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Abstract

We introduce a linear distance relaxation of the n-
team Traveling Tournament Problem (TTP), a simple
yet powerful heuristic that temporarily “assumes” the
n teams are located on a straight line, thereby reduc-
ing the

(
n
2

)
pairwise distance parameters to just n − 1

variables. The modified problem then becomes easier
to analyze, from which we determine an approximate
solution for the actual instance on n teams. We present
combinatorial techniques to solve the Linear Distance
TTP (LD-TTP) for n = 4 and n = 6, without any use
of computing, generating the complete set of optimal
distances regardless of where the n teams are located.
We show that there are only 295 non-isomorphic sched-
ules that can be a solution to the 6-team LD-TTP,
and demonstrate that in all previously-solved bench-
mark TTP instances on 6 teams, the distance-optimal
schedule appears in this list of 295, even when the
six teams are arranged in a circle or located in three-
dimensional space. We then extend the LD-TTP to
multiple rounds, and apply our theory to produce a
nearly-optimal regular-season schedule for the Nippon
Pro Baseball league in Japan. We conclude the paper by
generalizing our theory to the n-team LD-TTP, produc-
ing a feasible schedule whose total distance is guaran-
teed to be no worse than 4

3
times the optimal solution.

Introduction
The Traveling Tournament Problem (TTP) is a well-known
problem in the area of sports scheduling that has attracted
much research activity in recent years (Kendall et al. 2010).
Inspired by the real-life problem of optimizing the regular-
season schedule for Major League Baseball (MLB), the goal
of the TTP is to determine the optimal double round-robin
tournament schedule for an n-team sports league that mini-
mizes the sum total of distances traveled by all n teams (Eas-
ton, Nemhauser, and Trick 2001). The proposers of the TTP
serve as consultants to MLB, and have created the league’s
regular-season schedules for seven of the past eight years.

There is an online set of benchmark n-team TTP data sets
(Trick 2012). For example, NLn are the instances for MLB’s
National League on n teams, and CIRCn are the instances
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where the n teams correspond to vertices of a circle graph,
with a distance of 1 unit between neighbouring vertices.

Several techniques have been applied to solve TTP in-
stances, including local search techniques as well as in-
teger and constraint programming. Solutions to TTP in-
stances are often found after weeks of computation on high-
performance machines using parallel computing; the first so-
lution to NL6 required over fifteen minutes of computation
time on twenty parallel machines (Easton, Nemhauser, and
Trick 2002). A recently-developed branch-and-price heuris-
tic (Irnich 2010) solved NL6 in one minute, CIRC6 in three
hours, and NL8 in twelve hours, all on a single processor.

In many ways, the TTP is a variant of the well-known
Traveling Salesman Problem (TSP), asking for a distance-
optimal schedule linking venues that are close to one an-
other. The computational complexity of the TSP is NP-hard;
recently, it was shown that solving the TTP is strongly NP-
hard (Thielen and Westphal 2011).

The purpose of this paper is to introduce the Linear Dis-
tance Traveling Tournament Problem (LD-TTP), where we
assume the n teams are located on a straight line, thereby re-
ducing its complexity. This straight line relaxation is a natu-
ral heuristic when the n teams are located in cities connected
by a common train line running in one direction, modelling
the actual context of domestic sports leagues in countries
such as Chile, Sweden, Italy, and Japan. As we will demon-
strate in the paper, solving the LD-TTP is considerably eas-
ier, and for the cases n = 4 and n = 6, we can determine
the complete set of possible solutions through elementary
combinatorial techniques without any use of computing.

The LD-TTP contributes a simple yet powerful idea to the
field of tournament scheduling, where the straight-line relax-
ation enables us to generate approximate solutions to large
n-team TTP benchmark sets by “pretending” the n teams lie
on a straight line, solving the modified problem to find an
“optimal” tournament schedule, and then applying the ac-
tual distance matrix on this schedule to find a feasible solu-
tion to the TTP. We find that this technique surprisingly gen-
erates the distance-optimal schedule for all benchmark sets
on 6 teams. We then extend the LD-TTP to multiple rounds
in order to generate a close-to-optimal solution for Japan’s
pro baseball league, and determine a general solution to the
LD-TTP for any n ≡ 4 (mod 6) that is guaranteed to be a
4
3 -approximation of the distance-optimal schedule.
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The Traveling Tournament Problem
Let {t1, t2, . . . , tn} be the n teams in a sports league, where
n is even. Let D be the n × n distance matrix, where entry
Di,j is the distance between the home stadiums of teams ti
and tj . By definition, Di,j = Dj,i for all 1 ≤ i, j ≤ n, and
all diagonal entries Di,i are zero. We assume the distances
form a metric, i.e., Di,j ≤ Di,k +Dk,j for all i, j, k.

The TTP requires a tournament lasting 2(n − 1) days,
where every team has exactly one game scheduled each day
with no byes or days off (this explains why n must be even.)
The objective is to minimize the total distance traveled by
the n teams, subject to the following conditions:

(a) each-venue: Each pair of teams plays twice, once in
each other’s home venue.

(b) at-most-three: No team may have a home stand or road
trip lasting more than three games.

(c) no-repeat: A team cannot play against the same oppo-
nent in two consecutive games.

When calculating the total distance, we assume that every
team begins the tournament at home and returns home after
playing its last away game. Furthermore, whenever a team
has a road trip consisting of multiple away games, the team
doesn’t return to their home city but rather proceeds directly
to their next away venue.

To illustrate with a specific example, Table 1 lists the
distance-optimal schedule (Easton, Nemhauser, and Trick
2001) for the NL6 benchmark set. In this schedule, as
with all subsequent schedules presented in this paper, home
games are marked in bold.

Team 1 2 3 4 5 6 7 8 9 10
Florida (F) A Ph N Pi N M Pi Ph M A
Atlanta (A) F N Pi Ph M Pi Ph M N F

Pittsburgh (Pi) N M A F Ph A F N Ph M
Philadelphia (Ph) M F M A Pi N A F Pi N

New York (N) Pi A F M F Ph M Pi A Ph
Montreal (M) Ph Pi Ph N A F N A F Pi

Table 1: An optimal TTP solution for NL6.

