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Abstract

Social events are events that occur between people where at
least one person is aware of the other and of the event tak-
ing place. Extracting social events can play an important role
in a wide range of applications, such as the construction of
social network. In this paper, we introduce the task of so-
cial event extraction for tweets, an important source of fresh
events. One main challenge is the lack of information in a sin-
gle tweet, which is rooted in the short and noise-prone nature
of tweets. We propose to collectively extract social events
from multiple similar tweets using a novel factor graph, to
harvest the redundance in tweets, i.e., the repeated occur-
rences of a social event in several tweets. We evaluate our
method on a human annotated data set, and show that it out-
performs all baselines, with an absolute gain of 21% in F1.

Introduction
Social events are events that occur between people, in which
at least one person is aware of the other and of the event
taking place (Agarwal and Rambow 2010). For example,
there is a social event in the sentence “John talks to Mary”,
since John and Mary are aware of each other and both are
aware of the talking event. The task of social event extrac-
tion is believed to be helpful for a wide range of applications
including social network construction, question-answering,
summarization and so on.

Apoorv and Rambow (2010) introduce this task. They
annotate part of Automatic Content Extraction (ACE) data,
and perform social event detection and classification exper-
iments using Support Vector Machines (SVMs) with Kernel
methods. Structures derived from phrase structure trees and
dependency trees are adopted as features. In their work, so-
cial events are classified into two types: 1) Interaction, in
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which both parties are aware of the social event (e.g., a con-
versation); and 2) observation, in which only one party is
aware of the interaction (e.g., thinking about or spying on
someone).

Inspired by this work, we propose the task of social event
extraction for tweets. We are interested in tweets, because it
has become an important repository of fresh events. Nearly
all significant events are first reported in tweets, e.g., the Los
Angeles fire in 2007, the Chile earthquake in 2008, and the
death of Michael Jackson in 2009. Particularly, our inves-
tigation reveals that 15.2% tweets contain a social event 1.
However, this task is hard because: 1) A tweet is often too
short to provide sufficient information to the classifier; and
2) a tweet is often so noisy that current natural language
processing (NLP) tools, such as chunker and syntax parser
which have proved critical for social event extraction, are
unable to offer reliable features.

We propose to extract social events from multiple similar
tweets using a factor graph to tackle this issue. Our solution
is based on the following observation: a social event is likely
to appear in multiple tweets, for some of which extraction is
easy while for the others it is hard. As an illustrated exam-
ple, consider the tweets in Table 1. It is straightforward to
extract an interaction type social event involving “Aquino”
and “ Obama” from the first tweet, owing to the strong in-
dicator of “meet”; while it is hard to extract it from the sec-
ond, because of the limited context. Intuitively, knowing that
there is an interaction type social event involving “Aquino”
and “Obama” in the first tweet will encourage us to guess
the same event for the second tweet.

Our graphical model is built as follows. We first introduce
a random variable for each social event candidate, whose

1We sample about 10,000 tweets, and for each tweet manually
check whether it has any social event. It turns out 1,526 contains
social events.
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value indicates the social event type of the corresponded
candidate. Following Apoorv and Rambow (2010), we dis-
criminate two types of social events, Interaction and Obser-
vation, and use a special type None to indicate the candidate
is not a social event. Hereafter, xim and yim are used to de-
note the ith candidate and its associated variable from tweet
tm, respectively. Next we add a factor for every two vari-
ables whose corresponded candidates involve the same two
entities and come from similar tweets. We use f ijmn to de-
note the factor connecting yim and yjn (tm and tn are similar
tweets). We say two tweets are similar if and only if they fall
into a period of time and their content similarity is above a
threshold (0.3 in our work). Figure 1 illustrates an example
of our factor graph.

Figure 1: Variables and factors of our factor graph model.
Circles represent random variables, each of which denotes
the type of a social event candidate; Blue and red rectangles
represent factors related to a single variable and two vari-
ables, respectively.

