai and M. Shah. Visual attention detection in video 
sequences using spatiotemporal cues. In ACM Multimedia, pages 
815 824, 2006. 
S. Verdu, S. W. McLaughlin, editors. Information Theory: 50 
Years of Discovery. IEEE Press, 1999. 

 
 

2009