For example, the total distance traveled by Florida is
DF,A+DA,Ph+DPh,F +DF,N +DN,M +DM,Pi+DPi,F .
Based on the NL6 distance matrix (Trick 2012), the tourna-
ment schedule in Table 1 requires 23916 miles of total team
travel, which is the minimum distance possible.

The 4-Team LD-TTP
In the Linear Distance TTP, we assume the n home stadiums
lie on a straight line, with t1 at one end and tn at the other.
Thus, Di,j = Di,k + Dk,j for all triplets (i, j, k) with 1 ≤
i < k < j ≤ n. Since the Triangle Inequality is replaced
by the Triangle Equality, we no longer need to consider all(
n
2

)
entries in the distance matrixD; each tournament’s total

travel distance is a function of n − 1 variables, namely the
set {Di,i+1 : 1 ≤ i ≤ n − 1}. For notational convenience,
denote di := Di,i+1 for all 1 ≤ i ≤ n− 1.

Table 2 gives a feasible solution to the 4-team LD-TTP.
We claim that this solution is optimal, for all possible 3-
tuples (d1, d2, d3). To see why this is so, define ILBti to
be the independent lower bound for team ti, the minimum
possible distance that can be traveled by ti in order to com-
plete its games, independent of the other teams’ schedules.
Then a trivial lower bound for the total travel distance is
TLB ≥

∑n
i=1 ILBti .

Team 1 2 3 4 5 6
t1 t4 t3 t2 t4 t3 t2
t2 t3 t4 t1 t3 t4 t1
t3 t2 t1 t4 t2 t1 t4
t4 t1 t2 t3 t1 t2 t3

Table 2: An optimal LD-TTP solution for n = 4.

Since ti must play a road game against each of the other
three teams, ILBti = 2(d1 + d2 + d3) for 1 ≤ i ≤ 4. This
implies that TLB ≥ 8(d1 + d2 + d3). Since Table 2 is a
tournament schedule whose total distance is the trivial lower
bound, this completes the proof.

We remark that Table 2 is not the unique solution - for ex-
ample, we can generate another optimal schedule by simply
reading Table 2 from right to left. Assuming the first match
between t1 and t2 occurs in the home city of t2, a straight-
forward computer search finds 18 non-isomorphic schedules
with total distance 8(d1+d2+d3). Thus, by symmetry, there
are 36 optimal schedules for the 4-team LD-TTP.

The 6-Team LD-TTP
Unlike the previous section, the analysis for the 6-team LD-
TTP requires more work.

Figure 1: The general instance of the LD-TTP for n = 6.

Any 6-team instance of the LD-TTP can be represented
by the five-tuple (d1, d2, d3, d4, d5). We define S = 14d1 +
16d2 + 20d3 + 16d4 + 14d5. We claim the following:

Theorem 1 Let Γ be a 6-team instance of the LD-TTP. The
optimal solution to Γ is a schedule with total distance

S+2 min{d2+d4, d1+d4, d3+d4, 3d4, d2+d5, d2+d3, 3d2}.

We will prove Theorem 1 through elementary combina-
torial arguments with no computing, thus demonstrating the
utility of this linear distance relaxation and presenting new
techniques to attack the general TTP in ways that differ from
integer/constraint programming. Our proof will follow from
several lemmas, which we now prove one by one.

Lemma 1 Any feasible schedule of Γ must have total dis-
tance at least S.
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Proof For each 1 ≤ k ≤ 5, define ck to be the total num-
ber of times a team crosses the “bridge” of length dk, con-
necting the home stadiums of teams tk and tk+1. Let Z be
the total travel distance of this schedule. Since Γ is linear,
Z =

∑5
k=1 ckdk. Since each team crosses every bridge an

even number of times, ck is always even.
Let Lk be the home venues of {t1, t2, . . . , tk} and Rk be

the home venues of {tk+1, . . . , t6}. By the each-venue con-
dition, every team in Lk plays a road game against every
team in Rk. By the at-most-three condition, every team in
Lk must make at least 2d 6−k

3 e trips across the bridge, with
half the trips in each direction. Similarly, every team in Rk

must make at least 2dk3 e trips across the bridge, implying
that ck ≥ 2kd 6−k

3 e+ 2(6− k)dk3 e.
Thus, c1 ≥ 14, c2 ≥ 16, c4 ≥ 16, and c5 ≥ 14. We

now show that c3 ≥ 20, which will complete the proof that
Z =

∑
ckdk ≥ 14d1 + 16d2 + 20d3 + 16d4 + 14d5 = S.

Since there are n = 6 teams, there are 2(n − 1) = 10
days of games. For each 1 ≤ i ≤ 9, let Xi,i+1 be the total
number of times the d3-length bridge is crossed as the teams
move from their games on the ith day to their games on the
(i + 1)th day. Let Xstart,1 and X10,end respectively be the
number of times the teams cross this bridge to play their first
game, and return home after having played their last game.
Then c3 = Xstart,1 +

∑9
i=1Xi,i+1 +X10,end.

For each 1 ≤ i ≤ 9, let f(i) denote the number of games
played in L3 on day i. Thus, on day i, exactly 2f(i) teams
are to the left of this bridge and 6 − 2f(i) teams are to the
right. So f(i) ∈ {0, 1, 2, 3} for all i. Since |L3| and |R3| are
odd, we have Xstart,1 ≥ 1 and X10,end ≥ 1.

If f(i) < f(i+ 1), then Xi,i+1 ≥ 2, as at least two teams
who played in R3 on day i must cross over to play their next
game in L3. Similarly, if f(i) > f(i+ 1), then Xi,i+1 ≥ 2.

If f(i) = f(i+ 1) = 1, then on day i, two teams p and q
play inL3 while the other four teams play inR3. IfXi,i+1 =
0 then no team crosses the bridge after day i, forcing p and
q to play against each other on day i + 1, thus violating the
no-repeat condition. Thus, at least one of p or q must cross
the bridge, exchanging positions with at least one other team
who must cross to play in L3. Thus, Xi,i+1 ≥ 2. Similarly,
if f(i) = f(i+ 1) = 2, then Xi,i+1 ≥ 2.

