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Abstract

Finding a meaningful way of characterizing the
difficulty of partially observable Markov decision
processes (POMDPs) is a core theoretical problem in
POMDP research. State-space size is often used as a
proxy for POMDP difficulty, but it is a weak metric
at best. Existing work has shown that the covering
number for the reachable belief space, which is a set
of belief points that are reachable from the initial
belief point, has interesting links with the complexity
of POMDP planning, theoretically. In this paper, we
present empirical evidence that the covering number for
the reachable belief space (or just “covering number”,
for brevity) is a far better complexity measure than
the state-space size for both planning and learning
POMDPs on several small-scale benchmark problems.
We connect the covering number to the complexity of
learning POMDPs by proposing a provably convergent
learning algorithm for POMDPs without reset given
knowledge of the covering number.

Introduction
Defining a good complexity measure for capturing the
difficulty of partially observable Markov decision processes
(POMDPs) is a challenging and significant research topic
in AI research. It is well known that the intractability of a
POMDP originates from the curse of dimensionality and the
curse of history (Pineau, Gordon, and Thrun 2006; Silver
and Veness 2010; Lim, Hsu, and Lee 2011). In a planning
problem with n states, computation takes place in an n-
dimensional belief space. The number of distinct histories
grows exponentially as the planning horizon increases. The
state-space size and the number of distinct histories are
often used as measures for describing the difficulty in
POMDP planning in terms of the curses of dimensionality
and history, respectively.

In the past decade, point-based value-iteration algorithms
have made impressive progress (Smith and Simmons 2005;
Pineau, Gordon, and Thrun 2006; Kurniawati, Hsu, and Lee
2008). The success of these algorithms tells us that the curse
of history plays a much more important role in affecting
POMDP value iteration than the curse of dimensionality.
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Thus, it is reasonable to believe that the number of possible
histories should be a far better predictor of the difficulty
of solving POMDPs. However, compared to the size of the
state space, characterizing the number of histories is much
less straightforward. The number of possible histories is
infinite even for the smallest possible POMDP problems.
We will argue that the notion of the covering number for the
reachable belief space (Hsu, Lee, and Rong 2007), briefly
“covering number”, is a viable measure for characterizing
the number of possible histories. In POMDPs, each history
can be mapped to a belief point—a probability distribution
over states. Thus, all possible histories can be represented
as a set of belief points, called the reachable belief space
R(b0) in this paper. Intuitively, the covering number for
R(b0) is the minimum number of balls with a given radius
δ ≥ 0 so that all reachable belief points lie in some ball
in the set (Hsu, Lee, and Rong 2007). Since we can cover
the whole state space using just a finite number of balls, the
covering number is always finite in all POMDPs for δ > 0.

The finiteness of the covering number does not imply
its value can be computed efficiently. We are not aware of
any published results providing an algorithm for computing
the covering number. In this paper, we provide two simple
algorithms for estimation. Experimentally, our estimated
covering numbers are far better than other complexity
measures, such as state-space size, in predicting the
difficulty of both POMDP planning and learning on several
well-known test problems. This data also leads to an
observation that benchmark problems that have been proven
hard for planning also appear to be hard for learning.

The theoretical connection between planning difficulty
and the covering number is already established by Hsu,
Lee, and Rong (2007). Here, we make an initial foray
into connecting POMDP learning to covering numbers. We
present a provably convergent POMDP learning algorithm
without reset (meaning systems do not allow the learning
algorithm to transition to a fixed initial configuration on
demand) using the insight from the covering number. The
learning algorithm is composed of an AND/OR graph
representation and an existing structure-learning algorithm.

Preliminaries
POMDPs provide a powerful mathematical model for
sequential decision making in partially observable stochastic
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domains. A discrete and discounted POMDP model can
be formally defined by a tuple (S,A,Z, T,Ω, R, γ). In
the tuple, S, A and Z are the finite and discrete state
space, action space and observation space, respectively,
T (s, a, s′) : S × A × S → [0, 1] is the state-transition
function (P (s′|s, a)), Ω(a, s′, z) : A × S × Z → [0, 1] is
the observation function (P (z|a, s′)), R(s, a) : S ×A→ R
is the reward function, and γ ∈ (0, 1) is the discount factor.
Because the system’s current state is not fully observable,
the agent has to rely on the complete history of the past
actions and observations to select a desirable current action.
A belief point (or belief, briefly) b is a sufficient statistic
for the history of actions and observations—it is a discrete
probability distribution over the state space whose element
b(s) gives the probability that the system’s state is s. The
reachable belief space R(b0), as mentioned before, is a set
of belief points that are reachable from the initial belief
point b0 under arbitrary sequences of actions and (non-
zero probability) observations. It can be represented as an
AND/OR tree rooted at b0. When the agent takes action a at
belief point b and receives observation z, it will arrive at a
new belief point ba,z:

