
Using First-Order Logic to Compress Sentences

Minlie Huang, Xing Shi, Feng Jin, Xiaoyan Zhu
State Key Laboratory of Intelligent Technology and Systems,

Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, PR China.

{aihuang,zxy-dcs}@tsinghua.edu.cn, {shixing19910105,jinfengfeng}@gmail.com

Abstract

Sentence compression is one of the most challenging
tasks in natural language processing, which may be of
increasing interest to many applications such as abstrac-
tive summarization and text simplification for mobile
devices. In this paper, we present a novel sentence com-
pression model based on first-order logic, using Markov
Logic Network. Sentence compression is formulated as
a word/phrase deletion problem in this model. By tak-
ing advantage of first-order logic, the proposed method
is able to incorporate local linguistic features and to cap-
ture global dependencies between word deletion opera-
tions. Experiments on both written and spoken corpora
show that our approach produces competitive perfor-
mance against the state-of-the-art methods in terms of
manual evaluation measures such as importance, gram-
maticality, and overall quality.

Introduction
Text-to-text generation methods have received much atten-
tion for many natural language processing applications in-
cluding text summarisation, question answering, and ma-
chine translation. As an example, questions in question an-
swering are often paraphrased in order to achieve more flex-
ible matching with potential answers (Lin and Pantel 2001).

Sentence compression is perhaps one of the most popular
text-to-text generation methods. The aim is to produce a con-
densed version of the original sentence while retaining the
most important information and making the compressed sen-
tence grammatical (Jing 2000). Sentence compression can
help text summarization systems to reduce redundancy in
generated summaries, and may be a feasible way to gener-
ate non-extractive summaries (Knight and Marcu 2002). In
addition, it benefits a variety of NLP applications such as
subtitle generation and text generation for mobile devices
(Filippova and Strube 2008; Clarke and Lapata 2008).

A variety of approaches have been proposed for sentence
compression. Some sophisticated compression models such
as tree-to-tree transduction models (Cohn and Lapata 2008)
(Cohn and Lapata 2009), were able to perform substitution,
reordering, inserting, and deletion operations in the com-
pression process, while most other models address a simpler

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem that formulates the task as a word/phase deletion
problem, i.e., only deletion operation is considered in com-
pression. To name a few, Knight and Marcu (2002) presented
a decision tree based model and a noisy channel method.
McDonald (2006) employed a large margin learning and a
rich set of features to shorten sentences. Conditional Ran-
dom Field (Nomoto 2009) and Support Vector Regression
(Galanis and Androutsopoulos 2010) have also been used in
prior studies. The deletion problem was also formulated as
an Integer Linear Programming (ILP) problem (Clarke and
Lapata 2008; Filippova and Strube 2008), which addressed
global dependency in deleting local words.

In this paper we present a new deletion-based compres-
sion model using first-order logic and probabilistic model.
Compression is implemented through word/phrase deletion
operation which is represented by logic formula. Local lin-
guistic features such as tokens, part-of-speech tags, and de-
pendency relations are represented by local logic formulas,
and the dependency between multiple deletion operations is
modeled as global logic formulas to ensure the grammat-
icality of compressed sentences. The probabilistic model,
Markov Logic Network (MLN) (Richardson and Domin-
gos 2006), is adopted for learning and prediction. MLN is
a statistical relational learning framework which has been
widely applied in natural language processing such as se-
mantic role labeling (Meza-Ruiz and Riedel 2009), temporal
relation identification (Yoshikawa et al. 2009), and question
classification (Bu et al. 2010).

To the best of our knowledge, our approach is the first
work of using first-order logic for sentence compression.
This paper is also a substantial extension to our Chinese ver-
sion (Jin, Huang, and Zhu 2011). It demonstrates several ad-
vantages. First, it is a supervised method and therefore can
easily incorporate rich features, in a form of logic formula.
Second, it offers us much flexibilities to capture local lin-
guistic features and global dependencies between word dele-
tion operations by designing various logic formulas. Each
logic formula can be viewed as a compression rule, or a com-
pression template that instantiates a set of similar compres-
sion rules. Various formulas are combined in a probabilistic
framework (MLN) which is able to model soft constraints
in deletion operations. Third, our approach benefits from the
off-the-shelf Markov logic engines and thus the amount of
engineering work in system construction has been largely

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1657

reduced.
The rest of the paper is organized as follows: in the next

section, we present a brief introduction to Markov Logic
Network. Then, we introduce our sentence compression
model, with local formulas that reflect local linguistic fea-
tures for compression and global formulas that capture the
dependency between deletion operations. Subsequently, we
describe the experiments and evaluation results by compar-
ing our method to the state-of-the-art. Finally, we summarize
the work of this paper.