If f(i) = f(i+ 1) = 0, then all teams play in R3 on days
i and i + 1. Then Xstart,1 = 3 if i = 1 and X10,end = 3
if i = 9. If 2 ≤ i ≤ 8, then each of {t1, t2, t3} must play
a home game on either day i − 1 or day i + 2, in order to
satisfy the at-most-three condition. Thus, on one of these
two days, at least two teams in {t1, t2, t3} play at home,
implying at least four teams are in L3. Therefore, we must
have Xi−1,i ≥ 4 or Xi+1,i+2 ≥ 4.

We derive the same results if f(i) = f(i + 1) = 3. We
have Xstart,1 = 3 if i = 1, X10,end = 3 if i = 9, and either
Xi−1,i ≥ 4 or Xi+1,i+2 ≥ 4 if 2 ≤ i ≤ 8.

So in our double round-robin schedule, if the sequence
{f(1), . . . , f(10)} has no pair of consecutive 0s or consec-
utive 3s, then c3 = Xstart,1 +

∑9
i=1Xi,i+1 + X10,end ≥

1 + 9 · 2 + 1 = 20. And if this is not the case, we still have
c3 ≥ 20 from the results of the previous two paragraphs. We
have therefore proven that Z ≥ S.

Lemma 2 Consider a feasible schedule of Γ with total dis-
tance Z =

∑
ckdk. If c2 = 16, then teams t1 and t2 must

play against each other on Days 1 and 10.
Proof Like we did in Lemma 1, for each 1 ≤ i ≤ 9 define
X∗

i,i+1 be the total number of times the d2-length bridge is
crossed as the teams move from their games on the ith day
to their games on the (i+1)th day. Similarly defineX∗

start,1

andX∗
10,end so that c2 = X∗

start,1+
∑9

i=1X
∗
i,i+1+X∗

10,end.
By a nearly-identical case-analysis argument as in the pre-

vious proof, we can show that
∑9

i=1X
∗
i,i+1 ≥ 16. There-

fore, if c2 = 16, then we must haveX∗
start,1 = X∗

10,end = 0,
implying that on Days 1 and 10, t1 and t2 stay in L2 while
the other four teams stay in R2. Since t1 and t2 are the
only teams in L2, clearly this forces these two teams to play
against each other, to begin and end the tournament.
Lemma 3 Let S1 be the set of tournament schedules with
distance S + 2(d2 + d4), S2 with distance S + 2(d1 + d4),
S3 with distance S + 2(d3 + d4), S4 with distance S + 6d4,
S5 with distance S + 2(d2 + d5), S6 with distance S +
2(d2 + d3), and S7 with distance S + 6d2. Then each set in
{S1, S2, . . . , S7} is non-empty.
Proof For each of these seven sets, it suffices to find just one
feasible schedule with the desired total distance. For each
of {S1, S2, S3, S4}, at least one such set has appeared previ-
ously in the literature, as the solution to a 6-team benchmark
set or in some other context. (As we will see in the follow-
ing section, we can label the six teams of NL6 so that Table
1 is an element of S4.) The solution to CIRC6 (Trick 2012),
where Di,j = min{j− i, 6− (j− i)} for all 1 ≤ i < j ≤ 6,
is an element of S1. Table 3 provides this schedule. For
each 1 ≤ k ≤ 5, we list the number of times the dk bridge
is crossed by each of the six teams.

1 2 3 4 5 6 7 8 9 10 d1 d2 d3 d4 d5
t1 t2 t3 t4 t6 t3 t5 t6 t4 t5 t2 4 4 4 2 2
t2 t1 t6 t5 t4 t6 t3 t4 t5 t3 t1 2 4 2 2 2
t3 t4 t1 t6 t5 t1 t2 t5 t6 t2 t4 2 4 4 2 2
t4 t3 t5 t1 t2 t5 t6 t2 t1 t6 t3 2 2 4 4 2
t5 t6 t4 t2 t3 t4 t1 t3 t2 t1 t6 2 2 2 4 2
t6 t5 t2 t3 t1 t2 t4 t1 t3 t4 t5 2 2 2 4 4

Table 3: An optimal TTP solution for CIRC6, with total distance
S + 2(d2 + d4) = 14d1 + 18d2 + 20d3 + 18d4 + 14d5.

We conclude the proof by noting that |Si+3| = |Si| for
2 ≤ i ≤ 4, as we can label the teams backward from t6
to t1 to create a feasible schedule where each distance dk is
replaced by d6−k. Therefore, we have shown that each Si is
non-empty.

We are now ready to prove Theorem 1, that the optimal
solution to any 6-team instance Γ is a schedule that appears
in S1 ∪ S2 ∪ . . . ∪ S7. We note that any of these seven
optimal distances can be the minimum, depending on the
5-tuple (d1, d2, d3, d4, d5).
Proof Suppose the optimal solution to Γ has total distance
Z =

∑
ckdk. By Lemma 1, c1, c5 ≥ 14, c2, c4 ≥ 16, and

c3 ≥ 20. Recall that each coefficient ck is even.
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By Lemma 3, S1 is non-empty, and so a schedule cannot
be optimal if Z > S + 2(d2 + d4). Thus, if c2, c4 ≥ 18,
then we must have (c1, c2, c3, c4, c5) = (14, 18, 20, 18, 14)
so that Z = S + 2(d2 + d4), forcing the schedule to be in
set S1.

Suppose that c2 ≤ c4, so that it suffices to check the pos-
sibility c2 = 16. By Lemma 2, t1 and t2 must play against
each other on Days 1 and 10. There are three cases:

Case 1: c2 = 16, c1 = 14.
Case 2: c2 = 16, c1 ≥ 16, c4 = 16.
Case 3: c2 = 16, c1 ≥ 16, c4 ≥ 18.