ba,z(s′) =
1

η
Ω(a, s′, z)

∑
s∈S

T (s, a, s′)b(s), (1)

where η is a normalizing constant (Kaelbling, Littman, and
Cassandra 1998). The constant is the probability of receiving
observation z after the agent takes action a at belief point b,
which can be specified as:

P (z|b, a) =
∑
s′∈S

Ω(a, s′, z)
∑
s∈S

T (s, a, s′)b(s). (2)

The definition of the covering number for a set of points
follows.
Definition 1. Given a set of points B in an Lp metric space
X , a δ-region with the center point bc, denoted c(bc, δ) or
sometimes c for short, is a subspace in X that satisfies ||b−
bc|| ≤ δ for all b in c(bc, δ). ĈB(δ), a set of δ-regions, is a
δ-cover for B satisfying the condition that all points b in B
are included in at least one δ-region in ĈB(δ). The δ-cover
for B with the smallest number of δ-regions is denoted by
CB(δ). The δ-covering number for B, denoted by |CB(δ)|,
is the size of the smallest δ-cover for B.

In this paper, we measure the distance between belief
points in an L1 metric space B: for b1, b2 ∈ B, ||b1 − b2|| =∑
s∈S |b1(s) − b2(s)|. Since all belief points b in B satisfy∑
s∈S b(s) = 1 and b(s) ≥ 0, we have maxb1,b2∈B ||b1 −

b2|| = 2. In a two- (or three-) dimensional space, a δ-
region, or ball, represents a square (or regular octahedron).
Following Definition 1, we denote CR(δ) as the smallest δ-
cover forR(b0).

The notion of the covering number of the state
space appeared previously in a reinforcement-learning
paper (Kakade, Kearns, and Langford 2003). It refers to
the number of neighborhoods, finite but much less than |S|,
required for accurate local modeling in Markov decision
processes (MDPs) with very large or infinite state spaces.

Algorithm 1: Breadth-First Search (BFS)

Input: expandSet = {b0},Rdepth(b0) = {b0}, depth.
Output:Rdepth(b0).

1 while expandSet is not empty do
2 expandSet = expandSet \ {b};
3 for a ∈ A do
4 for z ∈ Z do
5 if ba,z /∈ Rdepth(b0) and db ≤ depth then
6 Rdepth(b0) = Rdepth(b0)

⋃
{ba,z};

7 if ba,z /∈ Rdepth(b0) and db < depth then
8 expandSet = expandSet

⋃
{ba,z};

Hsu, Lee, and Rong (2007) extended the concept from
MDPs to POMDPs, and revealed that an approximately
optimal POMDP solution can be computed in planning time
polynomial in |CR(δ)|, the covering number forR(b0).

Approximation Algorithms for
Computing the Covering Number

In this section, we describe two approaches for estimating
|CR(δ)|, the δ-covering number for the reachable belief
space R(b0). They are only different in how they collect a
finite subset of R(b0). Both methods have their advantages
and disadvantages.

Our approaches to approximation start with the breadth-
first search (BFS) algorithm and a revised breadth-
first search (R-BFS) algorithm to obtain a finite subset
of R(b0). Then, we use the complete-link clustering
method (Manning, Raghavan, and Schütze 2008) on this
subset to estimate the covering number. Note that exact
computation of |CR(δ)| is NP-hard even when R(b0) is a
finite set (Hochbaum 1996).

Breadth-First Search
The BFS algorithm outputs Rdepth(b0), which is a set of
distinct beliefs that are reachable from b0 under arbitrary
sequences of no more than depth action-observation steps
(see Algorithm 1).

