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Abstract

Recent developments in reinforcement learning for non-
Markovian problems witness a surge in history-based meth-
ods, among which we are particularly interested in two frame-
works, ®MDP and MC-AIXI-CTW. ®MDP attempts to re-
duce the general RL problem, where the environment’s states
and dynamics are both unknown, to an MDP, while MC-
AIXI-CTW incrementally learns a mixture of context trees
as its environment model. The main idea of ®MDP is to con-
nect generic reinforcement learning with classical reinforce-
ment learning. The first implementation of ®MDP relies on a
stochastic search procedure for finding a tree that minimizes a
certain cost function. This does not guarantee finding the min-
imizing tree, or even a good one, given limited search time.
As a consequence it appears that the approach has difficulties
with large domains. MC-AIXI-CTW is attractive in that it can
incrementally and analytically compute the internal model
through interactions with the environment. Unfortunately, it
is computationally demanding due to requiring heavy plan-
ning simulations at every single time step. We devise a novel
approach called CTMRL, which analytically and efficiently
finds the cost-minimizing tree. Instead of the context-tree
weighting method that MC-AIXI-CTW is based on, we use
the closely related context-tree maximizing algorithm that se-
lects just one single tree. This approach falls under the PMDP
framework, which allows the replacement of the costly plan-
ning component of MC-AIXI-CTW with simple Q-Learning.
Our empirical investigation shows that CTMRL finds poli-
cies of quality as good as MC-AIXI-CTW’s on six domains
including a challenging Pacman domain, but in an order of
magnitude less time.

1 Introduction

Reinforcement Learning (RL) is an area of active research
in artificial intelligence in which agents learn a task through
interactions with the environment. Markov Decision Pro-
cesses (MDP) is the most well-studied framework in RL.
Nevertheless, in the real world, most environments are non-
Markovian due to partial observability, making them par-
ticularly challenging to deal with. Recently Hutter (2009)
introduced a framework for generic reinforcement learning
called PMDP, where the central idea is to find the best map
® that transforms a general RL (GRL) problem to an MDP.
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The term “best” was formalized in a cost criterion that rep-
resents a trade-off between the resulting model’s size and
its ability to predict the outcome of following a given pol-
icy. Being able to predict the consequences of actions is
key to being able to choose them well. The first empirical
study of ®MDP conducted by Nguyen, Sunehag, and Hut-
ter (2011) showed encouraging results. However, their use
of stochastic search does not guarantee finding a good tree
given limited search time and it does not scale well to large
domains. In another direction, MC-AIXI-CTW (Veness et
al. 2010) models the environment as a Bayesian mixture of
context trees and uses UCT Monte Carlo planning (Kocsis
and Szepesvari 2006) to choose its actions. MC-AIXI-CTW
learns its mixture model incrementally as it interacts with the
environment. However, the major disadvantage with MC-
AIXI-CTW is that it has to do hundreds or thousands of
planning simulations at every single time step in order to
find the best action. We develop a novel algorithm called
CTMRL that combines ideas from ®MDP and MC-AIXI-
CTW. CTMRL analytically and efficiently computes its state
set as the agent interacts with the environment. It is, there-
fore, able to work with large domains that exhibit partial ob-
servability and have millions of underlying states.

Related work. Beside PMDP and MC-AIXI-CTW, other
context-tree based methods in the RL literature include
Active-LZ (Farias et al. 2010), U-tree (McCallum 1996),
and BLHT (Suematsu, Hayashi, and Li 1997; Suematsu and
Hayashi 1999). Active-LZ extends the Lempel-Ziv compres-
sion scheme to RL, while U-tree employs a local criterion
derived from the Kolmogorov-Smirnov test for building a
context tree. BLHT like MC-AIXI-CTW, models the envi-
ronment as a Bayesian mixture of tree sources, but unlike
MX-AIXI-CTW it performs a MAP estimate to find one
tree. This makes it similar to our algorithm. They used dy-
namic programming to choose its actions based on the esti-
mated model. For this and other reasons, BLHT needs fur-
ther development in the direction of what is presented in this
article to scale to larger domains. Apart from the context
tree-based methods, POMDP learning (Chrisman 1992) and
predictive state representation (Littman, Sutton, and Singh
2002; McCracken and Bowling 2005; Boots and Gordon
2010) are alternative approaches. In particular the latter is
currently an active research direction in the RL commu-
nity where there has been recent progress in making the



approach practical, though it is still a challenge to scale to
larger domains. Our aim in this paper is to further develop
the history-based (context tree) approaches since these have
shown promise in large domains like Car Driving (McCall-
umn 1994) and Pacman (Veness et al. 2011).