In Case 1, every team must travel the minimum number of
times across the d1- and d2-bridges, i.e., t1 must take exactly
two road trips, and each of {t3, t4, t5, t6} must play their
road games against t1 and t2 on consecutive days. By sym-
metry, we may assume that the first match between t1 and t2
occurs in the home city of t2. Then a simple case analysis
shows that for some permutation {p, q, r, s} of {3, 4, 5, 6},
the schedule for teams t1 and t2 must be

1 2 3 4 5 6 7 8 9 10
t1 t2 t? tp tq t? t? t? tr ts t2
t2 t1 tp tq t? t? t? tr ts t? t1

This structural characterization reduces the search space
considerably, and from this we show that either c4 ≥ 22,
or c3 ≥ 22 and c4 ≥ 18. By Lemma 3, the latter implies
Z = S + 2(d3 + d4) and the former implies Z = S + 6d4.
Therefore, this optimal schedule must be in S3 or S4.

In Case 2, we demonstrate that no structural characteri-
zation exists if c2 = c4 = 16. To do this, we use Lemma
2 (for c2 = 16) and its symmetric analogue (for c4 = 16)
to show that in order not to violate the at-most-three or no-
repeat conditions, t3 and t4 must play each other on Days 1
and 10, as well as on some other Day i with 2 ≤ i ≤ 9. But
then this violates the each-venue condition. Hence, we may
eliminate this case.

In Case 3, if c1 ≥ 16 and c4 ≥ 18, then Z is at least S +
2(d1 +d4). By Lemma 3, we must have Z = S+2(d1 +d4)
and this optimal schedule must be in S2.

So we have shown that if c2 = 16, then the schedule ap-
pears in S2 ∪ S3 ∪ S4. By symmetry, if c4 = 16, then the
schedule appears in S5∪S6∪S7. Finally, if c2, c4 ≥ 18, the
schedule appears in S1. This concludes the proof.

By Theorem 1, there are only seven possible optimal dis-
tances. For each optimal distance, we can enumerate the set
of tournament schedules with that distance, thus producing
the complete set of possible LD-TTP solutions, over all in-
stances, for the case n = 6.

Theorem 2 Consider the set of all feasible tournaments for
which the first game between t1 and t2 occurs in the home
city of t2. Then there are 295 non-isomorphic schedules
whose total distance appears in S1 ∪S2 ∪ . . .∪S7, grouped
as follows:

Total Distance ∈ S1 ∈ S2 ∈ S3 ∈ S4 ∈ S5 ∈ S6 ∈ S7

# of Schedules 223 4 8 24 4 8 24

We derive Theorem 2 by a computer search. For each
of {S1, S2, S3, S4}, we develop a structural characterization
theorem, similar to Case 1 above, that shows that a feasible
schedule in that set must have a certain form. This charac-
terization reduces the search space, from which a brute-force
search (using Maplesoft) enumerates all possible schedules.
While it took several hours to enumerate the 223 schedules
in S1, Maplesoft took less than 100 seconds to enumerate the
set of schedules in each of S2, S3, and S4. As noted earlier,
once we have the set of schedules in Si (for 2 ≤ i ≤ 4), we
immediately have the set of schedules in Si+3 by symmetry.
Complete details appear in our journal paper (Hoshino and
Kawarabayashi 2012).

Application to Benchmark Sets
We now apply Theorems 1 and 2 to all benchmark TTP sets
on 6 teams. In addition to NL6, we examine a six-team
set from the Super Rugby League (SUPER6), six galaxy
stars whose coordinates appear in three-dimensional space
(GALAXY6), our earlier six-team circular distance instance
(CIRC6), and the trivial constant distance instance (CON6)
where each pair of teams has a distance of one unit.

For all our benchmark sets, we first order the six teams
so that they approximate a straight line, either through a for-
mal “line of best fit” or an informal check by inspection.
Having ordered our six teams, we determine the five-tuple
(d1, d2, d3, d4, d5) from the distance matrix and ignore the
other

(
6
2

)
− 5 = 10 entries. Modifying our benchmark set

and assuming the six teams lie on a straight line, we solve
the LD-TTP via Theorem 1. Using Theorem 2, we take the
set of tournament schedules achieving this optimal distance
and apply the actual distance matrix of the benchmark set
(with all

(
6
2

)
entries) to each of these optimal schedules and

output the tournament with the minimum total distance.
This simple process, each taking approximately 0.3 sec-

onds of computation time per benchmark set, generates a
feasible solution to the 6-team TTP. To our surprise, this al-
gorithm outputs the distance-optimal schedule in all five of
our benchmark sets. This was an unexpected result, given
the non-linearity of our data sets: for example, CIRC6 has
the teams arranged in a circle, while GALAXY6 uses three-
dimensional distances. To illustrate our theory, let us begin
with NL6, ordering the six teams from south to north:

Figure 2: Location of the six NL6 teams.
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Thus, Florida is t1, Atlanta is t2, Pittsburgh is t3, Philadel-
phia is t4, New York is t5, and Montreal is t6. From the NL6
distance matrix (Trick 2012), we have (d1, d2, d3, d4, d5) =
(605, 521, 257, 80, 337).

Since 2 min{d2 +d4, d1 +d4, d3 +d4, 3d4, d2 +d5, d2 +
d3, 3d2} = 6d4 = 480, Theorem 1 tells us that the optimal
LD-TTP solution has total distance S+6d4 = 14d1+16d2+
20d3 + 22d4 + 14d5 = 28424. By Theorem 2, there are 24
schedules in set S4, all with total distance S + 6d4. Two of
these 24 schedules are presented in Table 4.

1 2 3 4 5 6 7 8 9 10
t1 t2 t4 t5 t3 t5 t6 t3 t4 t6 t2
t2 t1 t5 t3 t4 t6 t3 t4 t6 t5 t1
t3 t5 t6 t2 t1 t4 t2 t1 t5 t4 t6
t4 t6 t1 t6 t2 t3 t5 t2 t1 t3 t5
t5 t3 t2 t1 t6 t1 t4 t6 t3 t2 t4
t6 t4 t3 t4 t5 t2 t1 t5 t2 t1 t3

1 2 3 4 5 6 7 8 9 10
t1 t2 t5 t6 t3 t6 t4 t3 t5 t4 t2
t2 t1 t6 t3 t5 t4 t3 t5 t4 t6 t1
t3 t6 t4 t2 t1 t5 t2 t1 t6 t5 t4
t4 t5 t3 t5 t6 t2 t1 t6 t2 t1 t3
t5 t4 t1 t4 t2 t3 t6 t2 t1 t3 t6
t6 t3 t2 t1 t4 t1 t5 t4 t3 t2 t5

Table 4: Two LD-TTP solutions with total distance S+6d4.