Note that the idea of utilizing redundance in tweets has
been successfully practiced in some of recent studies on
tweets, most of which are based on the two-stage label-
ing strategy. For example, Liu et al. (2011) cluster sim-
ilar tweets and conduct two-stage Semantic Role Labeling
(SRL) on each cluster of tweets, in which the second round
labeler exploits some statistical features derived from the
outputs of the first round labeler. In contrast to these studies,
our method is based on probabilistic graphical model, which
is mathematically well formalized.

We evaluate our method on a manually annotated data
set. Experimental results show that our method achieves
77% F1, as compared to 54% F1 of the state-of-the-art base-
line that performs the extraction tweet by tweet using SVM
based classifiers. Our method also beats a variety of our
method that ignores cross-tweet information. Based on the
mined social events, we further build an application that vi-
sualizes people’s social distance closeness , and receive pos-
itive feedback.

We summarize our contributions as follows.

1. We introduce the task of social event mining for tweets.
One main challenge is that a tweet often cannot provide
insufficient information.

Aquino to meet with Obama in May or June
- US envoy — Inquirer Global Nation j.mp/xCwmCS
Aquino-Obama in May or June: US envoy
- BusinessWorld Online Edition goo.gl/fb/ZXYsp

Table 1: A motivating example of collective social event ex-
traction.

2. We propose to extract social events from multiple simi-
lar tweets using a graphical model, which exploits redun-
dance in tweets to make up for the lack of information in
a single tweet.

3. We evaluate our method on a manually annotated data set,
and show that our method achieves an F1 of 77%, outper-
forming all baselines.

The rest of this paper is structured as follows. In the next
section, we introduce related work. In Section 3, we define
the task. In Section 4, we present our method. In Section 5,
we evaluate our method. Finally, we conclude in Section 6
with a brief discussion of future work.

Related Work
Event Extraction on Formal Text. Harabagiu et al. (2005)
propose a sentence level ACE event extraction system,
which combines pattern matching and statistical models.
Liao and Grishman (2010) develop existing research on
ACE event extraction by using cross-event information.
There is also a large body of studies targeting TimeML
events, e.g., STEP (Bethard and Martin 2006) which uses a
rich set of textual, morphological dependency and WordNet
hypergamy features to build a SVMs model. Most recently,
Llorens al. (2010) analyze the contribution of semantic roles
to TimeML event identification. Studies on event identifica-
tion besides ACE and TimeML also exist. For example, Yu
et al. (2009) utilize association language patterns plus sin-
gle words as features to classify sentences with negative life
events into predefined categories (e.g., Family, Love, Work).

Apoorv and Rambow (2010) first study the task of so-
cial event extraction on a corpus derived from ACE data,
and propose to use kernel SVMs to achieve it. Our work is
inspired by this work. However, there are two remarkable
differences. Firstly, we use a graphical model, rather than
kernel SVM, to simultaneously infer the labels of all event
candidates. One advantage of our model is that it allows
us to aggregate across tweet information to make up for the
lack of information in a single tweet. Secondly, our model
adopts only shallow linguistic features, rather than chunking
and dependency parsing related features. This is because
tweets are short and often informally written, and as a re-
sult current natural language processing tools perform bad
on tweets (Ritter et al. 2011), which means such advanced
linguistic features are not reliable for tweets.
Event Extraction on Tweets. Sankaranarayanan et
al. (2009) extract breaking news from tweets to build a
news processing system, called TwitterStand; and particu-
larly, Sakaki et al. (2010) devise a classifier of tweets based
on features derived from one tweet (e.g., the keywords in a
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tweet and the number of words) to detect a particular type
of event like Earthquake. Benson et al. (2011) present a
graphical model to extract canonical entertainment events
by aggregating information across multiple messages.

Our method is similar to Benson et al. (2011) in the
sense that we also adopt a factor graph as our model. How-
ever, two significant differences exist. Firstly, our work con-
centrates on social event extraction for tweets, rather than
entertainment events; secondly, feature weights of our fac-
tor graph are automatically tuned on the training data, while
Benson et al. (2011) manually decide a good part of their
model parameters.