Context Tree Maximizing for Reinforcement Learning
(CTMRL). Context Tree maximizing (CTM) (Willems,
Shtarkov, and Tjalkens 2000) is an attractive approach to
sequence prediction that analytically calculates the optimal
context-tree model in the sense of the Minimum Descrip-
tion Length principle (MDL) (Rissanen 1978). We extend
this methodology for tackling the GRL problem. We com-
bine the CTM method with Value Iteration and Q-learning
to create our own algorithm called CTMRL. The main steps
of CTMRL can be briefly described as follows: A binarized
history is defined as the one obtained from binarizing the
original history of observations, actions and rewards. Given
the binarized history, we apply the CTM procedure to find
the smallest context-tree model that can predict the next per-
cept (observation and reward) well. To enhance the learning
quality, the process is repeated after obtaining more experi-
ence from the environment.

Contributions. Our contributions are: (1) extending the
CTM approach to RL; (2) presenting a theorem that shows
the connection between the CTMRL procedure and the
dMDP cost function; and (3) demonstrating the practical-
ity of CTMRL through empirical investigation.

Paper organization. Section 2 contains background mate-
rial. Section 3 describes our extension of CTM to RL. Sec-
tion 4 presents an empirical investigation on six domains.
Finally, Section 5 contains the conclusions.

2 Background
2.1 Markov Decision Process (MDP)

An MDP (Sutton and Barto 1998) is a decision process in
which at any discrete time ¢, given action a., the probabil-
ity of the next observation and reward o;1 and 7,11, given
the past history hy = aj02r3 . ..a;—10.7¢, only depends on
the current observation o;. That is, P(0¢11,7t41|htas) =
P(0441,7¢41]0t, at). Observations in this process are called
states of the environment. Formally, a finite MDP is defined
as a tuple (S, A, T,R) in which § is a finite state set; A
is a finite action set; T = (1%, : s,s' € S, a € A)
is a collection of transition probabilities of the next state
si11 = s’ given the current state s; = s and action a; = a;
and R = (R%, : s,s € S, a € A) is a reward func-
tion R%, = E[ri11|se = s,a; = a,8.41 = §'|. The
return at time step ¢ is the total discounted reward R;
Tir1 + YTeee + Y2rees + ..., where v is a geometric dis-
count factor (0 <~ < 1).

The action value in state s following policy 7 is de-
fined as Q7 (s,a) E,[R:|s s,a; = a
E.[>r o resks1|se = s,a; = a]. For a known MDP,
Action-Value Iteration (AVI) is a useful algorithm to find
an estimate of the optimal action values Q* := max, Q.
The approach is based on the optimal action-value Bell-
man equation (Sutton and Barto 1998), and iterates the
update Q(s,a) <« > ., T&[RY, + ymaxy Q(s',a’)].
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For unknown MDPs, an efficient solver is ()-learning,
which incrementally adjusts action values through the up-
date Q(s¢, ar) < Q(s¢,ar) + ay(se, ar)err, where erry
rep1+ymax, Q(Si41,a) —Q(st, at) is the instant feedback
error, and oy (¢, ay) is the learning rate at time ¢.

2.2 Context Trees

Definition. A context tree or suffix tree is a tree data struc-
ture that represents suffixes of a given string of symbols
(Weiner 1973; Nguyen, Sunehag, and Hutter 2011). In the
RL context, the string is the history. We define several ver-
sions of context trees that will be employed in the subse-
quent development of our method. If the set of symbols
are the observation set, we call the context tree an Obser-
vation Context Tree (OCT). If the sets of symbols for odd
depths and even depths of the tree are observation and ac-
tion sets respectively, the tree is named Action-Observation
Context Tree (AOCT). If the set of symbols is the instance
setZ = {aor : a € A,0 € O,r € R} where A, O, R are
action, observation and reward sets respectively, we call the
tree Instance Context Tree (ICT).

The state suffix set, or briefly state set S
{st,s2,...,5™} induced from a context tree 7 is defined
as the set of all possible strings of edge labels (symbols)
forming along a path from a leaf node to the root node of 7.
When we refer to a state or context s € S, it also equiva-
lently means the leaf node corresponding to s € 7. Tree T
and its suffix set S are considered to be equivalent as well
since they can be constructed from each other. The two terms
contexts and states are also used interchangeably.