Markov Logic Network
Markov Logic Network (MLN) is a statistical relational
learning framework that combines first-order Logic and
Markov Networks. MLN is a framework to soften the hard
(with a probability of either 1 or 0) logic formulas that de-
scribe a first-order knowledge base. And formulas can be
violated at the cost of some penalty. From an alternative
point of view, it is an expressive template language that uses
first-order Logic to instantiate Markov Networks of repeti-
tive structure (Meza-Ruiz and Riedel 2009).

As an example, assume we are going to compress the
sentence You are absolutely right using MLN. Firstly, we
introduce a set of logic predicates such as word(p, w)
and delete(p) which respectively mean that the token at
position p is word w and that the token at token at p should
be removed. Then, a set of weighted formulas are defined
to describe a distribution over sets of ground atoms of these
predicates. As mentioned previously, a ground atom is an
predicate whose variables are bound to constants. A set
of ground atoms, termed a possible world, represents a
compression solution for a sentence. From the point of view
of probability, worlds that represent correct compression
solutions should receive higher probabilities than worlds
that produce incorrect compressions. For example, the
model should assign a higher probability to the following
world:

{word(1, you), word(2, are), word(3, absolutely),
word(4, right), delete(3)},

(The corresponding compressed result is: ”You are right”)
while it would assign a lower probability to this world:

{word(1, you), word(2, are), word(3, absolutely),
word(4, right), delete(4)}.

(The corresponding compressed result is: ”You are abso-
lutely”)

More formally, a Markov logic network L is a set of
pairs (φ, w), where φ is a formula in first-order logic and
w is a weight for the formula, a real number. Together with
a finite set of constants C = {c1, c2, ..., c|C|}, it defines a
Markov network ML,C as follows (Richardson and Domin-
gos 2006):

1. ML,C contains one binary node for each possible ground-
ing of each predicate appearing in L. The value of the
node is 1 if the ground predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of
each formula φ in L. The value of this feature is 1 if the
ground formula is true, and 0 otherwise. The weight of the
feature is the w associated with φ in L.

According to the definition, the graphical structure of
ML,C is built as follows: there is an edge between two nodes
ofML,C iff the corresponding ground atoms appear together
in at least one grounding of one formula in L. Thus, the
atoms in each ground formula form a (not necessarily maxi-
mal) clique in the graph of ML,C .

Then, a Markov Logic Network (MLN) L defines a dis-
tribution over possible worlds as follows (Richardson and
Domingos 2006; Meza-Ruiz and Riedel 2009):

p (y) =
1

Z
exp

 ∑
(φ,w)∈L

w
∑

c∈Cφ

fφc (y)

 (1)

where y is a possible world; each c is a binding of free vari-
ables in φ to constants; fφc (y) is a binary feature function
that returns 1 if a true value is obtained in the ground for-
mula in which free variables (y) of φ was replaced by con-
stants in c, and 0 otherwise; Cφ is all possible bindings of
variables to constants, and Z is a normalization factor.

MLN weights can be learned generatively (Richard-
son and Domingos 2006) or discriminatively (Singla and
Domingos 2005). There are several MLN learning packages
available such as Alchemy 1, PyMLNs 2, thebeast 3, and so
on. In our experiment, we leveraged thebeast Markov logic
engine for learning and prediction.

The Proposed Model
As stated before, our purpose is to compress a sentence by
removing unimportant words. For this task, there is a single
hidden predicate delete(p) indicating that the token at po-
sition p is deleted in the compressed sentence. In addition,
we also extract a set of observed predicates from the training
dataset, as listed in Table 1.

In our setting, a formula is considered local if it includes
exactly one hidden ground atom for the deletion operation
of a single token. In contrast, a global formula incorpo-
rates multiple hidden ground atoms. We formulate both local
and global formulas to model sentence compression. In con-
structing these formulas, Stanford parser4 is used for POS
tagging and for generating dependency relations.