Now, we reveal the relationship between the size ofR(b0)
and the size ofRdepth(b0) in terms of weight. We give each
belief b in the AND/OR tree a weight:

weight(b) = γdbP (b|b0), (3)

where db represents the number of action-observation steps
(depth) from b0 to b, and P (b|b0) denotes the likelihood
of arriving at b from b0 by following random actions.
For example, if b is reachable from b0 by following
a1z1a2z2...anzn and going through b1, b2, ..., bn−1, then
P (b|b0) = 1

|A|nP (z1|b0, a1)P (z2|b1, a2)...P (zn|bn−1, an).
It is reasonable to weight the belief points this way because
belief points that are likely to be reached from b0 should
be more important than those rarely encountered belief
points. Thus, the total weight of all possible belief points in
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Algorithm 2: Revised Breadth-First Search (R-BFS)
Input: expandSet = {b0}, ε(> 0),Rε(b0) = {b0}.
Output:Rε(b0).

1 while expandSet is not empty do
2 expandSet = expandSet \ {b};
3 for a ∈ A do
4 for z ∈ Z do
5 if there does not exist a belief b̂ inRε(b0)

that satisfies ||b̂− ba,z|| ≤ ε then
6 Rε(b0) = Rε(b0)

⋃
{ba,z};

7 expandSet = expandSet
⋃
{ba,z};

the AND/OR tree rooted at b0, denoted by weight(R(b0)),
is

∑
b∈R(b0)

weight(b) =
∑
b∈R(b0)

γdbP (b|b0) =∑∞
depth=0 γ

depth = 1
1−γ , and the total weight of all belief

points in Rdepth(b0), denoted by weight(Rdepth(b0)), is
1−γdepth+1

1−γ . So, at least 1 − γdepth+1 of all possible belief
points in R(b0) in terms of weights have been included in
our collected setRdepth(b0).

Revised Breadth-First Search
The R-BFS algorithm provides another way of obtaining
a finite subset of R(b0), called Rε(b0) in this paper (see
Algorithm 2). The Rε(b0) that the algorithm returns is
always finite because each new element added to the set
must be ε away from existing points and the volume
of the belief simplex is finite. Proposition 1 provides a
mathematical link between |CR(δ)| and |CRε(δ)| under a
contraction assumption. Please see Appendix for proofs.

Proposition 1. Assume that ||ba,z1 − ba,z2 || = η||b1 − b2||,
where 0 ≤ η < 1, for all actions a, observations z, and
beliefs b1 and b2 in the reachable belief space R(b0). Let
ε, δ > 0. Then, |CR(δ + ε

1−η )| ≤ |CRε(δ)| ≤ |CR(δ)|.
The proof of Proposition 1 is based on Lemma 1, which

says that all beliefs inR(b0) can be included in a set of ε
1−η -

regions with size |Rε(b0)| under the contraction assumption.

Lemma 1. If ||ba,z1 −b
a,z
2 || = η||b1−b2||, where 0 ≤ η < 1,

for all actions a, observations z, and belief points b1 and b2
inR(b0). Then,R(b0) ⊆

⋃
b∈Rε(b0) c(b,

ε
1−η ).

An advantage of the BFS algorithm is that the difference
between weight(Rdepth(b0)) and weight(R(b0)) can be
estimated without any assumption. Its disadvantage is the
heavy burdens that it leaves to the complete-link clustering
method. For example, assume γ = 0.95, and we want to get
95% of all belief points in R(b0) in terms of weights, we
need to set depth = dlog0.95 0.05e − 1 = 58. It means that
the BFS algorithm needs to output (|A||Z|)59−1

|A||Z|−1 belief points,
which then need to be clustered.

A benefit of the R-BFS algorithm is that |CRε(δ)| is
usually bigger than |CRdepth(δ)|, and therefore closer to
|CR(δ)|, when |Rε(b0)| = |Rdepth(b0)|. A weakness is that

Algorithm 3: Complete-Link Clustering
Input: B,δ.
Output: |ĈB(δ)|.

1 for bi ∈ B do
2 ci = {bi};
3 cover = {c1, c2, ..., c|B|};
4 while d(cover) ≤ 2δ do
5 ci, cj = argminci 6=cj∈cover d(ci, cj);
6 cover = cover

⋃
{ci

⋃
cj} \ {{ci}, {cj}};

7 ĈB(δ) = cover;

the contraction assumption in Proposition 1 is not always
satisfied in general, although it can be always satisfied in an
“expected” sense (Even-Dar, Kakade, and Mansour 2005).