2.3 Context Tree Maximizing (CTM) for Binary
Sequence Prediction

One of the fundamental problems of sequence prediction is
to find the smallest tree source from which future obser-
vations can be well-predicted. In this section, we summa-
rize the main results from Willems, Shtarkov, and Tjalkens
(2000) who describe the CTM algorithm for binary sequence
prediction. The minimum description length (with two-part
codes) (Rissanen 1978) or minimum message length (Wal-
lace and Boulton 1968) of a sequence z1.,, € {0,1}" over
the models S € Cp is defined as

+I'p(S) (D

Ap(x1.,) = min

1
1 -
secy | 28 Pu(zin]S)

given any sequence zj_p.o of (fictitious) past symbols,
which we have suppressed in the expression. Here Cp is the
set of all binary context trees with depth not greater than

D. Note that there are over 22" trees in Cp, so brute-force
evaluation of (1) is impossible for interesting D; the CTM
algorithm can determine (1) in time O(D x n). I'p(S) =
S| =1+ {s : s € S, I(s) # D}| is a code length
of tree S, here |S| is the cardinality of the suffix set S
and [(s) is the length of s; 2., refers to x; ...x,; and P,
stands for coding probability of x;.,, with respect to the suf-
fix tree S. It is defined as P.(21.,|S) = [[,cs Pelas,bs),
where a; = as(x1.,) and bs = bg(x1.,) are respectively
the number of zeros and the number of ones that occur in



T1., at instants 7 for which x,_j5).-—1 = s; and P, de-
notes the estimate probability. The coding scheme utilized
for the description is arithmetic coding (Cover and Thomas
1991). P.(a,b) is the KT-estimator (Krichevsky and Trofi-
mov 1981), the block probability estimate of seeing a zeros
and b ones. The KT estimate of the predictive probability of
the next bit given a binary string x.; with a zeros and b ones

is Put(Xer1 = 1) := 2522 which implies
s(1+3).-(a—3)50+3)...(b—3)
Pela ) = £ (a+b)! =

P, can be incrementally computed as P.(a + 1,b)
P.(a,b) x (a+1/2)/(a+b+1). The KT estimator is based
on the Bayesian-probability framework by assuming a Jef-
frey prior P(0) o< 6~'/2(1 — 6)~'/? (Beta(1/2,1/2)) on
the parameter 6 € [0, 1] of the Bernoulli distribution.

For each node s, we assign a maximizing “probability”

PP

D %max(Pe(as, bs), PD ol

P =
s {Pe(asabs)

and maximizing set

o) ifl(s) <D
D

ifi(s) =

SP 0s X 0USE | x 1 if Pe(as, bs) <

D
PmOstls

and [(s) <
otherwise

Svg.s =
{e}

where ¢ is the empty string.

The intuition behind the CTM recursive formulas can be
briefly explained as follows: If I(s) = D, P.(as, bs) should
serve as a good coding probability as we assume that the
tree source is memoryless at depth D. If an internal node s
of the tree is memoryless, then again P, (as, bs) is a good
coding probability. Otherwise, if s is not memoryless, we
have to further recursively split state s until the memory-
less contexts are reached to find a good coding probability.
As the maximizing probability is defined, the good coding
probability for a non- memoryless context s should be the
product of P,7, and P, ,,. The multiplicative factor 3 in
the max1m121ng probablhty deﬁnltlon is to represent the un1-
form model prior. All models S € Cp are assumed to have
the prior P(S) = 27 72(5), which represents the philosophy
of Occam’s razor (Li and Vitani 2008) - small models are
preferable.

An important property CTM has in common with CTW is
that the computational complexity is linear in the sequence
length. The CTM procedure is described as follows: At time
t, the agent sees observation o, and it has to traverse down
from the CTM tree’s root to the leaf node corresponding to
the context stD = o0t—p:—1. In each step, either we cre-
ate a new node with parameters initialized if this node’s
context is not represented in the current CTM tree yet; or
we incrementally update the counts and estimate probabil-
ity (as, bs, P.(as,bs)) of the existing node corresponding
to the current context in the CTM tree. Then we travel in
reverse from the leaf node (s? = 0;_p:t—1) to the root
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node (s = ¢) in order to update the maximizing proba-
bilities (P,QS) for all nodes or contexts sf =0i_dgi_1, d =

.,0. When updating each P,  with [(s) < D, we need
to know both P, o, and Py, 1. If either of the nodes Os or 1s
does not exist in the current CTM tree (Os and 1s are unseen
contexts), its maximizing probability is equal to the prior
probability %

The maximizing probability and the maximizing set cor-
responding to a node s € S are denoted by Pl (z1.n)
and S,Q’S(xlm) respectively. For any sequence x1_p.o of
past symbols, define the maximizing coding distribution as
P (x1.,) = Pge(xlm), and the maximizing state set as
Sm(x1.) = Sg,e (21.r,). We have the following theorem,
which shows the connection of the CTM procedure to (1).
Namely, that the minimizer in (1) is found through this pro-
cedure.

