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Abstract
In this paper we consider the problem of finding a good policy
given some batch data. We propose a new approach, LAM-
API, that first builds a so-called linear action model (LAM)
from the data and then uses the learned model and the col-
lected data in approximate policy iteration (API) to find a
good policy. A natural choice for the policy evaluation step
in this algorithm is to use least-squares temporal difference
(LSTD) learning algorithm. Empirical results on three bench-
mark problems show that this particular instance of LAM-
API performs competitively as compared with LSPI, both
from the point of view of data and computational efficiency.

Introduction
Reinforcement learning is concerned with finding a good
controller, or policy given some data to maximize a long-
term performance measure ()sutton98book,Bert96ndp. Re-
inforcement learning problems can be interactive or batch,
depending on whether the learning system can interact with
the system that is to be controlled (Szepesvári(2010)). In
this paper we consider batch reinforcement learning prob-
lems. We assume that a previous controller generates data
in the form of a series of trajectories that are composed
of a sequence of observations, actions and immediate re-
wards triples. We also assume that a method that extracts
real-valued features based on the observations is given. The
problem is then to learn a policy that maps observable quan-
tities to actions in such a way that when it is used to inter-
act with the system it would achieve a good performance as
measured in terms of the total discounted sum of rewards
received.

Algorithms developed for this problem should be data ef-
ficient (learn from “little data”) while being computation-
ally efficient at the same time. Needless to say, they should
also be reliable: at minimum their performance should reli-
ably improve as the samples become infinitely many and/or
as the set of features becomes “better”. The problem has
been tackled previously by a number of methods includ-
ing policy search methods and value function-based meth-
ods (for recent overviews, see ()sze2010book,WieOtt12).
One of the prominent methods is least-squares policy it-
eration (LSPI) ()lspi03, which belongs to the family of
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approximate policy iteration (API) algorithms. LSPI gen-
erates a sequence of action-value functions using the so-
called least-squares temporal difference learning (LSTD)
algorithm ()bradtke96,boyan02 in each iteration to approx-
imately evaluate the policy that is greedy with respect to
the previous action-value function. While Lagoudakis and
Parr(2003) (Lagoudakis and Parr(2003)) has shown that
LSPI is a competitive algorithm, more recently a number
of papers studied the theoretical performance of LSPI (see
()BuLaGhaMuBaSch12 and the references therein). These
results essentially show that under some technical (but strin-
gent) conditions on the Markovian Decision Process (MDP),
provided that the features are “strong enough”, LSPI is guar-
anteed to return a near-optimal policy. In particular, the gap
between the performance of the returned policy and the op-
timal policy can be bounded in terms of the sum of an “ap-
proximation error term” (characterizing how well the fea-
tures “resolve” the value functions of the relevant policies),
a “variance term” (that decreases as the number of samples
increases), and a term that converges to zero exponentially
fast with an increasing number of iterations.

The so-called Bellman error of the approximate value
functions returned by LSTD decomposes into the error with
which the reward function and the “next state-features”
are predicted using least-mean squares predictions built on
the linear combination of features ()parr08,lindyna2 (Sec-
tion 2.2.1 of (Szepesvári(2010)) extends this to LTSD(λ)).
This shows that the smaller the prediction error of the re-
wards and the next state-features is, the better the value func-
tion returned by LSTD will approximate the true value func-
tion of the policy evaluated. This suggests an alternative to
LSPI. We can build a linear model for the rewards and next
states for each action based on the available features and
then find a good policy based on this model. This is the ap-
proach that we study in this paper. Since the model tries to
capture the effects of the actions with a linear combination of
a set of features, we call it a linear action model, or “LAM”.
Given the model, the second phase can use any number of
methods to find a policy whose performance would be near-
optimal in the model. In this paper, we study using approx-
imate policy iteration where the policies encountered are
evaluated using LSTD. The difference to LSPI of this second
phase is twofold. First, the data fed to approximate policy it-
eration comes partly from the model. Second, since we have
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access to a model, it suffices to build state-value functions.

Background
The purpose of this section is to introduce the necessary con-
cepts and notation. We start by reviewing concepts related
to MDPs which define the framework we use to define our
learning problem. First a few notes on the conventions used
in this paper: We use {·}> to denote the transpose and all
(non-transposed) vectors will denote column vectors.

