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Abstract

Tweets have become an increasingly popular source of fresh
information. We investigate the task of Nominal Semantic
Role Labeling (NSRL) for tweets, which aims to identify
predicate-argument structures defined by nominals in tweets.
Studies of this task can help fine-grained information extrac-
tion and retrieval from tweets. There are two main chal-
lenges in this task: 1) The lack of information in a single
tweet, rooted in the short and noisy nature of tweets; and
2) recovery of implicit arguments. We propose jointly con-
ducting NSRL on multiple similar tweets using a graphical
model, leveraging the redundancy in tweets to tackle these
challenges. Extensive evaluations on a human annotated data
set demonstrate that our method outperforms two baselines
with an absolute gain of 2.7% in F1.

Introduction
Tweets are short messages shared through Twitter 1, which
now represents an important source of fresh information.
And in recent days, we have witnessed increasing research
interests in tweets. For example, Kwak et al. (2010) study
the problem of detecting influential Twitter users; Liu et
al. (2011c) investigate the task of named entity recogni-
tion for tweets. Particularly, Semantic Role Labeling (SRL)
is revisited in the new context of tweets (Liu et al. 2011b;
2011a).

Current studies of SRL for tweets mainly focus on verbs.
Existing approaches to verbal SRL (VSRL) usually con-
sist of two steps. Firstly, a Part-Of-Speech (POS) tagger
is used to identify verbs as predicates; and then, a sequen-
tial labeling model is adopted to recognize all arguments
and classify their semantic roles for each predicate. One
main challenge of this task is that a tweet is often short
and noisy, and as a result, existing natural language pro-
cessing tools perform poorly on tweets (Ritter et al. 2011;
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Liu et al. 2011c). This means conventional features that
prove helpful for SRL, such as syntax parsing related fea-
tures, are now unreliable. To tackle this challenge, Liu et
al. (2011a) first cluster similar tweets and then do two-stage
labeling for each cluster as follows. In the first stage, a linear
Conditional Random Fields (CRF) based labeler is applied
to each tweet. In the second stage, another linear CRF based
labeler uses statistic information collected from the outputs
of the first stage, to refine the preliminary results.

We enlarge the scope of this line of research from ver-
bal predicates to nominal predicates. Two factors motivate
our work. On the one hand, we have observed abundant
nominal predicates in tweets. As demonstrated by our in-
vestigation of 10,000 randomly sampled tweets, 12.3% of
tweets contain at least one nominal predicate. On the other
hand, we have found that many meaningful events are trig-
gered by nominal predicates. As shown by a manually
annotated tweet event corpus, 25.8% events are expressed
through nominal predicates and their semantic arguments 2.

There are several remarkable differences between Nom-
inal SRL (NSRL) and VSRL. Above all, NSRL focuses
on nominal predicates, whose number is much larger than
the number of verbs. Secondly, NSRL requires a predi-
cate recognition module since only a small number of nouns
are predicates (Li et al. 2009), in contrast with the fact that
nearly all verbs are meaningful predicates. Finally, com-
pared with a verb predicate, a nominal predicate tends to
have fewer explicit and more implicit arguments that are not
explicitly stated in the current sentence but can be recovered
in a larger context (Gerber and Chai 2010). To illustrate,
consider the following two sentences 3: “[arg0 The two
companies] [pred produce] [arg1 market pulp, container
board and white paper]. The goods could be manufactured
closer to customers, saving [pred shipping] costs.” where:

2For instance, (“beginning”, revolts, arg1) in the tweet “this
is just the beginning of mass revolts across the us” expresses a
DEMONSTRATE event.

3This example owes to Gerber and Chai (2010).
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“produce” in the first sentence is a verbal predicate with
agentive producer arg0 and produced entity arg1; “ship-
ping” in the second sentence is a nominal predicate without
any associated argument. However, we can infer that “The
two companies” refers to the agents (arg0) of the “shipping”
predicate, and “market pulp, container board and white pa-
per” refers to the shipped entities (arg1) of “shipping”.

The challenges of NSRL for tweets lie in two aspects.
First, as demonstrated by Liu et al. (2011a; 2010), short and
noisy tweets cannot offer the reliable evidence required by
SRL using current NLP tools. Second, it is often required
to resolve the implicit arguments for a nominal predicate 4.
This in turn requires more contextual information to be pro-
vided, which, however, goes beyond the capability of a sin-
gle tweet.