Theorem 1 (Willems, Shtarkov, and Tjalkens 2000) For any
sequence x1., € {0,1}"™, we have

log 1
& Pru(@1m)

1
10g Pc(x1:n|8m(l'1:n)) + FD(Sm(xln))

AD (xlzn)

given any sequence x1_ p.o of past symbols.

3 Context Tree Maximizing for
Reinforcement Learning

The primary goal of an RL agent is to find the opti-
mal policy 7 for taking action a; given the history h;
agO1T1G] . ..0p_1T¢_10G4_104T¢ SO as to maximize the total
long-term reward. We focus on attacking the challenging
GRL problem where the agent has no prior knowledge on
the environment’s model including what the states are.

Our primary purpose is to develop an analytic and ef-
ficient procedure for finding a good MDP state set given
a history. Thereby, the GRL problem is reduced to solv-
ing the found MDP for which a rich literature of clas-
sical RL methods is available (Sutton and Barto 1998;
Csaba 2010). It is worth recalling that this reduction falls un-
der the ®MDP framework (Hutter 2009). We will base our
algorithm on the original ®MDP cost function Cost(®|h)
and present recursive formulas that analytically find the min-
imizer of the cost criterion. A key difference to the sequence
prediction setting is that, as in Hutter (2009), we condition
on the actions since we want to be able to predict the conse-
quences of different choices for them. The cost is a trade-off
between this predictive ability and the size of the model and
can be viewed as an extension of the MDL principle to RL.
The main obstacle when using the resulting algorithm for
large problems is finding a reliable estimate of the multivari-
ate coding probability. To overcome this issue, we borrow a
binary factorization technique from Veness et al. (2011).

Cost function. We define the following cost function for a
model S in the set of all ICTs with depths not greater than



the given maximal depth D (denoted as Cp) to be
Cost(S|hn, ho)

log

+I'p(S) ()

Pc(sl:ny Tl:n‘ao:n—lv hOv S)
where hg = a_po1_pri_p... a_10gr is any (fictitious)
initial history; I'p(S) := |S|—14|{s : s € S,(s) # D}|is
the model penalty of S with respect to model class Cp; and
sp = ®s(hy), t =1,...,n with ®s being the map extract-
ing suffix of the history h, that matches a suffix or a state
in the state set S; and hg = a_po1_pri—p ... G_109Tq 1S
the given initial history. We aim to minimize (2) to find the
model with the shortest description length, which is the op-
timal model that we seek. The interested reader is referred
to Nguyen, Sunehag, and Hutter (2011) for full details of the
context-tree mapping from histories to states of an MDP.
Denote the instance set of Cp as Z := {z',... z/*I} =
{aor : a € A, o € O,r € R}; at time t,
Ty = Qp—10¢T¢. Note that Pc(51:n7rlz7z|a0:71—17hOv‘S)
Pc(01:n7rl:n|a0:n717h078) Ha Hs Peac|sa where

Pflsa = P;Clsa(ngcl,nmz7 ...,Ng 1) is the block proba-
bility estimate of seeing a sequence containing n,: of z’,
i = 1,...,]Z|, given that action a is taken at context s.
Hence,

1
Cost(S|hn, ho) = .2, log Pl +TI'p(S)

|

e

Recursive formulas for minimizing cost. We now describe
the analytic formulas that compute the minimizer of (2). The
maximizing probability at state s is recursively defined as
follows:

PP .=

m,s

L max (TTueq P T PR ) ifls) < D
Maea P2 ifi(s) = D

The maximizing state set S,%S is defined as

Uac’i S??L,a:is xa'if HaG.A Pglsa <
SD = HaGA Hi Pvg,mis
e and [(s) < D,
{e} otherwise