Task Description
A tweet is a short text message with no more than 140 char-
acters. Here is an example of tweets: “mycraftingworld:
#Win Microsoft Office 2010 Home and Student #Contest
from @office http://bit.ly/ · · · ”, where “mycraftingworld”
is the name of the user who published this tweet; words be-
ginning with “#” like “”#Win” are hash tags; words start-
ing with “@” like “@office” represent user names; and
“http://bit.ly/” is a shortened link.

Given as input a collection of tweets T = {tm}, our task
is to output Em = {eim}

Nm
i ,m = 1, · · · , |T |, where eim

denotes the ith social event extracted from the mth tweet;
Nm stands for the total number of social events extracted
from tm. Following Apoorv and Rambow (2010), we de-
fine a social event as a triple eim = (p1, p2, y), where: p1

and p2 stand for the two persons involved into the event; y
denotes the type of the event, which can be Interaction (I),
Observation (O) or None (N). Note that we always assume
(p1, p2, y) and (p2, p1, y) are interchangeable. And to con-
centrate our focus on social event extraction, we assume that
person names in the input tweets have been labeled.

As an illustrative example, consider the following two
tweets: “· · ·Love is in the air? This pic of the day looks
like [Demi Lovato]p and [Wilmer Valderrama]p are get-
ting pretty close· · · ” and “· · · [Demi Lovato]p & [Wilmer
Valderrama]p are caught dating· · · ”, where each “[· · · ]p”
denotes a person name. The expected output is: E1 =
{(Demi Lovato,Wilmer Valderrama, I)} and E2 = {(Demi
Lovato,Wilmer Valderrama, I)}.

Our Method
Overview. Our method consists of two steps. In the first
step, it generates social event candidates as follows. For
each tweet tm ∈ T , it creates a social event candidate
(p1, p2, y) for each pair of person names in tm. Note that
when p1 or p2 occurs multiple times in a tweet, only one
candidate is generated; and in this case (p1, p2) refers to the
closest pair. For each tweet, we index its candidates. We use
xim to denote the person name pairs of the ith candidate, i.e.,
xim · p1 and xim · p2 correspond to p1 and p2, respectively,
and yim to denote the type label of the ith candidate. For
example, for the tweet “[Michael Lohan]1p accuses [Lindsay
Lohan]p of smoking crack and [Donald Trump]p Accuses
[Jon Stewart]p of ”Racist”, [Michael Lohan]2p again.”, the
generated candidates are listed below: ([Michael Lohan]1p,

[Lindsay Lohan]p), ([Lindsay Lohan]p,[Donald Trump]p),
([Lindsay Lohan]p,[Jon Stewart]p), ([Donald Trump]p ,[Jon
Stewart]p), ([Donald Trump]p,[Michael Lohan]2p) and ([Jon
Stewart]p,[Michael Lohan]2p ).

In the second step, our method constructs a factor graph
G = (Y, F,E), where: Y = {yim}m,i represents all the
event type variables; F stands for factor vertices, consisting
of {f im(yim)} and {f ijmn(yim, y

j
n)},∀xim = xjn

2; E repre-
sents edges, consisting of edges between yim and f im, edges
between yim and f ijmn, and edges between yjm and f ijmn.
G = (Y, F,E) defines a probability distribution

P (Y |G, T ) as defined in Formula 1.

lnP (Y |G, T ) = − lnZ(G, T )+∑
m,i

ln f im(yim)+

∑
m,n,i,j

δijmn · ln f ijmn(yim, y
j
n)

(1)

where δijmn = 1 if and only if xim = xjn, otherwise zero;
Z(G, T ) is the partition function as defined in Formula 2.

Z(G, T ) =
∑
Y

∏
m,i

f im(yim)·

∏
m,n,i,j

f ijmn(yim, y
j
n)δ

ij
mn

(2)

A factor factorizes according to a set of features, as de-
fined in Formula 3.

ln f im(yim) =
∑
k

λ
(1)
k φ

(1)
k (yim)

ln f ijmn(yim, y
j
n) =

∑
k

λ
(2)
k φ

(2)
k (yim, y

j
n)

(3)

{φ(1)
k }

K1

k=1 and {φ(2)
k }

K2

k=1 are two sets of features.
Each feature has a real value as its weight. Θ =

{λ(1)
k }

K1

k=1

⋃
{λ(2)

k }
K2

k=1 denotes the feature weight set,
which is also called parameters of G.