Removing this straight line assumption, we now apply the
actual NL6 distance matrix to determine the total distance
traveled for each of these 24 schedules from set S4, which
will naturally produce different sums. The top schedule in
Table 4 is best among the 24 schedules, with total distance
23916, while the bottom schedule is the worst, with total
distance 24530. We note that the top schedule, achieving
the optimal distance of 23916 miles, is identical to Table 1.

We repeat the same analysis with the other four
benchmark sets. In each, we mark which of the sets
{S1, S2, . . . , S7} produced the optimal schedule.

Benchmark Optimal LD-TTP Optimal
Data Set Solution Solution Schedule

NL6 23916 23916 ∈ S4

SUPER6 130365 130365 ∈ S3

GALAXY6 1365 1365 ∈ S1

CIRC6 64 64 ∈ S1

CON6 43 43 ∈ S1

Table 5: Comparing LD-TTP to TTP on benchmark data sets.

A sophisticated branch-and-price heuristic (Irnich 2010)
solved NL6 in just over one minute, yet required three hours
to solve CIRC6. The latter problem was considerably more
difficult due to the inherent symmetry of the data set, which
required more branching. However, through our LD-TTP
approach, both problems can be solved to optimality in the
same amount of time – approximately 0.3 seconds.

Based on the results of Table 5, we ask whether there ex-
ists a 6-team instance Γ where the optimal TTP solution is

different from the optimal LD-TTP solution. This will be
discussed at the conclusion of the paper.

Application to Japanese Baseball
The Multi-Round Balanced Traveling Tournament Problem
(Hoshino and Kawarabayashi 2011b) was motivated by the
actual regular-season structure of Nippon Professional Base-
ball (NPB), Japan’s largest and most well-known profes-
sional sports league. The mb-TTP extends the TTP to
r = 2k rounds, for any arbitrary k ≥ 1, so that k double
round-robin tournaments are concatenated together.

In the case of the NPB, we have n = 6 and k = 4, as the
six teams play k(2n−2) = 40 sets of three games against the
other five teams. Our analysis for the LD-TTP is particularly
suitable for the NPB Central League, as the home stadiums
of the six teams lie on the same bullet train line:

Figure 3: Location of the six NPB Central League teams.

In addition to the each-venue, at-most-three, and no-
repeat conditions, the NPB schedule requires two further
“balancing” constraints to ensure competitive fairness:

(d) each-round: Each pair of teams must play exactly one
(three-game) set in each 5-set round.

(e) diff-two: |Hi,s − Ri,s| ≤ 2 for all 1 ≤ i ≤ n and 1 ≤
s ≤ 2k(n − 1), where Hi,s and Ri,s are the number of
home and road sets played by team i in the first s sets.

We found the distance-optimal regular-season schedule
for both the NPB Central and Pacific Leagues (Hoshino and
Kawarabayashi 2011c), achieving a total reduction of 25%
as compared to the actual distance traveled by the teams
during the 2010 season. To do this, we applied the the-
ory of perfect matchings to enumerate all 169, 728 double
round-robin tournaments satisfying these five conditions, re-
quiring 67 hours of computation time. We then took these
pre-computed tournaments and turned the mb-TTP into a
shortest-path problem with vertices corresponding to ten-set
“blocks” and edge weights corresponding to travel distances,
a process requiring a further five hours of computation. Then
Dijkstra’s Algorithm generated the distance-optimal tour-
naments: 114, 169 kilometres for the Pacific League and
57, 836 kilometres for the Central League.

By the theories developed in this paper, we can develop
a close-to-optimal tournament for both leagues, at a fraction
of the computational cost. We do this by taking the 295
schedules in Theorem 2, and noting that only four satisfy
these additional balancing constraints (all belonging to set
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S1). The remaining 291 must be thrown away as they either
have some pair of teams meeting twice within the first half of
the schedule (five sets of games), or have a team begin or end
the season with three consecutive home/road sets. Including
the schedules where we play the games from right to left,
there are only eight schedules that satisfy the five mb-TTP
conditions, including Table 6 below.

1 2 3 4 5 6 7 8 9 10
t1 t4 t2 t3 t6 t5 t3 t6 t5 t4 t2
t2 t3 t1 t6 t5 t4 t6 t5 t4 t3 t1
t3 t2 t5 t1 t4 t6 t1 t4 t6 t2 t5
t4 t1 t6 t5 t3 t2 t5 t3 t2 t1 t6
t5 t6 t3 t4 t2 t1 t4 t2 t1 t6 t3
t6 t5 t4 t2 t1 t3 t2 t1 t3 t5 t4

Table 6: A schedule in S1 satisfying the mb-TTP conditions.

By restricting our attention to 8 candidate blocks, rather
than the full set of 169, 728, our Dijkstra-based shortest-path
algorithm takes just 0.5 seconds to output a feasible tourna-
ment satisfying the five conditions of the mb-TTP, whose
total travel distance is just slightly worse than the provably-
optimal solutions. The results are shown in Table 7, with the
solution for the Central League given in Table 8.

NPB Optimal LD-TTP Percentage
League Solution Solution Difference
Central 57836 59079 2.1%
Pacific 114169 118782 4.0%

Table 7: Comparing LD-TTP to TTP for the NPB League.