We define a finite MDP as a 5-tuple, (S,A,PA,RA, γ),
where S is the finite state space, A is the finite action space,
PA is a transition model with Pa(s, s′) being the probabil-
ity of transitioning to state s′ after taking action a at state s,
RA is a reward model withRa(s, s′) being the reward of the
state transitioning, and γ ∈ (0, 1) is a discount factor. That
the state space is finite is assumed for simplicity, while the
assumption that the action space is finite (and “small”) will
be exploited by the algorithms which need to solve some
maximization problems over the action space. An MDP de-
fines a controllable system: The controller needs to choose
the actions based on the information available to it. The pur-
pose of the rewards is to define a (partial) ordering over the
space of possible controllers.

A policy π assigns probabilities to each action for each
state. We will denote by π(s, a) the probability assigned to
action a in state s by policy π. A policy can be used as a
closed-loop controller: When visiting state s, the action to
be taken is sampled from π(s, ·). The value of a state s under
a policy π is the expected total discounted reward received
if the policy is followed when starting in state s:

V π(s) = Eπ

{ ∞∑
t=0

γtrt|s0 = s

}
.

Here rt is the reward received by the agent at time t, and
Eπ is the expectation taken with respect to the distribution
generated by policy π. The function V π is called the state
value function.

A policy that achieves the best possible value in each state
is called an optimal policy. Thus,

V π
∗
(s) = max

π
V π(s)

holds for all s ∈ S if π∗ is an optimal policy.
The goal of reinforcement learning is to find a (near) op-

timal policy either by interacting with an MDP, or based on
some interaction traces. In this paper we consider this sec-
ond case, i.e., the case of batch reinforcement learning. In
particular, we assume that data is available in the form of a
list of 4-tuples of elementary transition snippets,(

〈φi, ai, φ′i+1, ri〉 ; i = 1, . . . , n
)
, (1)

where φi = φ(si), φ′i+1 = φ(s′i+1), si, s
′
i+1 ∈ S, ai ∈

A, s′i+1 ∼ Pai(si, ·) and ri = Rai(si, s′i+1). Here, φ :

S→ Rd is a so-called “feature extraction function” (d is the
number of features). The problem is to learn a policy that
depends on the states only through their features.

Given the transition snippets of a fixed policy π,
LSTD aims at finding a linear-in-the-features approximation

Vθ(s) = θ>φ(s) (for ∀s ∈ S) to the value function V π . For
this, it builds a matrix d × d matrix A and d-dimensional
vector b

A =
n∑
i=1

φi(γφ
′
i+1 − φi)>, b =

n∑
i=1

φiri

and then finds θ = −A−1b. The matrix A and vector b can
be built incrementally.

The LSTD algorithm naturally leads to the idea of LSPI
due to ()lspi03. LSPI is an instance of approximate policy
iteration and thus let us start by introducing policy iteration.
To do this, first, let us define the action-value functions of
policies. An action-value function Qπ of a policy π maps
state-action pairs to reals (Qπ : S×A→ R) and for a given
state-action pair (s, a), Qπ(s, a) equals to the total expected
discounted reward given that the decision process starts in
the state s, the first action taken is a from which point on all
the actions are taken according to the policy π.

Policy iteration is an iterative method that produces a se-
quence of policies (Howard(1960)). In a finite MDP after
a (small) finite number of steps an optimal policy is ob-
tained (Ye(2010)), while in infinite MDPs the value func-
tions of the policies produced converges at a geometric rate
to the optimal value function, i.e., the performance of poli-
cies improves rapidly. In iteration k, given a policy πk,
policy iteration first computes the action-value function of
πk, Qk := Qπk . The next policy πk+1 is then selected to
be the greedy policy w.r.t. Qk. This means, that in every
state s, πk+1 selects an action amongst the ones that max-
imize Qk(s, ·) with probability one. In policy iteration often
one selects deterministic policies, i.e., policies where π(s, ·)
concentrates on a single state for every state s ∈ S. For sim-
plicity, let us also consider such policies. By abusing nota-
tion, such deterministic policies will be identified with func-
tions that map states to actions.