Complete-Link Clustering
Algorithm 3 shows how we use the complete-link clustering
method to estimate |CB(δ)|. Here, the set of points B can
be Rdepth(b0) or Rε(b0). We define a cover as a set of δ-
regions. Each δ-region, denoted ci, consists of a set of belief
points. In the beginning, only one belief point is included
in each δ-region. Then, the algorithm checks the possibility
of merging two δ-regions into one based on the following
distance definition. We define the distance between regions
in cover as: d(cover) = minci 6=cj∈cover d(ci, cj), where
d(ci, cj) = maxb1∈ci,b2∈cj ||b1 − b2||. Thus, the distance
between two δ-regions is the distance between two
remotest belief points in the two δ-regions. These distances
are then used to merge δ-regions in the complete-link
clustering algorithm, whose overall time complexity is
O(|B|2 log |B|) (Manning, Raghavan, and Schütze 2008).
The δ-cover that the complete-link clustering discovers,
ĈB(δ), may not be the smallest δ-cover for B. However,
|ĈB(δ)| it returns is often quite close to |CB(δ)|
empirically (Xu and Wunsch 2005).

Note that complete-link clustering is not absolutely
necessary to cluster the output of R-BFS. We can use the
output of R-BFS by setting ε = 2δ to estimate the covering
number directly. We will see estimated covering numbers of
medium POMDPs based on this insight in experiments.

The Covering Number and the
Complexity of POMDP Learning

In this section, we extend the covering number from
POMDP planning to POMDP learning. We finally present
the main result: a learning algorithm for POMDPs without
reset with provable convergence given the covering number.
It suggests that accurate predictions of observations can be
made after a polynomial number of inaccurate predictions
that grow exponentially with the covering number.

We start with Lemma 2, which says belief points in
the same δ-region have similar observation probabilities.
Lemma 2 is used in our main result to treat all belief points
in a δ-region c as the region’s central point bc. Such an
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approximation method brings no more than δ prediction
errors in predicting observation probabilities.

Lemma 2. For any two belief points b and b′, if ||b−b′|| ≤ δ,
then |P (z|b, a)− P (z|b′, a)| ≤ δ.

To our knowledge, a major difficulty in learning POMDPs
is to approximately reflect all infinite possible mappings
between successive belief points and δ-regions, in spite
of the lack of its discussion in prior work. Here, we
suggest using a finite set of AND/OR graphs with |CR(δ)|
nodes to handle the challenge. It provides a novel way of
changing the problem of learning POMDPs into a much
easier problem of learning MDPs with |CR(δ)| states. In
each AND/OR graph, each node represents a δ-region,
OR is over actions and AND is over observations. There
are |CR(δ)||A||Z| AND/OR graphs with |CR(δ)| nodes.
A δ-accurate AND/OR graph defines the right action-
observation edges that connect any two δ-regions. “Right”
here means that for all reachable belief points b in a given
δ-region, the δ-accurate graph predicts which δ-regions
the successive beliefs btn , where tn = a1z1a2z2...anzn,
belong to with accurate probability. Such a δ-accurate graph
definitely exists in the graph set, as stated in Lemma 3:

Lemma 3. For two arbitrary belief points in the reachable
belief space R(b0), if they are in a δ-region, after the same
random action-observation pairs, they end up in the same
successive δ-regions with probability almost one.

Once the δ-region that b0 belongs to and the δ-accurate
graph are known, the POMDP-learning problem reduces
to a |CR(δ)|-state MDP learning problem. The adaptive
k-meteorologists algorithm (Diuk, Li, and Leffler 2009),
an existing structure-learning algorithm, can be used to
determine the δ-accurate graph among graphs in the graph
set.

Using Lemmas 2 and 3, we can prove Proposition 2,
which can be considered an extension of Theorem 1 in Hsu,
Lee, and Rong (2007) in POMDP learning.