We propose a factor graph-based method, which collec-
tively conducts NSRL on multiple similar tweets to address
these challenges. Our method is based on the following ob-
servation 5: A nominal predicate appearing in multiple sim-
ilar tweets tends to have similar predicate-argument struc-
tures. That means, a predicate-argument segmentation is
likely to be shared across multiple similar tweets. We clas-
sify two tweets as similar if and only if: 1) Their content
is similar, e.g., their cosine similarity is above a threshold
(0.4 in our work) and they contain a common hash tag;
and 2) they fall into the same time period (half a day in
our work). As an illustrated example, consider the follow-
ing two tweets: “[arg0 Myanmar]’s [pred release] of some
long-time political [arg1 prisoners] is important step· · · ”
and “US to send ambassador to [arg0 Myanmar]!!! upgrad-
ing ties after [pred release] of political [arg1 prisoners]” 6.
It is straightforward to recognize “Myanmar” as the arg0 of
“release” for the first tweet, owing to the short distance be-
tween them 7 and the strong signal offered by “’s”; while
it is harder for the second, because of the long distance be-
tween them and the fact that “Myanmar” is an implicit argu-
ment of “release” (since they are separated by “!”, and are
not in the same sentence.). Intuitively, knowing that ([pred
release],[arg0 Myanmar]) exists in some similar tweet will
encourage us to guess the same predicate-argument exists in
the second tweet.

Our method consists of two steps. In the first step, it iden-
tifies each nominal predicate for each tweet using a Support
Vector Machine (SVM) (Cortes and Vapnik 1995) based bi-
nary classifier. In the second step, it constructs a factor graph
for each nominal predicate on which its semantic arguments
are jointly resolved. Let p denote the target nominal pred-
icate, and Tp denote the tweets that contain p 8. For each
tweet in Tp, a random variable is introduced for each word

4In our work, we only consider implicit arguments within one
tweet.

5Liu et al. (2011a) report similar observations for verbal pred-
icates in tweets.

6We only label head words as arguments.
7The distance between two words is proportional to the number

of words between them.
8Before comparing two strings, we transform them into their

lowercase lemmas.

in the tweet, the value (such as arg0 and arg1) of which indi-
cates the semantic role played by the word w.r.t. p. Hereafter
yim is used to denote the variable for the ith word in the mth

tweet in Tp. Each pair of neighboring variables, i.e., yi−1
m

and yim, is connected by a factor fm, forming a set of linear
Conditional Random Field (CRF) chains, each representing
a tweet. Then a factor is added for every two variables whose
corresponding words share the same lemma and come from
similar tweets. We use f ijmn to denote the factor connecting
yim and yjn. Figure 1 illustrates an example of our factor
graph.

Figure 1: A factor graph for NSRL. Circles represent ran-
dom variables, each of which denotes the semantic role of
the corresponded word played w.r.t. the given predicate;
solid circles mean the values of the corresponding variables
are visible. Blue and red rectangles represent factors related
to a single variable and two variables, respectively.

7,000 tweets are manually annotated as the gold-standard
data set. Experimental results on this data set show that our
method consistently outperforms the baseline, with an abso-
lute gain of of 2.7% in F1. We also study the contribution of
collective inference on multiple tweets.

Our contributions are summarized as follows:
1. We introduce the task of nominal SRL for tweets. Two

main challenges are the lack of information in a single
tweet and the resolution of implicit arguments.

2. We propose collectively conducting NSRL on multiple
similar tweets to tackle these challenges. We evaluate our
method on a human-annotated data set and show the ad-
vantages of our method.
The rest of our paper is organized as follows. In the next

section, we introduce related work. In Section 3 and 4, we
define the task and present our method. In Section 5, we
evaluate our method. Finally, we conclude in Section 6 with
discussions of future work.

Related Work
Related work can be divided into two categories: verbal SRL
and nominal SRL.