Local Formulas
The local formulas represent the features of a token to de-
cide whether it is syntactically critical or conveys important
information. The first two formulas address the influence of
word form and POS tag features. And this reflects the fact
that certain words such as determiner, adjectives or adverbs

1http://alchemy.cs.washington.edu/
2http://www9-old.in.tum.de/people/jain/mlns/
3http://thebeast.googlecode.com/
4http://nlp.stanford.edu/software/lex-parser.shtml

1658

word(i, w) Token i has word w
pos(i, t) Token i has POS tag t
verb(i) Token i is a verb
keep(i) Token i is kept in compression
dep(h,m, d) Token h and token m are governor

and dependent of dependency rela-
tion d, respectively

tf(i, v) Term frequency of token i is v
idf(i, v) Inverse document frequency of token

i is v
cldepth(i, n) The nesting depth of the clause that

contains token i is n
depstreng-
th(h,m, f)

The strength of dependency relation
between governor h and dependent
m is f

Table 1: Observable predicates

are more likely to be deleted.

word(i,+w)⇒ delete(i) (2)

pos(i,+t)⇒ delete(i) (3)

The + notation in a formula indicates that the MLN en-
gine5 should produce a separate formula and learn a separate
weight for each constant of the logic variable. For example,
formula word(2, are) ⇒ delete(2) and word(2, right) ⇒
delete(2) may have different weights as inferred by Formula
(2). Similarly, pos(2, det)⇒ delete(2) and pos(2, pobj)⇒
delete(2) have different weights.

Syntactic features are helpful in determining which parts
of a sentence may be removed. Generally speaking, it
is risky to remove a main verb, and its direct subjective
or direct objective, but a modifier or a supplement can
be deleted more safely. As an example, the dependency
relation rcmod(book − 4, bought − 6) in sentence “I saw
the book you bought” indicates that the relative clausal
modifier (rcmod) bought of book may be dropped. The
following two formulas take into account such dependency
relation between a governor and a dependent.

word(h,w1)∧word(m,w2) ∧ dep(h,m,+d)
⇒ delete(m)

(4)

pos(h,+t1)∧pos(m,+t2) ∧ dep(h,m,+d)
⇒ delete(m)

(5)

The conditional probability p(d|h) of a dependency
relation d given a head word h measures the strength of the
relation and prevents us from breaking tight dependencies
in a sentence (Filippova and Strube 2008). This concern is
handled by the following formula where f is p(d|h) when
the dependency between h and m is d.

word(h,w1) ∧ word(m,w2)∧
depstrength(h,m,+f)⇒ delete(m)

(6)

In practice, we are usually required to compress a group
of related sentences (e.g., a document) rather than a single

5Thebeast is used in this paper.

isolated one. So we introduced formulas (7) and (8) to incor-
porate Term Frequency and Inverse Document Frequency
of words to measure the salience of information they convey.

word(i, w) ∧ tf(i,+v)⇒ delete(i) (7)
word(i, w) ∧ idf(i,+v)⇒ delete(i) (8)

The last local formula determines the salience of a word
using the depth of the clause it occurs. Intuitively, in a
complex sentence a more deeply nested clause tends to
convey more important information (Clarke and Lapata
2008).

word(i, w) ∧ cldepth(i,+d)⇒ delete(i) (9)

Global Formulas
While the local formulas deal with the deletion of a single
token, each global formula is designed to handle the dele-
tion of multiple tokens. Or, in other word, global formulas
deal with the dependency among multiple deletion opera-
tions. The global formulas defined here attempt to keeping
the compressed sentences grammatical, and meanwhile to
ensuring a satisfactory compression rate.

For many dependency relations, such as amod, det and
advmod, when the head/governor word is dropped the mod-
ifier/dependent word must also be dropped. And when the
modifier is kept, the head is also retained. For example in
the sentence “Sam eats red meat and oranges”, the depen-
dency relation between red and meat is amod(meat, red),
and when the head meat is removed, the adjectival modifier
red should be removed simultaneously. We have the follow-
ing formula to address this issue:

word(h,w1) ∧ word(m,w2) ∧ dep(h,m, d)
∧ keephead(d) ∧ delete(h)⇒ delete(m)

(10)

where keephead(d) is a predicate that determines whether
the dependency relation d should be subject to the head-
modifier constraint stated above.