Our method jointly decides the values of Y . With yim
resolved, outputting Em is straightforward:

Em = {(xim, yim)|∀i, yim 6= N} (4)

Training. Given a set of training data T , in which every
possible social event is annotated, Θ is learnt by maximizing
the log data likelihood, as defined in Formula 5.

Θ∗ = arg max
Θ

lnP (Y |Θ, T ) (5)

To solve this optimization problem, we first calculate its gra-
dient:

∂ lnP (Y |T ; Θ)

∂λ1
k

=
∑
m,i

φ
(1)
k (yim)−

∑
m,i

∑
yim

p(yim|T ; Θ)φ
(1)
k (yim)

(6)

2We use case insensitive comparison. For example, “wilmer
valderrama” and “Wilmer Valderrama” are regarded to be equal.
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∂ lnP (Y |T ; Θ)

∂λ2
k

=
∑

m,n,i,j

δijmn · φ
(2)
k (yim, y

j
n)

−
∑

m,n,i,j

δijmn
∑
yim,y

j
n

p(yim, y
j
n|T ; Θ) · φ(2)

k (yim, y
j
n)

(7)

where, the two marginal probabilities p(yim|T ; Θ) and
p(yim, y

j
n|T ; Θ) are estimated using the loopy belief prop-

agation algorithm (Murphy, Weiss, and Jordan 1999). Once
we have computed the gradient, Θ∗ can be figured out by
standard techniques such as steepest descent, conjugate gra-
dient and the limited-memory BFGS algorithm (L-BFGS).
L-BFGS is adopted because it is particularly well suited for
optimization problems with a large number of variables.
Inference. Given a set of tweets T for testing, we can con-
struct a factor graph G. Suppose its parameters Θ are fixed
to Θ∗ , the inference problem is to find the most possible
assignment of Y , i.e.,

Y ∗ = arg max
Y

lnP (Y |Θ∗, T ) (8)

We adopt the max-product algorithm to solve this inference
problem. The max-product algorithm is nearly identical to
the loopy belief propagation algorithm, except that the sums
are replaced by maxima in the definitions. Note that in both
the training and testing stage, we construct the factor graph
in the same way as described in Section .
Features. Features {φ(1)

k (yim)}K1

k=1 can be divided into local
features and global features. Local features are related to
tweet tm, including: 1) The number of words between xim ·
p1 and xim · p2; 2) whether xim · p1 and xim · p2 are in the
same sentence 3; 3) the verb nearest to xim · p1 and xim · p2,
and its position, which can be L, M or R, meaning being on
the left, in the middle and on the right of the two persons,
respectively; 4) whether tm has any hash tag; 5) whether
xim ·p1 appears before xim ·p2; and 6) the word before / after
xim · p1 / xim · p2.

Global features are statistic information collected from
the whole corpus (training and testing data set), including:
1) Co-occurrence times of xim · p1 and xim · p2 in the same
tweet/sentence; and 2) content similarity between xim · p1

and xim · p2, as defined in Formula 9, where P1 (P2) refers
to the person names each of which appears together with p1

(p2) in some tweet.

sim(p1, p2) =
|P1

⋂
P2|

|P1

⋃
P2|

(9)

Features {φ(2)
k (yim, y

j
n)}K2

k=1 include: 1) The similarity
between tm and tn, as defined in Formula 10, where
~tm (~tn) is the bag-of-words vector representation of tm
(tn) with stop words removed. The stop words are
mainly from http://www.textfixer.com/resources/common-
english-words.txt; 2) whether tm and tn fall into the same
time period e.g., a day or 12 hours; 3) whether tm and tn
have one common hash tag/verb; 4) whether re-tweet/reply
relationship exists between tm and tn; 5) whether tm and tn

3Two words are considered to be in the same sentence if and
only if they are not separated by “!”,“.” or “?”.