Verbal SRL
Since Gildea and Jurafsky (2002a) first introduce SRL, ver-
bal predicates have been extensively studied, and various ap-
proaches have been practised, among which data driven ap-
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proaches dominate, owing to the public availability of anno-
tated corpora such as the PropBank (Kingsbury and Palmer
2003), and the CoNLL shared tasks (Carreras and Màrquez
2005; Surdeanu et al. 2008). The pipelined approach is a
standard data driven approach, which divides the task into
several successive components such as argument identifi-
cation, argument classification, global inference, etc., and
conquers them individually (Xue 2004; Koomen et al. 2005;
Cohn and Blunsom 2005; Punyakanok, Roth, and Yih 2008;
Toutanova, Haghighi, and Manning 2005; 2008) .

There is also a large body of other statistic learning
based methods. For example, Màrquez et al. (2005) se-
quentially label the words according to their positions rel-
ative to an argument (i.e., inside, outside, or at the begin-
ning); Vickrey and Koller (2008) simplify the input sen-
tence by hand-written and machine learnt rules before SRL;
some other approaches resolve all the sub-tasks simultane-
ously by integrating syntactic parsing and SRL into a single
model (Musillo and Merlo 2006; Merlo and Musillo 2008),
or by using Markov Logic Networks (MLN) (Richardson
and Domingos 2006) as the learning framework (Meza-Ruiz
and Riedel 2009).

All of the above studies target formal texts. Recently, a
handful of work on tweets has emerged. Liu et al. (2010)
first study verbal SRL for tweets. They map predicate-
argument structures from news sentences to news tweets
(tweets that report news) to obtain training data, based on
which a tweet specific system is trained. A linear CRF
model is used to integrate conventional features such as
lemma and POS. Liu et al. in their recent work (2011a)
study the information insufficiency challenge for tweets, and
propose clustering similar tweets, and collectively perform-
ing SRL on a group of similar tweets. They use two-stage la-
beling rather than a graphical model, to leverage cross tweet
information.

Nominal SRL
Compared with verbal SRL, nominal SRL has been less well
studied. Existing methods are mainly based on FrameNet
and NomBank. Gildea and Jurafsky (2002b) present an
early FrameNet-based SRL system that targets both verbal
and nominal predicates. Jiang and Ng (2006) first report
an automatic NomBank SRL system, which uses maximum
entropy as its classification model. Gerber and Chai (2009)
first study the role of implicit argumentation in NSRL, and
develop a system that takes implicit argumentation into ac-
count, improving overall performance by nearly 5% F1. In
their later work (Gerber and Chai 2010), they demonstrate
the feasibility of recovering implicit arguments with a su-
pervised classification model. Li et al. (2009) explore
Chinese nominal SRL on automatic parse trees with auto-
matic predicate recognition and successfully integrate fea-
tures derived from Chinese verbal SRL into Chinese nom-
inal SRL with much performance improvement. Srikumar
and Roth (2011) present a joint inference model that cap-
tures the inter-dependencies between verbal SRL and rela-
tions expressed using prepositions, with the goal of extend-
ing SRL from verbs and nominals to other kinds of predi-
cates.

Two factors differentiate our method from the above stud-
ies. First, we study nominal SRL in the context of tweets, a
new genre of texts, which are short and prone to noise. That
means conventionally useful features on formal texts are not
available on tweets. Second, we adopt a novel graphical
model (Koller and Friedman 2009) to jointly resolve the ar-
guments (including implicit arguments), which harvests the
redundancy in similar tweets to overcome the limited infor-
mation in a single tweet.

Task Definition
A tweet is a short text message with no more than 140
characters shared through Twitter, the most popular micro-
blog service, where users use tweets to discuss any topic,
report whatever is happening, and communicate with each
other. Here is an example of a tweet: “mycraftingworld:
#Win Microsoft Office 2010 Home and Student *2Win-
ners* #Contest from @office and @momtobedby8 #Give-
away http://bit.ly/bCsLOr ends 11/14”, where ”mycrafting-
world” is the name of the user who posted this tweet. Words
beginning with the “#” character, like “”#Win”, “#Con-
test” and “#Giveaway”, are hash tags, usually indicating the
topics of the tweet; words starting with “@”, like “@of-
fice” and “@momtobedby8”, represent user names, and
“http://bit.ly/bCsLOr” is a shortened link.