1-5 6-10 11-15 16-20
t1 t3 t2 t4 t6 t5 t4 t6 t5 t3 t2 t3 t2 t4 t6 t5 t4 t6 t5 t3 t2
t2 t4 t1 t6 t5 t3 t6 t5 t3 t4 t1 t4 t1 t6 t5 t3 t6 t5 t3 t4 t1
t3 t1 t6 t5 t4 t2 t5 t4 t2 t1 t6 t1 t6 t5 t4 t2 t5 t4 t2 t1 t6
t4 t2 t5 t1 t3 t6 t1 t3 t6 t2 t5 t2 t5 t1 t3 t6 t1 t3 t6 t2 t5
t5 t6 t4 t3 t2 t1 t3 t2 t1 t6 t4 t6 t4 t3 t2 t1 t3 t2 t1 t6 t4
t6 t5 t3 t2 t1 t4 t2 t1 t4 t5 t3 t5 t3 t2 t1 t4 t2 t1 t4 t5 t3

21-25 26-30 31-35 36-40
t1 t3 t2 t4 t6 t5 t4 t6 t5 t3 t2 t4 t2 t3 t6 t5 t3 t6 t5 t4 t2
t2 t4 t1 t6 t5 t3 t6 t5 t3 t4 t1 t3 t1 t6 t5 t4 t6 t5 t4 t3 t1
t3 t1 t6 t5 t4 t2 t5 t4 t2 t1 t6 t2 t5 t1 t4 t6 t1 t4 t6 t2 t5
t4 t2 t5 t1 t3 t6 t1 t3 t6 t2 t5 t1 t6 t5 t3 t2 t5 t3 t2 t1 t6
t5 t6 t4 t3 t2 t1 t3 t2 t1 t6 t4 t6 t3 t4 t2 t1 t4 t2 t1 t6 t3
t6 t5 t3 t2 t1 t4 t2 t1 t4 t5 t3 t5 t4 t2 t1 t3 t2 t1 t3 t5 t4

Table 8: A nearly-optimal schedule for the NPB Central League.

As expected, the gap for the Pacific League is worse than
that of the Central League, as the six stadiums in the former
do not have the nice “straight line” property of the latter (see
Figure 3). Nonetheless, a 4.0% difference is surprisingly
small, given that our multi-round schedule was generated in
just half a second, as compared to the three days it took to
generate the optimal schedule.

An Approximation Algorithm
We have solved the LD-TTP for n = 4 and n = 6, and
developed a multi-round generalization of the 6-team LD-
TTP. A natural follow-up question is whether our techniques
scale for larger values of n. To answer this question, we
show that for all n ≡ 4 (mod 6), we can develop a solution
to the n-team LD-TTP whose total distance is at most 33%
higher than that of the optimal solution, although in practice
this optimality gap is actually much lower.

While our construction is only a 4
3 -approximation, we

note that this ratio is stronger than the currently best-known
( 5

3 + ε)-approximation for the general TTP (Yamaguchi et
al. 2011). Our schedule is based on an “expander construc-
tion”, and is completely different from previous approaches
that generate approximate TTP solutions. We now describe
this construction.

Letm be a positive integer. We first create a single round-
robin tournament U on 2m teams, and then expand this to a
double round-robin tournament T on n = 6m− 2 teams.

We use a variation of the Modified Circle Method (Fuji-
wara et al. 2007) to build U , our single round-robin sched-
ule. Let {u1, u2, . . . , u2m−1, x} be the 2m teams. Then
each team plays 2m− 1 games, according to this three-part
construction:
(a) For 1 ≤ k ≤ m, team k plays the other teams in the

following order: {2m − k + 1, 2m − k + 2, . . . , 2m −
1, 1, 2, . . . , k − 1, x, k + 1, k + 2, . . . , 2m− k}.

(b) For m+ 1 ≤ k ≤ 2m− 1, team k plays the other teams
in the following order: {2m−k+1, 2m−k+2, . . . , k−
1, x, k + 1, k + 2, . . . , 2m− 1, 1, 2, . . . , 2m− k}.

(c) Team x plays the other teams in the following order:
{1,m+ 1, 2,m+ 2, . . . ,m− 1, 2m− 1,m}.

1 2 3 4 5 6 7
u1 x© u2 u3 u4 u5 u6 u7

u2 u7 u1 x© u3 u4 u5 u6

u3 u6 u7 u1 u2 x© u4 u5

u4 u5 u6 u7 u1 u2 u3 x©
u5 u4 x© u6 u7 u1 u2 u3

u6 u3 u4 u5 x© u7 u1 u2

u7 u2 u3 u4 u5 u6 x© u1

x u1 u5 u2 u6 u3 u7 u4

Table 9: The single round-robin construction for 2m = 8 teams.

For all games not involving team x, we designate one
home team and one road team as follows: for 1 ≤ k ≤ m,
uk plays only road games until it meets team x, before fin-
ishing the remaining games at home. And for m + 1 ≤
k ≤ 2m− 1, we have the opposite scenario, where uk plays
only home games until it meets team x, before finishing the
remaining games on the road. As an example, Table 9 pro-
vides this single round-robin schedule for the case m = 4.

This construction ensures that for any 1 ≤ i, j ≤ 2m− 1,
the match between ui and uj has exactly one home team
and one road team. To verify this, note that ui is the home
team and uj is the road team iff i occurs before j in the set
{1, 2m− 1, 2, 2m− 2, . . . ,m− 1,m+ 1,m}.
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Now we “expand” this single round-robin tournament U
on 2m teams to a double round-robin tournament T on n =
6m− 2 teams. To accomplish this, we keep x and transform
uk into three teams, {t3k−2, t3k−1, t3k}, so that the set of
teams in T is {t1, t2, t3, . . . , t6m−5, t6m−4, t6m−3, x}.

Suppose ui is the home team in its game against uj ,
played in time slot r. Then we expand that time slot in U
into six time slots in T , namely the slots 6r − 5 to 6r. We
describe the match assignments in Table 10.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3i−2 t3j−1 t3j t3j−2 t3j−1 t3j t3j−2

t3i−1 t3j t3j−2 t3j−1 t3j t3j−2 t3j−1

t3i t3j−2 t3j−1 t3j t3j−2 t3j−1 t3j
t3j−2 t3i t3i−1 t3i−2 t3i t3i−1 t3i−2

t3j−1 t3i−2 t3i t3i−1 t3i−2 t3i t3i−1

t3j t3i−1 t3i−2 t3i t3i−1 t3i−2 t3i

Table 10: Expanding one time slot in U to six time slots in T .