Another grammatical constraint is that for some particular
dependency relations the head and modifier words should
also be dropped or kept simultaneously. Examples include
the neg, pobj, and so on. Thus, in sentence “I sat on the
chair” the word chair is pobj of word on, and they should
be removed or retained together. So we add a formula to
model this:

word(h,w1) ∧ word(m,w2) ∧ dep(h,m, d)
∧ simdel(d)⇒ (delete(m)⇔ delete(h))

(11)

where the predicate simdel(d) indicates head and modifier
should be dropped or retained simultaneously for depen-
dency d.

We also have a formula to force the compressed sentence
to contain at least one verb when the original sentence has a
main verb. This is implemented by the following formulas:

word(i, w) => (delete(i) =>!keep(i))

word(i, w) => (!delete(i) => keep(i))

|{verb(i) & keep(i)|all i}| >= 1

(12)

1659

The number of words (len) The value of α
len < 5 0
5 ≤ len < 10 len ∗ 0.3
10 ≤ len < 20 len ∗ 0.35
20 ≤ len < 30 len ∗ 0.45
len ≥ 30 len ∗ 0.60

Table 2: The detailed settings of α. Larger α means remov-
ing more words in compression.

The first two formulas assert that keep(i) and delete(i) are
mutually exclusive to each other. The third formula asserts
that at least one verb is kept during compression.

To improve grammaticality, we also define a set of predi-
cates and global formulas to deal with the deletion of punc-
tuations. We will first exemplify the left and right range
of a punctuation that spans. For example, in a coordinate
structure, ”..., A1A2, andB”, the second comma spans two
words (A1, A2), and it’s left range is {A1, A2}. For restric-
tive attributive clauses, such as ”A, which is a ..., has been
proved.”, the first comma has both left range and right range,
where the right range is {which, is, a, ...}. The central idea
is that if all words that a punctuation spans have been
deleted, then the punctuation should also be deleted. This
rule applies to both coordinate and appositive structures. For
the conciseness of the paper, we will not go into details of
this part, while the full version of predicates and global for-
mulas is available at: http://www.qanswers.net/faculty/hml/.

The last consideration is about compression rate. Our as-
sumption is that longer sentences should be compressed
more while shorter sentences less. Thus, the formula is im-
posed to remove at least α words from a sentence. The value
of α is determined similar to that in (Filippova and Strube
2008). The details are shown in Table 2.

Experimental Results
Data Preparation
We conducted experiments on both written and spoken cor-
pora6 adopted from (Clarke and Lapata 2008). The corpora
contain source sentences and human-crafted compressions
(by deleting words) which are used as gold standard. The
written corpus consists of 82 newspaper articles (1,629 sen-
tences) while the spoken corpus contains 50 broadcast sto-
ries (1,370 sentences). For experiments on the written cor-
pus, 74 articles containing 1,471 sentences were randomly
selected for training, and the left 158 sentences were used
for evaluation. As for the spoken corpus, the training set has
1,223 sentences from 45 randomly chosen articles and the
left 147 sentences for test.

Both automatic and manual evaluation have been ap-
plied in previous studies. In regard to automatic evaluation,
sentence compression systems are commonly measured in
two metrics. The first one is compression rate measuring
the length difference before and after compression, while
the second one is the F-score of dependency relations of

6http://jamesclarke.net/research/resources

computer-generated compressions against those of human-
crafted compressions (Riezler et al. 2003; Clarke and Lapata
2008). As for manual evaluation, evaluators were asked to
assign scores from 1 to 5 in terms of grammaticality and im-
portance respectively for each compressed sentence. In this
paper, we introduce another metric, overall rank, to measure
the overall quality of automatic compression performance
among multiple systems.

We compared our method against two publicly available
state-of-the-art systems. The first system is T3 (Cohn and
Lapata 2009) which learns parse tree transduction rules from
a parallel corpus using a large margin method. And the other
one is a two-stage approach - SVR-TOKACC-LM (SVTL),
proposed by (Galanis and Androutsopoulos 2010). It first
generates candidate compression by removing edges from
dependency trees using Maximum Entropy and then selects
the best candidate using Support Vector Regression.