Given a set of tweets T = {t} as input, our task is to iden-
tify every nominal predicate, and for each nominal predicate
further identify its semantic arguments. We use the gen-
eral role schema defined by NomBank, which includes core
roles such as arg0, arg1 (usually indicating the agent and
patient of the predicate, respectively), and auxiliary roles
such as argtmp and argloc (representing the temporal and
location information of the predicate, respectively). Follow-
ing Màrquez et al. (2005), we label only the head as the the
argument. As a pilot study, we limit our scope to English
tweets 9.

Here is an example to illustrate our task. For
the following input tweet “the death of #steve-
jobs says something significant about america’s
decline· · · ”. The expected output is a set of triples: {
(death,#stevejobs,arg1),(decline,america,arg0)}, which
says that “#stevejobs” is the patient of “death”, and that
“america” is the agent of “decline”.

Our Method
We first give an overview of our method then discuss its
two core components: 1) Nominal predicate identification
model; and 2) argument identification and classification
model. We concentrate our focus on #2, and discuss its train-
ing, inference, and features in detail.

Overview
The task of NSRL is divided into two sub problems: 1)
Nominal predicate identification and 2) argument identifi-
cation and classification. To address #1, we follow Li et

9Extending our method to other languages, such as Chinese,
requires updating the word breaker and the POS tagger.
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al. (2009), and train a binary classifier using the LibSVM
toolkit 10 with default settings. As opposed to existing meth-
ods, such as Li et al. (2009), that use parsing related fea-
tures, we adopt shallow features while deciding whether tim,
the ith word in tweet tm, is a nominal predicate, including:
1) POS/lemma of the word before/after tim; 2) neighboring
words of tim in a text window of size three; 3) the nearest
verb to tim and its position (left or right) and 4) whether tim
is in the predefined nominal word list 11. For every input
tweet, we first use a POS tagger 12 to extract all nouns, each
of which is then fed into the classifier to check whether it is a
nominal predicate or not. In this way, we obtain all nominal
predicates, denoted by P .

To address #2, we build a factor graph Gp for each nomi-
nal predicate p ∈ P , using all tweets containing the pred-
icate, denoted by Tp. Gp is formally defined as Gp =
(Yp, Fp, Ep), where: Yp = {yim}m,i represents the seman-
tic role variables and yim represents the semantic role 13 of
the ith word in the mth tweet in Tp for the predicate p; Fp
stands for factor vertices, consisting of {f im(yi−1

m , yim)} and
{f ijmn(yim, y

j
n)},∀tim = tjn, and tm and tn are similar 14; Ep

represents edges, consisting of edges between yi−1
m and f im,

edges between yim and f im, edges between yim and f ijmn, and
edges between yjn and f ijmn.
Gp = (Yp, Fp, Ep) then defines a probability distribution

P (Yp|Gp, Tp) according to Formula 1.
lnP (Yp|Gp, Tp) = − lnZ(Gp, Tp)+∑

m,i

ln f im(yi−1
m , yim, p)+∑

m,n,i,j

δijmn · ln f ijmn(yim, y
j
n, p)

(1)

where δijmn = 1 if and only if: tim = tjn , and tm and tn are
similar; otherwise zero; Z(Gp, Tp) is the partition function
as defined in Formula 2.

Z(G, T ) =
∑
Y

∏
m,i

f im(yim)·

∏
m,n,i,j

f ijmn(yim, y
j
n)δ

ij
mn

(2)

A factor factorizes according to a set of features, as de-
fined in Formula 3.

ln f im(yim) =
∑
k

λ
(1)
k φ

(1)
k (yi−1

m , yim, p)

ln f ijmn(yim, y
j
n) =

∑
k

λ
(2)
k φ

(2)
k (yim, y

j
n, p)

(3)

{φ(1)
k }

K1

k=1 and {φ(2)
k }

K2

k=1 are two feature sets. Each feature
has a real value as its weight. Θ = {λ(1)

k }
K1

k=1

⋃
{λ(2)

k }
K2

k=1

10http://www.csie.ntu.edu.tw/ cjlin/libsvm/
11We compile a list of nominal predicates from NomBank.
12We use the POS tagger fine tuned for tweets (Ritter et al. 2011)
13We introduce a special role type “o”, meaning the word does

not play any role for the predicate.
14We use case insensitive comparison. For example, “release”

and “Release” are regarded as equal.

denotes the feature weight set, which is also called param-
eters of Gp. Note that ∀p ∈ P , Gp shares the same set of
model parameters.