contain the same link; and 6) whether xim · p1 / xim · p2 and
xin · p1 / xin · p2 have some common neighboring word in a
size three text window.

sim(tm, tn) =
~tm · ~tn
|~tm||~tn|

(10)

Three things are worth mentioning here. Firstly, we map
a feature with a real value r to a binary feature with value
1 if and only if Pnorm(x > r) ≤ 0.2. Here we assume
a normal distribution of Pnorm(·|µ̂, σ̂2) for any real value
feature, as defined in Formula 11. Secondly, we conduct
some pre-processing before feature extraction, e.g., remov-
ing stop words, extracting tweet meta data such as hash tags
and links. Thirdly, we have converted each word to its low-
ercase lemma form for string comparison and feature gener-
ation. For example, “Dating” and “dated” are consider to be
equal since they have the same lemma “date”; and “date”
is the value of the following feature, the verb closest to
“[Demi Lovato]p” and “[Wilmer Valderrama]p” in the tweet
“· · · [Demi Lovato]p Is Dating [Wilmer Valderrama]p· · · ”.

µ̂ =
1

n

n∑
i=1

ri, σ̂
2 =

1

n− 1

n∑
i=1

(r − µ̂)2 (11)

Experiments
Data Preparation. We sample 1,923 English tweets from
November 1st, 2011 to November 5th, 2011. Two anno-
tators 4 are asked to independently annotate person names
and social events, if any, for every tweet. For each pair of
person names in the same tweet, they are required to an-
notate at most one social event, and to use I or O to indi-
cate its type (Interaction or Observation). The inter-rater
agreements measured by kappa for person name recogni-
tion, whether a tweet expresses a social event involving two
persons, and the type of social event are 0.78, 0.69 and 0.72,
respectively. Each inconsistently annotated case is discussed
by the two annotators and a consensus is reached.

In total, 5,128 different person names are annotated, and
926 tweets are obtained which have at least two person
names. From the annotated tweets, we get 4,631 social event
candidates, among which 212 are interaction type social
events, 241 are observation type social events, and the re-
mainder are not social events. 126 randomly selected tweets
are used for development, and the remainder are used for 5-
fold cross validation.
Evaluation Metrics. We adopt the widely used Precision,
Recall and F1 to measure the classification performance for
a particular type of social event (including None). Precision
measures to what percentage the output classification labels
are correct, and recall means to what percentage the classi-
fication labels in the gold-standard data set are correctly la-
beled, while F1 is the harmonic mean of precision and recall
as defined in Formula 12. We use the average Precision,
Recall and F1 to measure the overall classification perfor-
mance, where the weight of each event type is proportional

4Two native English speakers.
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to the number of events of that type.

F1 =
2 · Precision ·Recall
Precision+Recall

(12)

Baselines. The system most similar to ours is the one pro-
posed by Apoorv and Rambow (2010). However, it is
trained on formal text and exploits advanced linguistic fea-
tures such as dependency parsing. Not surprisingly it per-
forms bad on tweets, a new genre of texts, which are short
and noisy. On our data set, its average F1 is 28.5%, as com-
pared to 35.0% F1 of the rule based system which outputs a
social event if the number of words between the two person
names is less than three and randomly assigns I or O to the
event as its type.

Following Apoorv and Rambow (2010), we build a base-
line system that first detects whether a candidate is a so-
cial event and if yes further decides its type (I or O). Simi-
larly, the baseline adopts SVMs as classification models for
both tasks. However it uses {φ(1)

k (yim}
K1

k=1} as its features,
rather than dependency tree derived features, considering
that current NLP tools cannot extract such advanced lin-
guistic features from noise-prone tweets (Ritter et al. 2011;
Liu et al. 2011). Hereafter, Bar is used to denote this base-
line system.

We build another system, denoted by Bnr, which can be
considered as a variety of ours but with across tweet features
{φ(2)

k (yim, y
j
m}

K2

k=1} ignored. Different from Bar, Bnr con-
ducts social event detection and classification in one step,
by assigning I, O or N (meaning not a social event) to each
candidate, and it uses a graphical model rather than SVMs.