In our setting, we used Stanford parser and thebeast
Markov Logic engine. The language model required by T3
and SVTL is trained using SRILM7 on the AQUAINT8

dataset. And the dependency strength p(d|h) is estimated us-
ing 30,000 sentences randomly chosen from the AQUAINT
corpus. We used the default configuration and conducted ex-
periments in strict compliance with the specifications de-
scribed in the documentations of T3 and SVTL, respectively.

The detailed setting of thebeast engine is as follows: The
model is trained by an online learning algorithm with the
MIRA update rule, and the loss function is GlobalNum-
berOfErrors (default) which counts the number of false pos-
itives and false negatives. The inference algorithm is the
MAP inference with a cutting plane approach. The initial
weights are set to all zeros, and the number of iterations
is set to 10 epochs. More detailed manual can be found at
http://thebeast.googlecode.com/.

Automatic Evaluation
The automatic evaluation results on the written corpus is pre-
sented in Table 3. Our approach has achieved a compression
rate of 72.4%, close to that of human-crafted compressions
(70.3%), as reported in (Clarke and Lapata 2008). And our
approach outperforms SVTL with a better (i.e., producing
shorter sentences) compression rate (72.4% vs. 79.9%) and
a higher F-score (70.5% vs. 60.7%). Due to quite different
compression rates, our method can not be compared with
T3 directly. But according to (Galanis and Androutsopoulos
2010), SVTL is comparable with or superior to T3, which is
also justified by our manual evaluation in the next subsec-
tion.

Table 4 presents the experimental results on the spoken
corpus. Our system has a slightly worse compression rate
than T3 (75.1% vs. 70.0%), but a much higher F-score
(67.2% vs. 50.8%). The system also produces shorter com-
pressions in comparison to SVTL (75.1% vs. 83.5%), and
also better F-scores (67.2% vs. 62.5%), which means that
our system produces shorter sentences and maintains more
important information than SVTL. Compression results by 2

7http://www-speech.sri.com/projects/srilm/
8http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/

1660

System Compression Rate(%) F-score(%)

Ours 72.4 70.5
SVTL 79.9 60.7
T3 60.6 43.9

Table 3: Automatic evaluation results on the written corpus.

System Compression Rate(%) F-score(%)

Ours 75.1 67.2
SVTL 83.5 62.5
T3 70.0 50.8
Annotator2 80.5 75.3
Annotator3 71.1 71.2

Table 4: Automatic evaluation results on the spoken corpus.

human annotators show that the human annotators perform
much better than automatic compression approaches9.

Manual Evaluation
We performed manual evaluation on both written and spoken
corpora. Three subjects were asked to label each compressed
sentence in terms of importance, grammaticality, and overall
rank, respectively. The subjects were required to label each
compressed sentence in a scale of 1-5 stars (scores like 3.5
or 4.5 are also permitted). Importance measures how well
the important information in the original sentence has been
retained. Grammaticality indicates how good the readability
is of the compressed sentences. The subjects were asked to
label compressed sentences from four systems, i.e., human-
crafted compression (labeled as Human in Table 5), our ap-
proach (labeled as Ours), T3, and SVTL. As the labeling task
for scoring the compressed sentences is quite subjective and
complex10, we also asked the subjects to determine the par-
tial order between the three automatic compression systems
(i.e., our approach, T3, and SVTL) in terms of the overall
quality of a compression 11. This comes up with a new met-
ric, the overall rank of a compression system among mul-
tiple systems. For example, if our system produces a better
compression than T3, and T3 better than SVTL, the overall
rank scores for our system, T3, and SVTL are 1.0, 2.0, and
3.0, respectively. If two systems produce equally good com-
pression for a sentence, the overall rank scores for the two
systems are the same. A smaller overall rank score means
a better performance of a system. The means and standard
deviations of importance, grammaticality, and overall rank
scores are computed over all test sentences.

During annotation, the identifier of the system from which

9The results by the two annotators in Table 4 are derived from
the original corpus. The annotators here are not referred to subjects
in the manual evaluation introduced in the next subsection.

10This was also demonstrated by the large standard deviations in
the evaluation results of Table 5.

11We believe that comparison between two sentences (i.e., de-
termining the partial order) may be easier than giving an absolute
rating for each individual sentence.