Our method jointly decides the values of Yp. With ∀yim ∈
Yp resolved, outputting the predicate-argument structures
for predicate p in tm, denoted by Spm, is straightforward:

Spm = {(p, tim, yim)|∀i, yim 6= o} (4)

Training
Given a set of training data T , in which every nominal pred-
icate is annotated, and for each predicate in each tweet, its
semantic roles are also annotated, Θ is learnt by maximizing
the log data likelihood, as defined in Formula 5.

Θ∗ = arg max
Θ

∑
p

lnP (Yp|Θ, Tp) (5)

To solve this optimization problem, we first calculate its gra-
dient:

∂
∑
p lnP (Yp|Tp; Θ)

∂λ1
k

=
∑
p

∑
m,i

φ
(1)
k (yi−1

m , yim, p)−∑
p

∑
m,i

∑
yim

p(yi−1
m , yim|Tp; Θ)φ

(1)
k (yi−1

m , yim, p)
(6)

∂
∑
p lnP (Yp|Tp; Θ)

∂λ2
k

=
∑
p

∑
m,n,i,j

δijmn · φ
(2)
k (yim, y

j
n, p)

−
∑
p

∑
m,n,i,j

δijmn
∑
yim,y

j
n

p(yim, y
j
n|Tp; Θ) · φ(2)

k (yim, y
j
n, p)

(7)
where, the two marginal probabilities p(yi−1

m , yim|Tp; Θ)
and p(yim, y

j
n|Tp; Θ) are estimated using the loopy belief

propagation algorithm (Murphy, Weiss, and Jordan 1999).
Once we have computed the gradient, Θ∗ can be figured
out by standard techniques such as steepest descent, conju-
gate gradient, and the limited-memory BFGS algorithm (L-
BFGS). L-BFGS is adopted because it is particularly well-
suited for optimization problems with a large number of
variables, which is exactly the case in our work.

Inference
Given a set of tweets T for testing, we first extract every
nominal predicate, and get the predicate set P . For each
predicate p we can construct a factor graph Gp. Supposing
the model parameters Θ are fixed to Θ∗ , the inference prob-
lem is to find the most possible assignment of Yp, i.e.,

Y ∗p = arg max
Yp

lnP (Yp|Θ∗, Tp) (8)

We adopt the max-product algorithm to solve this inference
problem. The max-product algorithm is nearly identical to
the loopy belief propagation algorithm, except that the sums
are replaced by maxima in the definitions. Iterating all p in
P , we can output predicate-argument structures for all the
testing tweets.
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Features
Features {φ(1)

k (yi−1
m , yim, p)}

K1

k=1 consist of local features
and global features. Local features are related to tweet tm,
including: 1) Lemma/POS of tim/ti−1

m ; 2) # of words be-
tween p and tim; 3) whether tim is on the left or right of
p; and 4) yi−1

m and yim. Global features are statistics col-
lected from the whole corpus (training and testing data set),
including: 1) Co-occurrence times of tim and p in the same
tweet/sentence; and 2) co-occurrence times of tim and p in
the same text window of size three.

Features {φ(2)
k (yim, y

j
n, p)}

K2

k=1 include: 1) The simi-
larity between tm and tn, as defined in Formula 9,
where ~t is the bag-of-words vector representation of t
with stop words removed. The stop words are mainly
from http://www.textfixer.com/resources/common-english-
words.txt; 2) whether tm and tn fall into the same time pe-
riod e.g., half a day; 3) whether tm and tn have one common
hash tag/verb; 4) whether a re-tweet/reply relationship exists
between tm and tn; 5) whether tm and tn contain the same
link; and 6) whether tim and tjn have some common neigh-
boring word in a size three text window.

sim(tm, tn) =
~tm · ~tn
|~tm||~tn|

(9)

Note that a feature with a real value r is mapped to a bi-
nary feature with value 1 if and only if Pnorm(x > r) ≤ 0.2.
Here we assume a normal distribution of Pnorm(·|µ̂, σ̂2) for
any real value feature, as defined in Formula 10.