Proposition 2. Given 0 < 2δ ≤ ε ≤ 1 and |CR(δ)|, the δ-
covering number for the reachable belief space R(b0), let
a1z1a2z2...aLzL be a sequence generated by choosing L
actions uniformly at random. Let bt+1 be the belief point
arrived by taking action at+1 and receiving observation
zt+1 at belief point bt. Then, we can build a learning
algorithm for POMDPs without reset that guarantees
1
L

∑L−1
t=0 [P (zt+1|bt, at+1) − P̂ (zt+1|bt, at+1)]2 ≤ ε with

probability at least 1 − α with an upper bound of L =
O( kε3 ln k

α ), where k = |CR(δ)||A||Z|+1.

The significance of Proposition 2 is that it provides a
novel way of building a provably convergent POMDP-
learning algorithm using the insight from covering numbers.

Experimental Results
In this section, we provide empirical evidence that the
covering number is a good predictor of performance for
both planning and learning POMDPs. We estimated the
covering numbers on the suite of small-scale POMDP
problems listed in the first column of Table 1 taken

from Cassandra’s POMDP website1. We chose these seven
benchmark problems only because their average one-step
learning errors were available from James and Singh (2004).
The Bridge Repair problem in James and Singh (2004) was
not included because its γ was 1 and we only discussed
POMDPs with γ ∈ (0, 1) because our theoretical result on
BFS only applied when γ was less than 1.

Columns 2–4 list the sizes of the state spaces, action
spaces and observation spaces in all test POMDPs,
respectively. Columns 5 and 6 list the covering numbers for
these POMDP problems as approximated by the BFS and
R-BFS algorithms, respectively2. We set |Rdepth(b0)|, the
size of the collected belief set Rdepth(b0), as 1000 for all
tested problems in the BFS algorithm, used ε = 0.04 as
the input of the R-BFS algorithm, and set δ = 0.2 in the
complete-link clustering method. We think setting the same
|Rdepth(b0)| is fairer than setting the same depth on test
problems in collecting representative subsets ofR(b0).

Column 7 in Table 1 reports the difficulty of solving
each of these POMDPs via the Witness algorithm (Littman
1994), a well-known POMDP planning algorithm. The
difficulty level ranges from “easy” to “hard” according
to whether a POMDP’s planning time is located in
[0, 10), [10, 1000) and [1000,+∞) seconds. We computed
them using the pomdp-solve-5.3 software package, also
taken from Cassandra’s web-page, on an AMD dual core
processor 3600+ 2.00GHz with 2GB memory. Most results
in Column 7 can also be found in the work of Littman,
Cassandra, and Kaelbling (1995). As shown in Column 7,
the Shuttle and 4x3 Maze problems are the two hardest
planning problems. Note that they are also the problems
with the two largest covering numbers (Columns 5 and 6).
Furthermore, the four “easy” planning problems are the four
with the smallest covering numbers (Column 6). In contrast,
the problems with the two biggest state-space sizes are the
Cheese Maze and 4x3 Maze problems. State-space sizes do
not tell us the Cheese Maze problem is easier to solve than
the 4x3 Maze problem, but (estimated) covering numbers
work well in distinguishing them.

Columns 8 and 9 in Table 1 show the prediction error
after learning the POMDPs using myopic learning, also
known as gradient-based learning (Singh et al. 2003), and
reset learning algorithms (James and Singh 2004). These
two algorithms were designed based on the predictive
state representation or PSR (Littman, Sutton, and Singh
2002), which is an alternative representation to POMDPs
intended to be better suited for learning. The columns report
1
L

∑L−1
t=0 [P (zt+1|bt, at+1)−P̂ (zt+1|bt, at+1)]2, the average

one-step prediction error on a single or spliced action-
observation sequence with given length L = 107 (James
and Singh 2004). Here, we see the Shuttle and 4x3 Maze

1http://www.pomdp.org
2Besides the above two algorithms, another approach to

generating representative subsets of the reachable belief points is
a random path algorithm that samples belief points from a long
stochastic action-observation trajectory started from b0. Such a
method is promising for large POMDPs. Empirical results from
this algorithm on test problems are available on request.
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1 2 3 4 5 6 7 8 9 10 11

Problems |S| |A| |Z| |ĈRdepth(0.2)| |ĈR0.04
(0.2)| Witness Reset

Learning
Myopic
Learning

|S||A|(|S|
+|Z|-2)

|Q|(|Q|+ 1)
|A||Z|+ |Q|

Tiger 2 3 2 3 3 easy 3.5e-7 4.3e-6 12 38
Paint 4 4 2 23 22 easy 2.7e-7 1.0e-5 64 50
Float-reset 5 2 2 8 7 easy 3.7e-8 1.0e-4 50 125
Cheese Maze 11 4 7 16 16 easy 3.8e-6 3.7e-4 704 3707
Network 7 4 2 22 29 medium 3.2e-6 8.3e-4 196 455
Shuttle 8 3 5 39 42 hard 2.2e-5 2.7e-2 264 847
4×3 Maze 11 4 6 96 146 hard 6.4e-5 6.6e-2 660 2650

Table 1: Summary table of empirical results. See text for details.