The part-of-speech tagger fine tuned for tweets (Ritter et
al. 2011) is used to extract verbs, and the OpenNLP toolkit
is used to get lemmas. Both tools are publicly available.
Results. Table 2 reports the overall performance of our
method and the baselines, in terms of Precision (P), Recall
(R) and F1, respectively. It can be seen that our method sig-
nificantly outperforms the baselines (with p < 0.04), sug-
gesting the efficiency of conducting social event extraction
collectively from multiple tweets. We have observed that
largely owing to the insufficient information provided by a
single tweet, the baselines fail to output any social event
for a number of tweets, for which our method succeeds by
leveraging information from similar tweets. As an illustra-
tive example, consider the following two tweets in the same
time scope and with similar contents: “· · · [Demi Lovato]p Is
Dating [Wilmer Valderrama]p #1Dfacts · · · ” and “· · ·Love
is in the air? looks like [Demi Lovato]p and [Wilmer
Valderrama]p pretty close #1Dfacts · · · ”. For the first
tweet, all systems successfully extract a social event ([Demi
Lovato]p,[Wilmer Valderrama]p, I), owing to the strong sig-
nal provided by the verb “date”. The second tweet presents
a challenging case since the verb closest to the two person
names is “look”, which is not informative, and the rare co-
occurrence of the two person names in our data set (only
twice), which yields no reliable statistic evidence. The base-
lines output nothing for this tweet; in contrast, our method
correctly outputs ([Demi Lovato]p,[Wilmer Valderrama]p,
I), encouraged by the fact that a social event involving the

Table 2: Overall performance.
System P R F1

Ours 0.78 0.76 0.77
Bar 0.69 0.48 0.56
Bnr 0.67 0.45 0.53

Table 3: Performance for none social events.
System P R F1

Ours 0.79 0.77 0.78
Bar 0.68 0.49 0.57
Bnr 0.65 0.47 0.54

same two persons is recognized in some similar tweets.
From Table 2, we can also see that Bar performs slightly

better than Bnr (p < 0.05). We guess this can be largely ex-
plained by the unbalanced distribution of social event can-
didates, i.e., 90% candidates in our data set are not social
events. Owing to this data skewness problem, Bnr is more
likely to favor “None” than Bar.

Tables 3- 5 show Precision (P), Recall (R) and F1 of our
method and the baselines for three types of social events, re-
spectively. We can see that our method consistently outper-
forms the baselines for any type of social event (p < 0.01);
and that Bar achieves better performance thanBnr on every
type of event (p < 0.05), suggesting that Bar better handles
data skewness problem than Bnr.

To study the contribution of local and global features in
{φ(1)

k (yim)}K1

k=1, we modify our method to adopt only local
and global features, respectively. Note that modified meth-
ods also conduct jointly inference to leverage cross tweet
information. Table 6 presents Precision, Recall and F1 of
the two modified methods, from which we can see that: 1)
Using only local features yields better performance than the
baselines, which use both local and global features but not
cross-tweet features; 2) the local features seem to be more
effective than the global features. We guess one reason is
that our data set is relatively small and cannot give reliable
statistic information; and 3) combining all features gives the
best performance.
Discussion. A great portion of errors made by our method,
about 47.5%, are related to the fact that mining social event
is essentially a task that requires understanding the meaning
of tweets, which goes beyond the capability of the shallow
features adopted by our method. As an illustrative exam-
ple, consider the following tweet: “· · ·Retweet if you love
[Justin Bieber]p, [Selena Gomez]p· · · ” Owning to the ex-
tracted feature “love”, the verb nearest to “[Justin Bieber]p”
and “[Selena Gomez]p”, our method incorrectly outputs an

Table 4: Performance for interaction type social events.
System P R F1

Ours 0.82 0.75 0.78
Bar 0.67 0.49 0.56
Bnr 0.63 0.41 0.50
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Table 5: Performance for observation type social events.
System P R F1

Ours 0.77 0.78 0.77
Bar 0.71 0.46 0.56
Bnr 0.65 0.43 0.52

Features P R F1
Local 0.67 0.58 0.62
Global 0.42 0.38 0.40

Table 6: Overall performance of our method with different
feature sets.

social event ([Justin Bieber]p, [Selena Gomez]p, I). This er-
ror could be corrected, if we know the subject of “love” is
“you”. Correcting this kind of errors, ideally, requires to
adapt existing NLP tools to tweets (Ritter et al. 2011), or
to normalize tweets to accommodate existing NLP tools, as
demonstrated by Han and Baldwin (2011). We plan to study
these approaches and exploit semantic features in future.