In LSPI the exact policy evaluation step is replaced by
an approximate one. For this, LSTD is extended to the
LSTDQ algorithm. This algorithm approximates Qπk by
Qϑ(s, a) = ϑ>k ψ(s, a), where ψ : S × A → Rd′ is
now a feature extraction method that assigns features to
state-action pairs, and ϑk is the value of the policy pa-
rameter vector ϑ ∈ Rd′ at iteration k. In the case of
finite actions, assuming without loss of generality that
A = {1, . . . , |A|}, a natural choice is to use ψ(s, a) =
[0, . . . , 0, φ(s)>, 0, . . . , 0]> ∈ Rd|A| where φ(s)> appears
in the ath block of length d of the d|A|-dimensional vector.
Defining ψi = ψ(si, ai), ψ′i+1 = ψ(s′i+1, a

′
i+1) for some

action a′i+1, i = 1, 2, . . . , n, given a policy πk, LSTDQ
computes A =

∑
i:a′i+1=πk(s

′
i+1)

ψi(γψ
′
i+1 − ψi)

>, b =∑
i ψiri and solves for ϑ = −A−1b. 1 At iteration k, for

any state si, LSPI sets a′i+1 = argmaxa∈AQk−1(s
′
i+1, a).

Linear Action Models
In this section, we define linear action models (LAMs).
Next, we give the form of a least-squares method to learn

1Here we abused the notion for A and b. Caution that they are
not the same as LSTD’s.
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Algorithm 1 The algorithm of learning LAM.
Input: a data set, S = (〈φi, ai, φ

′
i+1, ri〉; i = 1, . . . , n)

Output: a LAM, (〈F a, fa〉)a∈A.
Initialize Ha, Ea and ea for all a
for i = 1, 2, . . . , d do

a = ai
Update LAM structures of a:
Ha = Ha + φiφ

>
i

Ea = Ea + φ′i+1φ
>
i

ea = ea + φiri
end
for all a, set
F a = Ea(Ha)−1

fa = (Ha)−1ea

LAMs, which is followed by an API algorithm that we use in
the experimental section to find a good policy given a LAM.
In the rest of the paper we fix the feature extraction function
φ.

Definition 1 A linear model of an action a ∈ A is a
pair 〈F a, fa 〉, where F a ∈ Rd×d is a d × d matrix and
fa ∈ Rd is a d-dimensional vector. A linear action model
(〈F a, fa 〉)a∈A is a list of linear models, one for each ac-
tion a ∈ A.

The idea is that for a given action a and any given state s ∈
S, F aφ(s) estimates the expected value of the feature vector
of the state s′ ∼ Pa(s, ·), while (fa)>φ(s) estimates the
reward associated with the transition (s, a, s′). For a good
linear model we expect that with s′ ∼ Pa(s, ·),

F aφ(s) ≈ E[φ(s′)] and (fa)>φ(s) ≈ E[Ra(s, s′)].
The ideas in the paper extend easily to when one mod-

els policies or even options. In fact, the idea of using linear
models originates from the paper (Sutton et al.(2008)Sutton,
Szepesvári, Geramifard, and Bowling) where linear models
of both policies and actions have been built and used in a
Dyna-like algorithm that aimed at learning a good policy
in an interactive learning scenario. Linear models of op-
tions (temporally extended actions) have been considered
in a more recent paper of ()SorgSingh2010 that we have
learned about after the submission of the paper. The rela-
tionship of the present paper to these prior works will be
discussed later.

Learning a LAM
Assume that we are given a dataset in the form of transi-
tion snippets as in (1). An obvious way of learning a model
of some action a ∈ A is to filter the data for the snippets
when a = ai and estimate F a, fa using (regularized) least-
squares:

F a = arg min
F∈Rd×d

∑
i:ai=a

‖φ′i+1 − Fφi‖22 + λ1‖F‖2F (2)

fa = arg min
f∈Rd

∑
i:ai=a

‖ri − f>φi‖22 + λ2‖f‖22 . (3)

Here λ1, λ2 > 0 are regularization coefficients, ‖v‖2 de-
notes the Euclidean norm of vector v, while ‖A‖F =

(trace(A>A))1/2 denotes the Frobenius norm of matrix A.
The purpose of regularization is to avoid degeneracy and
improve generalization performance in the case when for
some actions the number of transition snippets is small.
Note that for simplicity (and computational efficiency) we
have chosen 2-norm regularization, however, other forms of
regularization are also possible, such as penalizing the `1-
norm of vectors and the nuclear-norm of matrices to pro-
mote the sparsity of the coefficients. It is left for future re-
search to study such (and other) alternatives of the least-
squares method. In practice, the regularization coefficients
for a given action a should and can be set either heuristi-
cally based on the number of samples available for the given
action, or found using simple trials.