Measures Reset
Learning

Myopic
Learning

|S| 0.6237 0.5580
|S||A|(|S|+ |Z| − 2) 0.6159 0.5672
|Q|(|Q|+ 1)|A||Z|+ |Q| 0.4744 0.4220
|ĈRdepth(0.2)| 0.9782 0.9702
|ĈR0.04(0.2)| 0.9811 0.9659

Table 2: Linear correlation coefficients between different
measures and two learning algorithms.

problems are again the two hardest problems to learn.
This result provides some additional empirical support for
the idea that the difficulty of POMDPs (for planning and
learning) is an inherent property of the POMDP and is well
captured by its covering number.

Now, we further argue that the covering number is a more
appropriate measure of complexity for POMDP learning
than several natural alternatives. Besides state-space
size, we consider two reasonable measures: the number
of independent parameters in its POMDP representation
and the number of independent parameters in its PSR
representation, see Columns 10 and 11 in Table 1. The
parameters in a POMDP representation consist of the
elements in the inherent state-transition and observation
matrices (T (s, a, s′) and Ω(a, s′, z)). Since the number of
independent elements in T is |S||A|(|S| − 1) and the
number of independent elements in Ω is |S||A|(|Z|−1), the
independent parameter number in POMDPs is |S||A|(|S|+
|Z| − 2). In the PSR representation, Q is a set of core
tests, which can be considered as a substitute for S,
leading to a total number of independent parameters of
|Q|(|Q| + 1)|A||Z| + |Q|. The numbers of core tests in
the test problems were listed by James and Singh (2004).
As shown in Table 2, the linear correlation coefficients
between estimated covering numbers and errors in learning
algorithms are 0.96 ∼ 0.98 (see Rows 5 and 6), which
indicate a much better correlation between learning errors
and covering numbers than with the other three proposed
learning complexity measures.

These strong linear correlation coefficients do not just
provide empirical support that the covering number of a

POMDP is a good complexity measure of its learning, but
also leave the following intriguing puzzle:

Open Problem. Why do current PSR learning algorithms
appear to be subconsciously influenced by the covering
number in spite of the lack of an explicit connection to this
concept in the algorithms themselves?

One possible first step to address this problem might be
to study the relationship between the covering number for
R(b0) and the covering number for the set of core prediction
vectors P (Q|h) = [P (q1|h), . . . , P (q|Q||h)] on all possible
histories h.

Finally, we would like to estimate covering numbers
of medium POMDPs (Smith and Simmons 2005; Pineau,
Gordon, and Thrun 2006; Smith 2007). To make the
calculation tractable, we have obtained an extremely coarse
approximation using R-BFS with ε = 2δ = 1.0. Although
the results, shown in Table 3, are useless in terms of formal
error bounds, we can still find interesting phenomena.
The covering number suggests that the RockSample[4,4]
problem should be more easily solved than the Tiger-
Grid, Hallway, and Hallway2 problems, although its state-
space size is the biggest among them. Indeed, the HSVI2
algorithm needed less than 10 seconds to converge on
the RockSample[4,4] problem, but needed more than 1000
seconds on the Hallway2 problem. Please see Figure 3
in Smith and Simmons (2005) for details. We hope the
preliminary results in Table 3 will help spur additional
research on these medium-scale POMDPs.

Conclusion
This paper proposes that the covering number is an
appropriate measure of difficulty for both POMDP planning
and learning. The notion of the covering number (implicitly)
worked as an important driver in the development of point-
based value iteration algorithms in the past decade. We
believe there are opportunities for creating new efficient
POMDP learning algorithms by taking advantage of
covering numbers directly.