The intuitive idea behind the above maximizing probabil-
ity and maximizing state set is similar to the binary CTM.
The main difference here is that the formulas are defined
for the non-binary case and with the condition on actions in
order to represent the coding probability given that the envi-
ronment model is an MDP with state set S. The maximizing
state set at each state is defined by conditioning on actions.
This is the reason why we have the condition on actions in
the definition of P, for each state. Given a memoryless state

s, and an action a taken at s, PY |sa should serve as a good
coding probability for s. Hence, the good coding probability

for a memoryless context s should be the product of P2!*
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over all possible actions. The details are represented in the
recursive formula of the maximizing probability.
It can be shown that SP = = {s' : s's € S} .} and

we shall see from the theorem below that S,%E is indeed
the minimizer of (2). By induction and with similar proof
techniques as presented in Willems, Shtarkov, and Tjalkens

(2000), we can prove the following lemma.

Lemma 2 For any state s, we have

D
7575 — 9 Tp-a(Sy,) H H ng\usa
acA weSk |
= max Q—FD—d(u) H HPz\usa
UeCp_ €
b acA ueld

where [(s) = d.

From the lemma, we can see that the maximizing prob-
ability of a state s is the product of the coding probability
of the minimal memoryless tree rooted at node s, and the
model prior of the minimal tree at context s. If s is mem-
oryless, the minimal tree is the empty tree. If s = ¢, the
minimal tree is the optimal solution of (2) that we seek.
Now define Pm(hn\ao;n,l, ho) P,rg’e(hn|a0;n,1, ho)
and Sm<hn|a0:n71ah0) S£7g(hn|a0:n71;h0); and
Ap(hylag.n—1,ho) as the minimum of (2). The following
theorem can be straightforwardly shown by setting s = € in
Lemma 2.

Theorem 3 Given a history h,, up to time n, and an initial
history hg, we have

1
lo
& Pc(hn|a0:n—1a hOa Sm(hn‘a():n—lhO)))
+FD (Sm(hn|a0:n—1; hO)))
AD(hn|aO:n—1a hO))

The theorem implies that the recursive procedure for com-
puting maximizing probabilities and corresponding maxi-
mizing sets yield the optimal solution to the cost function
(2). The computational complexity of this CTM procedure
is O(D x n), hence linear in the history length, while the
model-space size is doubly exponential in D.

Binary Factorization. The main issue with what we have
described so far is the estimation of P'*®. For large do-
mains, it is difficult to get reliable estimates as we often do
not have enough statistics based on type information. To al-
leviate the above drawback, we use a binarization and fac-
torization approach inspired by Veness et al. (2011). First,
actions, observations and rewards in the original history are
binarized to obtain a binary history. Then for each bit of the
percept (a percept is a pair of observation and reward), we
use CTM to construct a separate binary tree to predict this
bit. This strategy makes it possible to exploit the structure
within each percept. That is, in domains with huge observa-
tion space, it is difficult to determine the most useful mem-
ory we need to remember in order to predict well at the type
level as statistics are insufficient; however, at the bit level,

+



the much more abundant statistics allow us to learn the bi-
nary contexts to predict individual bits of the percept. From
the union of learnt binary contexts, we then can determine
the type context tree that has good-prediction capability.

The model class we consider here is the class of AOCTs.
We believe that contexts including observations and actions
are general enough to be widely applicable. The central idea
of our approach is to find binary context trees for predicting
each percept bit, then combine all the learnt contexts of these
binary context trees to form an AOCT, which defines the
MDP state set that we use. We next describe the technical
details of the final resulting algorithm that we call CTMRL.

Suppose that ,, [,, and [,. are the minimum numbers of
bits needed for binary representation of actions, observations
and rewards respectively. For each symbol z, denote its bi-
nary representation as [[z]] = z[1,1,] = z[1]z[2]...x[l,] €
{0,1}!=. Denote the environment percept as p := or, and
o)l = [lorl] = [lollllr]] = plL,5,] = plLlp[2]...pll,]
where [, = [, + [,. We consider joint models M
(My,...,M;,) € Cp x ... x Cpyy,—1 where M; is the
action-conditional binary model for predicting bit ¢ of the
percept; and Cp;—1 is the set of all binary context trees with
depth not greater than D + 4 — 1 (i = 1,...,1,). It should
be noted here that except the first ¢ — 1 percept bits, contexts
of each M; comprise of binarized actions and observations
only. Let M* := argmin,; Cost(M |h,, ho) where the cost
is defined as follows:

Cost(M|hy, ho)

1 P
= lo + I Mi
& Pc(hn|a0:n717 h07 M) z:zl ( )
= lo + > D(M;
; & Polpilhi—1ar—1, ho, M) ; (M:)
P n 1

21X

i=1 Lt=1

lo a—
& Po(puli| B, ho, M)

where hl = hy_ja;_1p[1...7i —1].