µ̂ =
1

n

n∑
i=1

ri, σ̂
2 =

1

n− 1

n∑
i=1

(ri − µ̂)2 (10)

Experiments
In this section, we evaluate our method on a manually an-
notated data set, and show that our system outperforms the
baselines.

Data Preparation
We use the Twitter API to crawl tweets from October 5th,
2011 to October 12th, 2011. After dropping non-English
tweets, we get 17,421,446 tweets, from which 7,000 tweets
are randomly sampled. The selected tweets are then labeled
by two annotators following the annotation guidelines for
NomBank, with one exception: For phrasal arguments, to
be consistent with the word level labeling system, only the
head word is labeled as the argument. The inter-rater agree-
ment measured by kappa is 0.67. Each inconsistently an-
notated case is discussed by the two annotators to reach
a consensus. In total, we get 5,867 tweets containing at
least one nominal predicate, and 1,133 without any nomi-
nal predicate. On average, a tweet has 1.05 nominal predi-
cates, and a nominal predicate has 1.3 arguments. arg0 and
arg1 account for 47.3% and 41.7% of all arguments, respec-
tively; arg2, argtmp, and argloc combined represent 9.5%;
and others constitute the remaining. 15.8% arguments are
implicit, among which 49.5% and 45.8% are of type arg0

and arg1, respectively. 800 tweets are randomly chosen for

development and the remainder are used for 10-fold cross-
validation.

Evaluation Metrics
We adopt the widely used Precision, Recall and F1 as the
evaluation metrics. Precision tells us what percentage of the
predicted labels are correct, and recall is a measure of what
percentage of the labels in the gold-standard data set are cor-
rectly identified, while F1 is the harmonic mean of precision
and recall.

Baseline
Two baseline systems are developed. One is the SVM based
system (Gerber, Chai, and Bart 2011) (SRLS), the state-of-
the-art system trained on the Nombank; the other is the ver-
bal SRL system tuned for tweets (Liu et al. 2011a), denoted
by SRLT . Following Liu et al. (2011a), we use OpenNLP
and the Stanford parser to extract conventional features for
the baselines. Note that all systems are re-trained on our
annotated data set, and run 10-fold cross-validation. To con-
centrate our focus on argument identification and classifica-
tion, the nominal predicate identification module we devel-
oped is used for all systems 15.

Result
Table 1 shows the Precision, Recall and F1 of the base-
lines and ours (SRLG). It can be seen that our system per-
forms better than SRLT , with an absolute F1 gain of 2.7%
(p < 0.04). This suggests that the graphical model based
joint inference is more efficient than the clustering-based
two-stage labeling. It can also be seen that out system sig-
nificantly outperforms SRLS (p < 0.005). Be reminded
that SRLS works on a single tweet and adopts linguistically
motivated features, so this reaffirms the challenge of NSRL
for tweets, and indicates the need to collectively consider
multiple tweets.

As a case study, consider the following two tweets: 1)
“[arg0 #Tigers]! Thanks sportscenter for letting us know
how lebron is feeling about the [arg1 yankees] [pred elim-
ination].” ; and 2) “[arg0 #Tigers] deserve #WorldSeries ti-
tle now for [pred elimination] the[arg1 Yankees] from the
playoffs!”. The baselines incorrectly recognize “lebron”
as the arg0 of “elimination” for the first tweet, though it
correctly identify “Tigers” as the “arg0” of “elimination”
for the second tweet. In contrast, our system success-
fully outputs ([pred elimination],[arg0 #Tigers]) for the first
tweet, since it leverages the cross tweet evidence that ([pred
elimination],[arg0 #Tigers]) occurs in a recent and similar
tweet.

Table 2 shows the Precision, Recall and F1 of our system
and the baselines for implicit arguments. As can be seen,
our system yields considerably better F1 than the baselines
(p < 0.02). This suggests the effectiveness of our method
in resolving implicit arguments. We also see that the over-
all F1 for implicit arguments is lower than that for explicit

15Our nominal predicate model achieves an F1 of 71.5%, as
compared to 66.0% of Gerber and Chai’s system (2011).
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System Pre. Rec. F1
SRLG 61.0 60.0 60.5
SRLT 60.9 54.7 57.8
SRLS 48.7 49.5 49.1

Table 1: Overall 10-fold cross-validation results for all ar-
guments (%).