Algorithm 1 shows one way of solving the above least-
squares problem. In this algorithm, for an action a, matrix
Ha accumulates the Grammian of the features, matrix Ea
accumulates the correlation of the current-step and next-step
features, and vector ea accumulates the correlation of the
features and the rewards. The method does not require tun-
ing a step-size or repeated training. The computational com-
plexity is (roughly) cubic in the number of features and is
linear in the size of the dataset. When the number of fea-
tures is large, a better alternative might be to use a gradient-
like algorithm. This tradeoff is extensively discussed in Sec-
tion 2.2.3 of (Szepesvári(2010)).

The Abstracted MDP and Approximate Policy
Iteration
Notice that a LAM defines an MDP: the state space is Rd
(the space where the features are embedded into), the ac-
tion space is A. If action a ∈ A is used when the “state”
is φ ∈ Rd, then the next “state” is φ′ = F aφ, the reward
for the transition is r = (fa)>φ, and the discount factor
is γ. We see that in fact the MDP is deterministic. One ap-
proach then is to view this MDP as an “abstracted” version
of the original MDP and find a near-optimal policy in this
MDP. Note that a policy π in this MDP assigns probabilities
to the actions for any given vector of Rd. Assuming that π
is a policy of the abstracted MDP, at deployment time when
the feature φ := φ(s) is observed the next action should be
sampled from π(φ, ·). Thus, π induces a policy in the orig-
inal MDP. A “faithful” abstraction (a good set of features)
is expected to have the property that if π is a good policy in
the abstracted MDP then the policy induced in the original is
guaranteed to enjoy a good performance too. This property
has been explored in the context of state-aggregation (a spe-
cial case of extracting features) by ()a.isaza2008. We leave
it for future work to extend this analysis to the present con-
text. When an abstraction is faithful then it makes sense to
find a near optimal policy in the abstracted MDP. This could
be done with any planning method, though we note in pass-
ing that that the abstracted MDP is deterministic presents a
special opportunity to design faster methods, such as Hren
and Munos(2008) (Hren and Munos(2008)).

In this paper, we take a somehow conservative approach.
The reason is that we cannot expect the model to be mean-
ingful at points of the space Rd which are “far away” from
the features that are in the dataset (unless one is extremely
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Algorithm 2 LAM-API with LSTD (LAM-LSTD for short).
Inputs: a list of features D, a LAM (〈F a, fa〉)a∈A.
Output: a weight vector θ.
Initialize θ
repeat until θ no longer changes

for φi in D do
Select greedy action:
a∗ = argmaxa{(fa)>φi + γθ>F aφi}

Select model:
F ∗ = F a∗ , f∗ = fa∗

Produce prediction for features and rewards:
φ̃i+1 = F ∗φi

r̃i = (f∗)>φi

Accumulate LSTD structures:
A = A+ φi(γφ̃i+1 − φi)

>

b = b+ φir̃i
end
θ = −A−1b

end

lucky). Although nothing prevents the models to generate
trajectories that visit such parts of the space Rd for some
policies, the value predictions built for such policies using
the model might be very far from their true values.

Algorithm 2 shows the algorithm we propose. The algo-
rithm is an instance of approximate policy iteration that uses
value functions that are linear over the features φ. Its inputs
are the list of features (φi)1≤i≤n and a LAM (〈F a, fa〉)a∈A.
Note that although this algorithm can take input from any list
of features, in the experiment we used the features from the
data set where LAM was learned. By doing this, the method
is grounded in reality. It is expected that the predictions of
the model will be better when the model is applied to the fea-
tures underlying the actual observations that the model was
trained on. Similarly to LSPI, the algorithm uses an implicit
representation of policies. However, unlike LSPI it uses state
value functions, exploiting that the LAM makes it possible
to predict the action-value underlying an action at any point
in Rd. In particular, given a parameter vector θ ∈ Rd and
any vector v ∈ Rd, the greedy policy will choose the action
that maximizes

Qθ(v, a) := (fa)>v + γ(F av)>θ .