Written

System Importance Grammaticality Overall Rank

Human 4.82 ± 0.40 4.97 ± 0.20 N/A
Ours 4.20 ± 0.95 4.50 ± 0.88 1.52±0.72
SVTL 4.08 ± 1.05 4.63 ± 0.77 1.81±0.74
T3 3.48 ± 1.21 4.04 ± 1.16 2.23±0.83

Spoken

System Importance Grammaticality Overall Rank

Human 4.83 ± 0.43 4.95 ± 0.21 N/A
Ours 4.22 ± 1.01 4.45 ± 0.99 1.51±0.70
SVTL 4.32 ± 0.96 4.71 ± 0.74 1.65±0.72
T3 3.71 ± 1.27 4.14 ± 1.16 2.09±0.84

Table 5: Mean and standard deviations of importance score,
grammticality score, and overall rank with the manual eval-
uation.

the compressed sentence was generated is not visible to the
subjects to avoid labeling bias, however, the subjects are
aware of which compression is crafted by human annota-
tors. The reason for this is, that human-crafted compression
can be used as reference to score automatic compressions,
since scoring compressed sentences is quite subjective and
complex, as mentioned previously.

The evaluation results are presented in Table 5. Here are
some observations: First, human-crafted compression is re-
markably better than automatic compression systems. Sec-
ond, our approach is better than T3 in terms of all metrics
(i.e., importance, grammaticality, and overall rank). Third,
our approach is comparable with or superior to the two-stage
machine learning approach, SVTL. Particularly, our system
outperforms T3 and SVTL in terms of overall rank (Note
that smaller the score is, the better the compression perfor-
mance). Note, for this particular labeling task, that the over-
all rank metric may be more convincible than the importance
and grammaticality metrics that require absolute ratings.

Examples and Discussions
We present two examples in Table 6 and Table 7 respec-
tively. In the first example, our model produces perfect com-
pression as the human annotator does. T3 generates wrong
compression, while SVTL tends to have a worse compres-
sion rate (i.e., the compressed sentence is longer). In the
second example, our model is comparable to the human an-
notator, but T3 has a worse compression rate, and SVTL has
poor grammaticality. Two bad examples are also given in
Table 8.

By further comparing the compression results, we found
that our system has a better balance between compression
rate and maintenance of important information than T3 and
SVTL. T3 sometimes keeps the modifier while removes the
head word, and introduces meaningless constituents that do
not occur in the source sentence because it can perform sub-
stitution or insert beyond deletion (Cohn and Lapata 2008).
As for SVTL, it may remove key constituents such as direct
object and negation word. As an example, “This was not a

1661

Original From the bottom of the list of nominees he
climbed to the top.

Human he climbed to the top.
Ours he climbed to the top.
T3 the list of nominees climbed to the top.
SVTL From the bottom of the list of nominees he

climbed to the top.

Table 6: A good compression example from the written cor-
pus.

Original We ’ll have Steve back next Monday morning
to bring us a little bit more information.

Human We ’ll have Steve back Monday morning to
bring us more.

Ours We ’ll have Steve back next Monday
morning to bring us information.

T3 We ’ll have Steve back next Monday morning
to bring us a little bit more information.

SVTL We ’ll have Steve back to bring us bit more
information.

Table 7: A good compression example from the spoken cor-
pus.

matter of political convenience” is compressed to “This was
a matter of convenience”.

Our compression approach is an elegant combination of
rule and statistical learning. Each formula can be viewed
as a compression rule (e.g., Formula (10)), or a compres-
sion template that instantiates a set of similar compression
rules (e.g., the + notation in Formula (2) and (3)). Within
the framework of Markov Logic Network, various rules can
be combined in a soft, probabilistic way. Therefore, the ap-
proach provides us much flexibility to design as many com-
pression rules as possible, in a form of logic formula. Some
formulas may be designed to respect local linguistic fea-
tures, and others to favor grammaticality.

Conclusion and Future Work
We proposed a sentence compression model using first-order
logic and Markov Logic Network. The model leverages lo-
cal and global formulas in first-order logic to deal with dele-
tion operation in compression. Local formulas capture lo-
cal linguistic features such as part-of-speech tags and de-
pendency relations, and global formulas model the depen-
dency between word deletion operations. In comparison to
the state-of-the-art systems, our method exhibits competitive
performance on both written and spoken dataset, with both
automatic and manual evaluation.

More phrase structure based features will be considered in
future work. Such features, represented in formulas, can be
easily plugged into the system. Furthermore, in addition to
the basic formulas presented here, automatic learning of so-
phisticated formulas may be obtained through sequence/tree
alignment of the source and human-compressed sentences.