There are two major contributions in this work. First,
we presented two algorithms for estimating the covering
number and discussed their advantages and disadvantages.
Experiments showed that our estimated covering number
was far better than state-space size and number of
parameters in predicting planning time and learning

1857



Problems |ĈR1.0
(0.5)| |S| Problems |ĈR1.0

(0.5)| |S| Problems |ĈR1.0
(0.5)| |S|

Tiger-Grid 213 36 Hallway 607 61 Hallway2 1747 93
TagAvoid 527 870 RockSample[4,4] 17 256 LifeSurvey1 2931 7001

Table 3: Estimated covering numbers and state-space sizes on a suite of medium-scale POMDPs.

accuracy on a suite of POMDP problems. Second, we
proposed a POMDP learning algorithm with convergence
guarantee using the covering-number concept.
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Appendix
Proof of Lemma 1. Since Rε(b0) ⊆

⋃
b∈Rε(b0) c(b,

ε
1−η ),

we only need to prove that any b̄ ∈ R(b0) \ Rε(b0) satisfies
b̄ ∈

⋃
b∈Rε(b0) c(b,

ε
1−η ). When we search backward from b̄

along the AND/OR tree of reachable belief points with the
root belief point b0, an ancestor belief point b (or b = b̄) can
always be found that was not included in Rε(b0) because
some belief point b1 in Rε(b0) satisfied ||b − b1|| ≤ ε.
Assume b̄ was the result of transforming b by following
the action-observation sequence a1z1a2z2...anzn. Similarly,
assume b̄1 resulted from transforming b1 by following the
same action-observation step. By chaining applications of
the contraction assumption, it follows that ||b̄ − b̄1|| ≤ ηnε.
Search forward from b1 along a1z1a2z2...anzn until some
child belief point ba1z1...aizi1 is reached—where i ≥ 1—
that is not included in Rε(b0). If no such child belief
point exists, then b̄1 ∈ Rε(b0) and b̄ ∈ c(b̄1, η

nε) ⊆⋃
b∈Rε(b0) c(b,

ε
1−η ). If such a child belief point does exist,

we can find the belief point b2 that caused ba1z1...aizi1
to be excluded from Rε(b0) (||ba1z1...aizi1 − b2|| ≤ ε).
Assume b̄2 is the result of transforming b2 by following the
action-observation sequence ai+1zi+1...anzn. By similar
reasoning, we have ||b̄1 − b̄2|| ≤ ηn−iε. Repeating this
procedure k ≤ n times, we have b̄k ∈ Rε(b0). Since
||b̄ − b̄1|| ≤ ηn1ε, ||b̄1 − b̄2|| ≤ ηn2ε, . . . , ||b̄k−1 − b̄k|| ≤
ηnkε, where 0 ≤ nk < ... < n2 < n1 = n, we have
||b̄ − b̄k|| ≤ ||b̄ − b̄1|| + ||b̄1 − b̄2|| + ... + ||b̄k−1 − b̄k|| ≤
(ηn1 + ηn2 + ...+ ηnk)ε ≤ 1−ηn+1

1−η ε ≤ ε
1−η . Thus, we have

b̄ ∈ c(b̄k, ε
1−η ) ⊆

⋃
b∈Rε(b0) c(b,

ε
1−η ).

Proof of Proposition 1. We have |CRε(δ)| ≤ |CR(δ)|
since Rε(b0) is a subset of R(b0). By Lemma 1, we use a
set of ε

1−η -regions {c(b, ε
1−η )}, where b ∈ Rε(b0), to cover

all beliefs in R(b0). Thus, Rε(b0) consists of all centers of
these ε

1−η -regions. We can use CRε(δ) to cover all centers
of ε

1−η -regions. Then, we extend each δ-region in CRε(δ)
into a (δ + ε

1−η )-region with the same center so as to cover

Figure 1: Empirical cumulative distribution functions F (x),
where x =

||ba,z1 −b
a,z
2 ||

||b1−b2|| , on tested problems.

all ε
1−η -regions. Thus, we get a (δ + ε

1−η )-cover for R(b0)

with size |CRε(δ)|. So, |CR(δ + ε
1−η )| ≤ |CRε(δ)|.