The inner loop of the algorithm evaluates the resulting pol-
icy πθ by using LSTD on the data that is obtained from the
features in the input. In particular, the data is composed of
the 3-tuples

〈φi, F ai(θ)φi, (fai(θ))>φi〉, i = 1, . . . , n ,

where ai(θ) = πθ(φi) is the action chosen by the policy πθ.
Given this data, LSTD gives a new parameter vector θ′ such
that V πθ (s) ≈ (θ′)>φ(s), s ∈ S. This process is repeated
until the parameter vector does not change or a certain ac-
curacy in the successive change of the parameter is reached.
In all the reported experiments of this paper, the parameter
vector of our algorithm converges after only a few iterations.

Relation to Previous Work
As mentioned previously, linear action models have been in-
troduced in the context of learning to control when the learn-

ing system interacts with the controlled environment (Sutton
et al.(2008)Sutton, Szepesvári, Geramifard, and Bowling).
Learning in an interactive scenario is both easier and harder
than learning given a batch of data. The problem is easier be-
cause the learning system is given the opportunity to collect
new data as needed. On the other hand, if the performance
of the learning system is evaluated while it is learning then
the learning system must avoid poor actions while ensuring
that it explores the state space thoroughly, i.e., the system
has to balance exploitation and exploration. This is a diffi-
cult problem and in its full generality principled solutions
are out of the reach of our techniques (see Section 3.2.4
in Szepesvári(2010) Szepesvári(2010) for the discussion
of existing results). Sutton et al.(2008)Sutton, Szepesvári,
Geramifard, and Bowling (Sutton et al.(2008)Sutton,
Szepesvári, Geramifard, and Bowling) took a pragmatic ap-
proach to attack this difficult problem. Their algorithm com-
bines a number of ideas: It learns the models simultaneously
with using it in a “planning” method that uses TD updates
in an optimistic policy iteration algorithm with the learned
models. The policy used is the so-called ε-greedy policy and
the algorithm employs a form of prioritized sweeping in the
planning phase.

In comparison, our method is fairly simple, which we
view as an advantage. Further, just like any batch method,
our method could be adapted to interactive learning (when
the batch of data is replaced with the stream of data resulting
from the continuous interaction with the controlled system).
However, with this we would also need to rely on heuris-
tic techniques at present. In this paper we explored “least-
squares” approaches. However, this was possible only be-
cause our feature spaces are small. For larger feature spaces
one might be forced to replace these methods with incre-
mental, gradient-like methods that use updates whose cost
is linear (or less) in the number of features. Luckily, for
the purpose of policy evaluation, such algorithms are now
available (Sutton et al.(2009b)Sutton, Szepesvári, and Maei;
Sutton et al.(2009a)Sutton, Maei, Precup, Bhatnagar, Silver,
Szepesvári, and Wiewiora).

Sorg and Singh(2010) (Sorg and Singh(2010)) extended
the work of Sutton et al.(2008)Sutton, Szepesvári, Geram-
ifard, and Bowling (Sutton et al.(2008)Sutton, Szepesvári,
Geramifard, and Bowling) to consider options, i.e., tem-
porally extended actions. They also consider the issue
of whether the learned models can be used in planning
(the “compositionality” issue). In connection to this they
make the observation that if both the expected next-state
features and the rewards can be predicted with no error
from the features of the start-state for any start-state then
the models can be arbitrarily composed without any loss
of information. An extension of this to the “lossy” case
would be of considerable interest. The control learning
method of Sorg and Singh(2010) (Sorg and Singh(2010))
uses Q-learning-like updates that use the option models in
place of the “next-state features”, which is closer in spirit
to Sutton et al.(2008)Sutton, Szepesvári, Geramifard, and
Bowling (Sutton et al.(2008)Sutton, Szepesvári, Gerami-
fard, and Bowling) than to the present paper. Sorg and
Singh(2010) (Sorg and Singh(2010)) demonstrated that their

1215



method, as expected, achieves more reward faster than alter-
natives that do not use options and/or a linear model. As
noted earlier, the work presented here could be easily ex-
tended to handle options. However, we leave this for future
work.

Empirical Results
In this section we present experimental results for the algo-
rithm proposed for three problems of increasing difficulty.
The first problem is a 4-state “chain”: This small problems
allows extensive evaluation and easy to interpret results. The
second problem is the 50-state “chain” problem, which is
still rather small (and thus still allows an easy visualization
of the results). Besides easy visualization, we include these
problems as they were used in a number of previous stud-
ies. The last problem studied is the inverted pendulum. We
have made the source code of our algorithm and domains
available at the authors’ webpages.