Written
Original “ Many of the things which bring joy to our

hearts in the countryside have been destroyed
, ” said Sir David .

Human “ Many of the things which bring joy in the
countryside have been destroyed , ” said Sir
David .

Ours said Sir David .
T3 “ Many In the things which , ” said Sir David

.
SVTL “ Many have been destroyed , ” said Sir

David .
Spoken
Original This is a breach that smells a lot–
Human This breach smells
Ours a –
T3 This is smells a lot –
SVTL This is a breach that smells a lot –

Table 8: Two bad compression examples on the written and
spoken corpora respectively.

Acknowledgements
This paper was supported by Chinese 973 project under No.
2012CB316301 and National Chinese Science Foundation
projects with No. 60803075 and No. 60973104.

References
Bu, F.; Zhu, X.; Hao, Y.; and Zhu, X. 2010. Function-based
question classification for general qa. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’10, 1119–1128. Stroudsburg,
PA, USA: Association for Computational Linguistics.
Clarke, J., and Lapata, M. 2008. Global inference for sen-
tence compression an integer linear programming approach.
J. Artif. Int. Res. 31:399–429.
Cohn, T., and Lapata, M. 2008. Sentence compression be-
yond word deletion. In Proceedings of the 22nd Interna-
tional Conference on Computational Linguistics - Volume 1,
COLING ’08, 137–144. Stroudsburg, PA, USA: Association
for Computational Linguistics.
Cohn, T., and Lapata, M. 2009. Sentence compression as
tree transduction. J. Artif. Int. Res. 34:637–674.
Filippova, K., and Strube, M. 2008. Dependency tree based
sentence compression. In Proceedings of the Fifth Interna-
tional Natural Language Generation Conference, INLG ’08,
25–32. Stroudsburg, PA, USA: Association for Computa-
tional Linguistics.
Galanis, D., and Androutsopoulos, I. 2010. An extractive su-
pervised two-stage method for sentence compression. In The
2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, NAACL
2010, 885–893. Stroudsburg, PA, USA: Association for
Computational Linguistics.
Jin, F.; Huang, M.; and Zhu, X. 2011. Sentence compression

1662

with a markov logic network. Journal of Tsinghua Univer-
sity(Science and Technology) 11:1596–1600.
Jing, H. 2000. Sentence reduction for automatic text sum-
marization. In Proceedings of the sixth conference on Ap-
plied natural language processing, ANLC ’00, 310–315.
Stroudsburg, PA, USA: Association for Computational Lin-
guistics.
Knight, K., and Marcu, D. 2002. Summarization beyond
sentence extraction: a probabilistic approach to sentence
compression. Artif. Intell. 139:91–107.
Lin, D., and Pantel, P. 2001. Discovery of inference rules
for question-answering. Nat. Lang. Eng. 7:343–360.
Meza-Ruiz, I., and Riedel, S. 2009. Jointly identifying pred-
icates, arguments and senses using markov logic. In Pro-
ceedings of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of the As-
sociation for Computational Linguistics, NAACL ’09, 155–
163. Stroudsburg, PA, USA: Association for Computational
Linguistics.
Nomoto, T. 2009. A comparison of model free versus model
intensive approaches to sentence compression. In Proceed-
ings of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing: Volume 1 - Volume 1, EMNLP

’09, 391–399. Stroudsburg, PA, USA: Association for Com-
putational Linguistics.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Mach. Learn. 62:107–136.
Riezler, S.; King, T. H.; Crouch, R.; and Zaenen, A.
2003. Statistical sentence condensation using ambiguity
packing and stochastic disambiguation methods for lexical-
functional grammar. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology
- Volume 1, NAACL ’03, 118–125. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Singla, P., and Domingos, P. 2005. Discriminative training
of markov logic networks. In Proceedings of the 20th na-
tional conference on Artificial intelligence - Volume 2, 868–
873. AAAI Press.
Yoshikawa, K.; Riedel, S.; Asahara, M.; and Matsumoto, Y.
2009. Jointly identifying temporal relations with markov
logic. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP:
Volume 1 - Volume 1, ACL ’09, 405–413. Stroudsburg, PA,
USA: Association for Computational Linguistics.

1663