Proof of Lemma 2. We assume b = b′ + ζ. Then,
we have

∑
s∈S |ζ(s)| ≤ ||b − b′|| ≤ δ. Following

Equation 2, we have P (z|b, a) = P (z|b′ + ζ, a) =
P (z|b′, a) +

∑
s∈S ζ(s)

∑
s′∈S T (s, a, s′)Ω(a, s′, z). Since∑

s′∈S T (s, a, s′) = 1 and Ω(a, s′, z) ≤ 1 for all s′ ∈ S,
we have

∑
s′∈S T (s, a, s′)Ω(a, s′, z) ≤ 1. So, |P (z|b, a) −

P (z|b′, a)| ≤ |
∑
s∈S ζ(s)| ≤

∑
s∈S |ζ(s)| ≤ δ.

Proof of Lemma 3. Let Ex1∼X1,...,xn∼Xnf(x1, . . . , xn)
denote 1∏n

i=1 |Xi|
∑
x1∈X1

. . .
∑
xn∈Xn f(x1, . . . , xn).

The contraction property that beliefs in the reachable
belief space conform to in the expected sense can be
formalized as Eb1∼R(b0),b2∼R(b0),a∼A[||ba,z1 − ba,z2 ||] =
ηEb1∼R(b0),b2∼R(b0)[||b1 − b2||], where 0 ≤ η < 1. Thus,

we have Eb1∼R(b0),b2∼R(b0),tn∼Tn [
||btn1 −b

tn
2 ||

||b1−b2|| ] = ηn, where
tn is an n-step action-observation sequence and Tn is the
set of all possible n-step action-observation sequences.
Then, we have P (

||btn1 −b
tn
2 ||

||b1−b2|| ≤ 1) = 1− ηn, and therefore,

limn→+∞ P (
||btn1 −b

tn
2 ||

||b1−b2|| ≤ 1) = 1.
Now, we use empirical results on tested problems to
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further support this lemma (see Figure 1). For each problem,
we first randomly generated a 105-step action-observation
trajectory starting at b0, and put all successive belief points
into a belief set. Then, we randomly selected two different
b1 and b2 from the set, randomly chose an action a from A,
and obtained z from Z based on b1’s observation probability
P (z|b1, a) 104 times. (We threw out b1 and b2 whenever
P (z|b2, a) = 0.) For each pair, we computed ||b

a,z
1 −b

a,z
2 ||

||b1−b2|| .
The curves in Figure 1 represent the empirical cumulative
distribution functions F (x), where x =

||ba,z1 −b
a,z
2 ||

||b1−b2|| , on
tested problems. As they show, all F (1)s are very close to

one. Furthermore, P (
||btn1 −b

tn
2 ||

||b1−b2|| ≤ 1) is almost one even
when n is a small positive integer.

Proof of Proposition 2. The POMDP learning algorithm
first builds k = |CR(δ)||A||Z|+1 AND/OR graphs along
with the option of where b0 belongs. By Lemma 2,
all belief points b in a δ-region c satisfy |P (z|b, a) −
P (z|bc, a)| ≤ δ. By Lemma 3, the graph describing the
δ-accurate mapping between successive belief points and
δ-regions exists in these AND/OR graphs. The algorithm
uses the adaptive k-meteorologists algorithm to estimate
observation probabilities for each graph simultaneously and
only makes predictions when there has been enough data to
estimate observation probabilities precisely (Diuk, Li, and
Leffler 2009). By replacing the “I don’t know” predictions
with arbitrary outputs, the algorithm is guaranteed to
make δ-accurate (and therefore ε

2 -accurate) predictions with
probability at least 1 − α for all but a small number of
them. Using the upper sample-complexity bound in the
adaptive k-meteorologists algorithm, we have an upper
bound of the number of erroneous predictions, and therefore
accumulated prediction error can be shown to be at most
( ε2 )2L + O( k

(ε/2)2 ln k
α +

∑k
i=1O( 1

(ε/16)2 ln k+1
α )) =

( ε2 )2L + O( kε2 ln k
α ), where the first term is used as a

loose total error upper bound of the ε
2 -accurate predictions,

and the second term originates from Theorem 1 in Diuk,
Li, and Leffler (2009). When L = O( kε3 ln k

α ), we have
( ε2 )

2L+O( k
ε2

ln k
α )

L = O(ε), and therefore, can guarantee that
the average one-step prediction error is no more than ε.
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