The remaining errors are largely related to the relatively
small size of training data. For example, for the tweet “[Kris
Jenner]p Defend [Kim Kardashian]p http://t.co/3bEsWd6f
via @yahooomg”, our method does not recognize the social
event ([Kris Jenner]p,[Kim Kardashian]p, O), for the reason
that the verb “Defend” never occurs in our training data. To
fix these errors, we are going to annotate more data. Particu-
larly, we are interested in compiling a comprehensive list of
social event trigger words.

Statistic information on even a small size of annotated
data set shows helpful. To get more reliable global fea-
tures, we can run named entity recognition system for
tweets (Ritter et al. 2011) on large scale tweets. One
limitation of our method is that normalization of person
names is not considered. That means, no collections are
established between event candidates involving variations
of person names, e.g., ([Demi]p,[Wilmer]p) and ([Demi
Lovato]p,[Wilmer Valderrama]p). Intuitively, normalizing
person names helps our method since it allows to collect
more cross-tweet information. We will leave this to our fu-
ture work.
Application. Based on the mined social events, we build
a preliminary application that visualizes people’s social dis-
tance to setup an end to end test bed. Given two person
names, denoted by p1 and p2, their social distance is com-
puted according to Formula 13, where Icondition = 1 if
condition is satisfied, otherwise 0. Note that in general
dist(p1, p2) 6= dist(p2, p1) owing to the different denom-
inators.

dist(p1, p2) =

∑
m I(p1,p2,·)∈Em

∨
(p2,p1,·)∈Em∑

m I(p1,·,·)∈Em

∨
(·,p1,·)∈Em

(13)

The application, as illustrated in Figure 2, consists of cir-
cles representing persons, and edges connecting person pairs
involved in any social event. The size of a circle is propor-
tional to the number of tweets mentioning the corresponded

person name, while the length of an edge is proportional to
the social distance between the two persons connected by
the edge. Each edge is assigned with a label using the verb
that co-occurs most frequently with the two person names
related to the edge. We have deployed this application inter-
nally, and received positive feedback.

Figure 2: An application to visualize people’s social dis-
tance based on the mined social events. A circle repre-
sents a person, whose size is proportional to the number of
tweets containing the corresponded person name; an edge
connects two persons involved in any social event, whose
length is proportional to the social distance between the two
corresponded persons. The label of an edge is the verb that
co-occurs most frequently with the two person names con-
nected by the edge.

Conclusions and Future Work
Tweets has become an important source of fresh events. In
this work, we introduce the task of social event extraction for
tweets, which can help applications such as the construction
of people’s social network. The main challenge is that one
single tweet often provides insufficient information, rooted
in the short and informal nature of tweets. We propose a fac-
tor graph based method to collectively extract social events
from multiple tweets, leveraging the redundancy in tweets to
make up for the lack of information in a single tweet. Par-
ticularly, our method first generates social event candidates,
and then jointly assigns an event type label (I, B or N) to ev-
ery candidate. Extensive experiments on a manually labeled
data set demonstrate the effectiveness of our method, which
outperforms all baselines. Based on the mined social events,
we build an application that visualizes people’s social close-
ness, as an end to end test bed of our method.

We plan to explore three directions in future: 1) Devel-
oping advanced tweet normalization technologies and re-
lated tools to extract semantic features; 2) utilizing exter-
nal knowledge, such as unlabeled tweets and common so-
cial event triggers to overcome data spareness; and 3) nor-
malizing person names to aggregate additional cross-tweet
information.
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