System Pre. Rec. F1
SRLG 56.5 45.8 50.6
SRLT 31.5 39.6 35.1
SRLS 26.2 38.1 31.0

Table 2: Overall 10-fold cross-validation results for implicit
arguments(%).

arguments for all systems. This indicates the difficulty of
implicit argument resolution.

Table 3 reports the Precision, Recall and F1 of our sys-
tem for different types of arguments. As can be seen, our
system performs best for arg0, followed by arg1 and oth-
ers, which is consistent with their distributions in the gold-
standard data set.

Finally, to study the contributions of jointly learning on
multiple similar tweets, we modify our method to remove
{φ(2)

k } features. The modified system is similar to SRLS
except that it uses sequential labeling rather than classifica-
tion, and that it adopts shallow features plus global features
instead of advanced linguistic features. It achieves a Pre-
cision, Recall and F1 of 56.2%, 52.4% and 54.2%, respec-
tively, outperforming the SRLS while remarkably lagging
behind our system. This confirms the positive influence of
collective inference on multiple tweets.

Discussion
A great portion of the errors made by our system are caused
by the false positive and false negative errors 16 propagated
from the nominal predicate identification model, accounting
for 31.5% and 25.6% of all errors, respectively. As an illus-
trative example, consider the tweet: “· · · rest in peace steve
jobs· · · ”. “rest” is incorrectly identified as a nominal pred-
icate (false positive); and “peace” and “steve jobs” are rec-
ognized as its argloc and arg0, respectively. In other cases,
nominal predicates are not recognized (false negative). For
example, for this tweet, “160 photos of #occupywallstreet

16A false positive error means a false nominal predicate is out-
putted, while a false negative error means a true nominal predicate
is not identified.

Argument Pre. Rec. F1
arg0 62.8 64.5 63.6
arg1 60.2 59.6 59.9
others 45.2 54.5 49.4

Table 3: 10-fold cross-validation results of our system on
arg0, arg1 and other argument types (%).

today in nyc - glorious summer day”, “photos” is not recog-
nized as a nominal predicate, and as a result it is impossi-
ble for our system to identify “of” and “today” as the arg1

and argtmp of “photos”, respectively. In the future, we plan
to improve the nominal predicate classifier using a joint in-
ference model similar to the model we have developed for
argument identification and classification.

Furthermore, a great number of errors, about 35.5%, are
related to the fact that SRL is fundamentally a task that re-
quires some understanding of the meaning of the tweets,
which cannot be captured by shallow features. Take the fol-
lowing tweet for example: “· · · gas prices up! but #gadhafi’s
death could bring decline· · · ”, for which, “death” is incor-
rectly labeled as the arg1 (instead of arg0) of “decline”.
This is a reasonable mistake, considering that the seman-
tic dependency between “death”, “bring” and “decline” is
ignored. A promising approach to fixing these errors is to
jointly resolve verbal SRL and nominal SRL, allowing them
to interact with each other.

The remaining errors mainly consist of implicit argument
resolution errors, which are largely rooted in one limitation
of our system, i.e., considering only the arguments of the
same nominal predicate across similar tweets for resolving
implicit arguments. For instance, for the tweet “· · · stand
with #occupywallst and demand real democracy! send a
message of support to #ows here· · · ”, our method fails to
recognize “#occupywallst” as the arg1 of “support”. How-
ever, if “#occupywallst” could be identified as the arg1 of
the verbal predicate “stand with”, which is relatively easy,
and the connection between the two predicates “stand with”
and “support” could be established, it should be more likely
for our system to guess “#occupywallst” as the arg1 of “sup-
port”.

Conclusions and Future work
We study the task of nominal SRL for tweets. There are two
main challenges for this task: Limited information in a sin-
gle tweet and inference of implicit arguments. We propose
jointly conducting NSRL for a given nominal predicate on
similar tweets, leveraging redundancy in tweets to address
these challenges. We evaluate our method on a manually
annotated data set, and show that it outperforms two base-
lines, demonstrating the effectiveness of joint learning.

As for future work, we plan to apply the same idea to
nominal predicate identification: i.e., deciding whether a
noun is a predicate on multiple similar tweets simultane-
ously. We are also interested in extending our framework
to jointly perform verbal and nominal SRL for tweets .
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