The Chain Problems
The 4-state Chain. The problem is the chain-walk example
used by (Lagoudakis and Parr(2003)). There are two actions,
“Left” (L) and “Right” (R). With probability 0.9, an action
leads to a state in the intended direction; with probability
0.1, it leads to a state in the opposite direction. There are 4
states. The discount factor is 0.9. The nonzero reward (one)
is given exclusively at the two middle states. The features
are, φ(s) = [1, s, s2]> where s = 1, 2, 3, 4. A data set of
ten samples of each state-action pair was used (notice this
training data has no randomness involved, so the following
experiments can be reproduced almost exactly). θ was ini-
tialized to 0 for all algorithms.

Figure 1 shows the performance of LAM-LSTD. In the
figure, the x-axis shows the states, and the y-axis shows the
value of the value function estimates corresponding to the
left and right actions. In particular, the function

Q̂∗L(s) = (fL)>φ(s) + γ(FLφ(s))>θ,

is represented by blue dash-dot line, marker ‘•’; while the
function

Q̂∗R(s) = (fR)>φ(s) + γ(FRφ(s))>θ,

is represented by red dashed line, marker ‘+’. LAM-LSTD
found the optimal policy in only 2 iterations. Notice that
the success of LAM-API can be somehow predicted by
checking the quality of LAM in advance. In fact, because
the weight vector θ was initialized to 0, the plot at iter-
ation 0 actually shows the approximated rewards by the
features. In Figure 1, the first plot not only shows that
the approximated rewards of states 2 and 3 are bigger,
but also shows that they are close to each other. For this
experiment, the learned linear reward model was fL =
fR = [−1.9675, 2.4702,−0.4943]>, and the predicted re-
wards are φ(1)>fL = 0.0084 ≈ 0, φ(2)>fL = 0.9956 ≈
1, φ(3)>fL = 0.9941 ≈ 1, φ(4)>fL = 0.0039 ≈ 0. The
quality of F can be checked before iteration as well, which
is omitted here because of limited space. In this experiment,
no regularization was used.

Figure 1: LAM-LSTD (dashed) and LSPI (solid) for the 4-
state chain. The reward is 1 at the two middle states. The
value function of action “left” uses the marker ‘•’, while the
value function of action “right” uses ‘+’.

Figure 2: LSPI on the 50-state chain-walk, shown are itera-
tion 0 (initialization) plus iteration 1 and 7.

We also compared LSPI in the figure. Both algorithms
used exactly the same data set. Though the found actions
were exactly the same for the two algorithms, the learned
(state-value) value functions were different. In particular,
LAM-LSTD converged faster than LSPI in the first two it-
erations. Except that LAM-LSTD uses projected samples,
one reason might be, though both algorithms initialized their
weight vector to 0, the initial policies were actually differ-
ent. In particular, LAM-LSTD took advantage of the linear
reward model, and the initial state-action value function was
initialized to the one-step approximated reward, 2 while the
initial (state-action) value function for LSPI was 0.

The 50-state Chain. The problem is taken from
(Lagoudakis and Parr(2003)) and it extends the 4-state chain
in an obvious manner, except that the reward is also changed
so that the reward is zero everywhere except at states 10 and
41, where it is one. We also used exactly the same radial
basis features as (Lagoudakis and Parr(2003)), giving 22-
dimensional state-action features (used by LSPI), and 11-
dimensional state features (used by LAM-LSTD). We used
a sample set comprising 100 pairs for each state-action pair.
In total, LSPI spent 14 iterations to converge, and found the

2The initial state value function was indeed 0 for LAM-LSTD.
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Figure 3: LSPI on the 50-state chain-walk continued: itera-
tion 8, 9, 14. At iteration 14, LSPI converges.