Before proceeding further, let us explain the idea behind
this construction. Recall that by the each-venue condition,
each team in T must visit every opponent’s home stadium
exactly once, and by the at-most-three condition, road trips
are at most three games. We will build a tournament that
maximizes the number of three-game road trips, and ensure
that the majority of these road trips involve three venues
closely situated to one another, to minimize total travel.
In Table 10 above, if {t3j−2, t3j−1, t3j} are located in the
same region, then each of the teams in {t3i−2, t3i−1, t3i} can
play their three road games against these teams in a highly-
efficient manner.

We now explain how to expand the time slots in games
involving team x. For each 1 ≤ k ≤ m, consider the game
between uk and x. We expand that time slot in U into six
time slots in T , as described in Table 11.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3k−2 x t3k t3k−1 x t3k t3k−1

t3k−1 t3k x t3k−2 t3k x t3k−2

t3k t3k−1 t3k−2 x t3k−1 t3k−2 x
x t3k−2 t3k−1 t3k t3k−2 t3k−1 t3k

Table 11: The six time slot expansion for 1 ≤ k ≤ m.

And for each m + 1 ≤ k ≤ 2m − 1, consider the game
between uk and x. We expand that time slot in U into six
time slots in T , as described in Table 12.

6r − 5 6r − 4 6r − 3 6r − 2 6r − 1 6r
t3k−2 x t3k t3k−1 x t3k t3k−1

t3k−1 t3k x t3k−2 t3k x t3k−2

t3k t3k−1 t3k−2 x t3k−1 t3k−2 x
x t3k−2 t3k−1 t3k t3k−2 t3k−1 t3k

Table 12: The six time slot expansion for m+ 1 ≤ k ≤ 2m− 1.

This construction builds a double round-robin tournament
T with n = 6m−2 teams and 2n−2 = 12m−6 time slots.
To give an example, Table 13 provides T for the casem = 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t1 x t3 t2 x t3 t2 t5 t6 t4 t5 t6 t4 t8 t9 t7 t8 t9 t7
t2 t3 x t1 t3 x t1 t6 t4 t5 t6 t4 t5 t9 t7 t8 t9 t7 t8
t3 t2 t1 x t2 t1 x t4 t5 t6 t4 t5 t6 t7 t8 t9 t7 t8 t9
t4 t9 t8 t7 t9 t8 t7 t3 t2 t1 t3 t2 t1 x t6 t5 x t6 t5
t5 t7 t9 t8 t7 t9 t8 t1 t3 t2 t1 t3 t2 t6 x t4 t6 x t4
t6 t8 t7 t9 t8 t7 t9 t2 t1 t3 t2 t1 t3 t5 t4 x t5 t4 x
t7 t5 t6 t4 t5 t6 t4 x t9 t8 x t9 t8 t3 t2 t1 t3 t2 t1
t8 t6 t4 t5 t6 t4 t5 t9 x t7 t9 x t7 t1 t3 t2 t1 t3 t2
t9 t4 t5 t6 t4 t5 t6 t8 t7 x t8 t7 x t2 t1 t3 t2 t1 t3
x t1 t2 t3 t1 t2 t3 t7 t8 t9 t7 t8 t9 t4 t5 t6 t4 t5 t6

Table 13: The case m = 2, producing a 10-team tournament.

It is straightforward to verify that this tournament sched-
ule on n = 6m − 2 teams is feasible for all m ≥ 1, i.e., it
satisfies the each-venue, at-most-three, and no-repeat condi-
tions. We now show that this expander construction gives a
4
3 -approximation to the LD-TTP, regardless of the values of
the distance parameters d1, d2, . . . , dn−1.

Let Γ be an n-team instance of the LD-TTP, with n =
6m − 2 for some m ≥ 1. Let S be the total distance of the
optimal solution of Γ. Using our expander construction, we
generate a feasible tournament with total distance less than
4
3S. This gives a 4

3 -approximation to the LD-TTP.
Let y1, y2, . . . , yn be the n = 6m − 2 teams of Γ, in that

order, with dk being the distance from yk to yk+1 for all
1 ≤ k ≤ n − 1. Now we map the set {t1, t2, . . . , tn−1, x}
to {y1, y2, . . . , yn} as follows: ti = yi for 1 ≤ i ≤ 3m− 3,
x = y3m−2, and ti = yi+1 for 3m − 2 ≤ i ≤ 6m − 3.
In Figure 4 below, we illustrate this mapping for the case
m = 2, where the n = 6m− 2 teams are divided into three
triplets and a singleton x:

Figure 4: The labeling of the n = 6m− 2 teams, for m = 2.

We then apply this labeling to our expander construction
to create a feasible n-team tournament T . For each 1 ≤ k ≤
n− 1, let fk be the total number of times the dk “bridge” is
crossed, so that the total distance of T is

∑n−1
k=1 fkdk. We

now provide an exact formula for fk, where we separate the
analysis into six cases, depending on the position of x (left
or right of the dk bridge), and the value of k modulo 3.

Position k fk, the value of
of x mod 3 the dk coefficient

Right 0 4k(n− k)/3 + (4n+ 6k − 16)/3
Right 1 4k(n− k)/3 + (6n+ 8k − 20)/3
Right 2 4k(n− k)/3 + (4n+ 12k − 20)/3
Left 0 4k(n− k)/3 + (4n− 2k − 4)
Left 1 4k(n− k)/3 + (8n− 4k − 22)/3
Left 2 4k(n− k)/3 + (14n− 10k − 16)/3

Table 14: Formulas for dk coefficient, for each of the six cases.
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We can show (Hoshino and Kawarabayashi 2012) that
there are five exceptions to Table 14, as follows:

(a) If k = 1 then fk := fk − 2(n− 4)/3.
(b) If k = n

2 − 1, then fk := fk + 2.
(c) If k = n

2 , then fk := fk − 2.
(d) If k = n

2 + 1, then fk := fk − 4.
(e) If k = n− 1 then fk := fk − 2(n− 4)/3.

For example, for the case m = 2 (see Table 13), the total
travel distance of T is 24d1 + 36d2 + 42d3 + 48d4 + 56d5 +
52d6 + 38d7 + 36d8 + 26d9. Let us prove the formula fk =
4k(n− k)/3 + (4n+ 6k − 16)/3 for the first case in Table
14; the remaining cases follow by the same reasoning.

There are k teams to the left of the dk bridge. By our
expander construction, (k + 6)/3 of these teams cross the
bridge 2(n− k+ 2)/3 times, and the remaining (2k− 6)/3
teams cross the bridge 2(n − k + 5)/3 times. And of the
n − k − 1 teams to the right of the bridge (not including
team x), (n− k− 1)/3 of these teams cross the bridge 2k/3
times and the remaining 2(n − k − 1)/3 teams cross the
bridge (2k + 6)/3 times. Finally, team x crosses the bridge
4k/3 times. From there, we sum up the cases and determine
that fk = 4k(n− k)/3 + (4n+ 6k − 16)/3.

Let S =
∑n−1

k=1 ckdk be the total distance of the optimal
solution of Γ. Then as we described in the proof of Lemma
1, we have ck ≥ 2kdn−k

3 e + 2(n − k)dk3 e because each of
the k teams to the left of the dk bridge must make at least
2dn−k

3 e trips across the bridge, and the n − k teams to the
right of this bridge must make at least 2dk3 e trips across.

For m ≥ 3, it is straightforward to verify that fk
ck
< 4

3 for
all 1 ≤ k ≤ n − 1, thus establishing our 4

3 -approximation
for the LD-TTP. This ratio of 4

3 is the best possible due to
the case k = 3, which has f3 = 16n−34

3 and c3 = 4n − 8,
implying f3

c3
→ 4

3 as n → ∞. This worst-case scenario
is achieved when dk = 0 for all k 6= 3, i.e., when teams
{t1, t2, t3} are located at one vertex, and the remaining n−3
teams are located at another vertex.

Therefore, 33.3% is the worst possible gap between the
optimal solution and the solution produced by our expander
construction. In practice, this ratio is much lower, which we
demonstrate by applying our construction to five instances:
CONSn for n = 10, 16, 22 and CIRCn for n = 10, 16. The
optimal solutions to the first four instances are known (Trick
2012). As we see in Table 15, this percentage gap is ex-
tremely small for the constant instances, and is quite reason-
able even for the (obviously non-linear) circular instances.

Instance Optimal Our Solution Percentage Gap
CONS10 124 128 3.2%
CONS16 327 334 2.1%
CONS22 626 636 1.6%
CIRC10 242 276 14.0%
CIRC16 [846, 916] 994 [8.5%, 17.5%]

Table 15: Comparing our construction to the optimal solution.

A natural question is whether there exist similar construc-

tions for n ≡ 0 and n ≡ 2 (mod 6). In these cases, we
ask whether a 4

3 -approximation is best possible. This is just
one of many open questions arising from this work. We now
conclude the paper with several other avenues for further re-
search.

Conclusion
In many professional sports leagues, teams are divided
into two conferences, where teams have intra-league games
within their own conference as well as inter-league games
against teams from other conference. The TTP models intra-
league tournament play. The NP-complete Bipartite Trav-
eling Tournament Problem (Hoshino and Kawarabayashi
2011a) models inter-league play, and it would be interest-
ing to see whether our linear distance relaxation can also be
applied to bipartite instances to help formulate new ideas in
inter-league tournament scheduling.

We conclude the paper by proposing two new benchmark
instances for the Traveling Tournament Problem, as well as
three additional open problems on the Linear Distance TTP.
We first begin with the benchmark instances.

For each n ≥ 4, define LINEn to be the instance where
the n teams are located on a straight line, with a distance of
one unit separating each pair of adjacent teams, i.e., dk =
1 for all 1 ≤ k ≤ n − 1. And define INCRn to be the
increasing-distance scenario where the n teams are arranged
so that dk = k for all 1 ≤ k ≤ n−1. Figure 5 illustrates the
location of each team in INCR6.

Figure 5: The instance INCR6.

By definition, the TTP solution matches the LD-TTP so-
lution for each of these two instances. By Theorem 1, the
optimal solutions for LINE6 and INCR6 have total distance
84 and 250, respectively. This naturally motivates the fol-
lowing problem:

Problem 1 Solve the TTP for the instances LINEn and
INCRn, for n ≥ 8.

Theorem 2 listed all seven possible optimal distances for
the 6-team LD-TTP, which leads us to ask the following:

Problem 2 Let PDn denote the number of possible dis-
tances that can be a solution to the n-team LD-TTP. De-
termine PDn for n ≥ 8.

For example, PD4 = 1 and PD6 = 7. If we can show
PDn is exponential in n, an immediate corollary is the non-
existence of a polynomial-time algorithm to solve the n-
team LD-TTP.

Finally, for any instance Γ on n teams, define XΓ to be
the total distance of an optimal TTP solution, and X∗

Γ to be
the total distance of an optimal LD-TTP solution. Define
OGn to be the maximum optimality gap, the largest value of
X∗−X

X taken over all instances Γ.
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A brute-force enumeration of all 1920 feasible 4-team
tournaments, combined with several applications of the Tri-
angle Inequality, shows thatOG4 = 0%. We conjecture that
OG6 > 0% but have yet to find a 6-team instance with a
positive optimality gap. This motivates our final question.

Problem 3 Determine the value of OGn for n ≥ 6.

Suppose that OG6 = 5%. Then Theorem 2 guarantees a
tournament schedule that is at most 5% higher than the op-
timal TTP solution, at a fraction of the computational cost.
Of course, this is not necessary for the case n = 6 as we
can use integer and constraint programming to output the
TTP solution in a reasonable amount of time. However, for
larger values of n, this linear distance relaxation technique
would allow us to quickly generate close-to-optimal solu-
tions when the exact optimal total distance is unknown or
too difficult computationally. We are hopeful that this ap-
proach will help us develop better upper bounds for large
unsolved benchmark instances.
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