Figure 4: LAM-LSTD on the 50-state chain-walk. At itera-
tion 2, the policy is already optimal. (LAM-LSTD converges
in two more iterations.)

optimal policy at the last iteration. The initialization plus two
early iterations are shown in Figure 2, three sample succes-
sive iterations in Figure 3. LAM-LSTD spent 4 iterations
to converge, and found the optimal policy at iteration 2 as
shown in Figure 4. After only one iteration, LAM-LSTD al-
ready found a suboptimal policy close the optimal one. In
this experiment, a regularization factor of 100 was used for
learning F and f . As the experiment with the 4-state chain,
the weight vector was initialized to 0 for both algorithms.
The first plot of LAM-LSTD, showing the approximated
rewards by the features, indicates that the positions of the
largest rewards are modeled correctly. With five polynomial
bases, however, we found the positions of the largest reward
are modeled incorrectly, and hence LAM-LSTD only gave
a suboptimal policy, which is consistent to what has been
described for LSPI by (Lagoudakis and Parr(2003)).

Inverted-pendulum
We used exactly the same simulator as (Lagoudakis and
Parr(2003)). The system is shown in Figure 5. The goal is
to keep the pendulum above the horizontal line (|ϑ| ≤ π/2)
for a maximum of 3000 steps. A zero reward is given if the

Figure 5: The pendulum task. One can choose between three
actions at each time step: applying no force, pushing the cart
to the right or left in 50 Newtons.

pendulum is above the horizontal line; otherwise a reward
−1 is given at the same time of terminating the episode. The
discount factor is 0.95. The state is composed of the angle
and angular velocity of the pendulum. Both state variables
are continuous.

The features of a state s are φi(s) =
exp(−||s− ui−1||2/2), i = 1, 2, . . . , 10, where
u0 = s, and the other ui are the points from the grid
{−π/4, 0, π/4} × {−1, 0, 1}. For further details on the
problem, such as the dynamics of the system, we refer
the reader to the original paper. The experiments used a
maximum of 1000 episodes of data. The episodes were
allowed for 3000 steps at maximum. In each episode, the
pendulum was started from a uniformly random pertur-
bation from the state (0, 0), and the weight vector was
initialized uniformly random. To study the data-efficiency
of the methods, we gave the algorithms the first N epidoses,
where N ∈ {50, 100, 150, . . . , 1000}. After training on the
N episodes we evaluated the learned policy and the number
of balanced time steps were recorded. Thus, for each
learning algorithm we got 20 measurements. In fact, this
experiment was repeated 100 times to assess the stability of
the algorithms.

The results are shown in Figures 6 and 7. In particular,
Figure 6 shows the number of balancing steps, while Fig-
ure 7 shows the number of iterations of the algorithms, both
as a function of the number of episodes used for training
(i.e., N ). Figure 6 shows that LAM-LSTD needs signifi-
cantly fewer number of episodes than LSPI (in terms of
both mean and variance of the balanced steps) to balance
the same number of steps. At the same time, Figure 7 shows
that LAM-LSTD requires much fewer iterations than LSPI.
Note that the per iteration cost of LAM is approximately
double the cost of LSPI, given that a matrix-vector opera-
tion is spent on the projection. Even with this increased cost,
LAM-LSTD appears to be cheaper than LSPI. In generating
the figures, a LAM-LSTD policy and a LSPI policy were
learned from the same training data. No regulation was used
for this experiment.

Conclusion
We have introduced a model-based API framework that uses
linear action models. The linear action models are learned
from data and then they are used in an approximate policy
iteration method. Our proposed method is careful in using
the linear action models, in particular only on the features
that occur in the data set. This is intended to ensure that the
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Figure 6: Pendulum: balancing steps of LAM-LSTD and
LSPI.

Figure 7: Pendulum: number of iterations of LAM-LSTD
and LSPI.

model predictions are accurate. As opposed to model-free
methods, our approximate policy iteration method can use
state value functions since the model can be used to predict
action values. This might reduce the variance of the value-
function estimates. In this paper we explored least-squares
methods in both modeling and learning. The ideas in the pa-
per extend readily to models of options, though this was not
explored in the present paper.

A number of important issues remain open: First, it would
be important to attempt a theoretical analysis of LAM-API.
It may also be interesting to consider other model-building
methods, e.g., different regularization terms, the “kerneliza-
tion” of the model, or even considering non-linear action-
models. It is trivial to extend our API method to consider
features-vectors other than those available in the data. Al-
though in this paper we argued heuristically against this idea,
whether this is indeed a bad idea remains to be seen. Actu-
ally, a better question is how to generate additional feature-
vectors to improve performance. Although our experimental
results seem to suggest that LAM-API is a better algorithm
than LSPI, further experimentation (and theoretical work) is
needed to test this hypothesis.
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