Hence the problem is reduced to finding the optimal M;*s
(#=1,...,p), which are obtained using the CTM procedure
for the binary sequence prediction case as shown in Section
2.3. After M* = (MY, .., M}) is computed, the AOCT we

ultimately use is 5 = Ui i, M, which is the smallest

tree that contains all Sﬁtﬁﬁ..i—u (i=1,...,1,and for all

a and p) as subtrees. Note that all S TZ J;;fll...i—u

of M but rooted at context ap|[l...7 — 1].

Algorithm. Based on the procedure for choosing a state
set described above, we design an agent named CTMRL as
specified in Algorithm 1. We first perform a certain number
of random actions, then use this history to learn /,, CTMs that
predict individual percept bits. Next, we unify the learnt bi-
nary contexts from the CTMs to form an AOCT. This AOCT
is then employed to learn a good policy via AVI, and ex-
plore unseen scenarios through the Q-learning in the learn-
ing loop. The current history is then updated with the ad-
ditional experiences gained from Q-learning. After that, we

s are subtrees
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Algorithm 1 CTMRL
Require: Environment, nLearningLoops, n;s (n; is the
number of new experiences to collect in loop ), n,
(the iteration number in the ultimate Q-learning after the
learning loop)
1: 10
2: Create [, empty CTMs, where the it" CTM predicts the
i bit of the percept p
3: h < initial random history obtained by performing n
random actions
4: W+ h
5: while i < nLearningLoops do
6:  Update [, CTMs based on history h’
7:  Join learnt contexts from each of the CTMs to form
AOCT T e
8:  Compute frequency estimates M of state transition
and reward probabilities of the MDP model based on
states induced from tree 7 and history h
9:  Use AVI to find an estimate of optimal action values

@ based on M

10:  (Optional) Evaluate the current optimal policy ex-
tracted from Q

11: Q+ Q-+ If‘i"v" [[Optimistic Initialization]]

12:  ifi < nLearningLoops — 1 then

13: h' + Q-learning(Q,S7, A, Environment,n;)

14: h < [h, ]

15:  endif

16: 1+ i+1

17: end while

18: Q' < Q-learning(Q, S7, A, Environment,n,)

19: 7*(s) < argmax, Q'(s,a) forall s € ST

Return 7*

repeat the procedure but without the random actions. When
the learning loop is finished, we may run Q-learning to fur-
ther enhance the current policy. Note that as we are uncer-
tain whether all possible observations and actions have been
seen from the history, especially in large domains, an unseen
symbol A is added to O and A to represent unseen scenarios
in the AOCT. In the Q-learning part of Algorithm 1, when an
unseen context is encountered, this new state can be either
added to the current AOCT, or lumped to the corresponding
unseen context in the current AOCT. In all our experiments
below, a lumping-state strategy is applied for the first five
domains, while for Pacman, a state-adding feature is utilized
as in such large domains, the number of unseen contexts can
be significantly greater than the seen ones.

The detailed working of the model learning steps in Al-
gorithm 1 (lines 6 and 7) is best illustrated with an example.
Given O = {o%,0?} = {0,1}, A = {a',a?} = {0,1}
and R = {0,1,2}, then I, = [, = 1,1, = 2, and
l, = l, + 1, = 3. Each observation or action is encoded
as it is; while rewards in R are encoded as 00, 01,10 re-
spectively. We analytically construct [, = 3 CTMs to find
the [, optimal binary models My, M5, and M3 to predict
the three bits of the percept. Suppose that the three optimal



binary contexts found for predicting bits 1, 2, and 3 of the
percept (conditioned on ap[l...7 — 1], with¢ = 1,2,and 3
respectively) are S; = {0,01,11}, S = {00, 10,1}, and
S; = {0,1} (S; is the minimal suffix set that has all

Z ,—:;)111...1—1}55 for all @ and p, as its subtrees). From each
of the learnt binary contexts (states) from S}, S5, and S3,
we determine type contexts of the AOCT tree 7. S;,S;
and S respectively give {o', a'0?, a%0?}, {ato!, a%0!, 0},
{0',0%}. Hence, ST = {a'0',a?0",a'0?, a?0®} is the min-
imal AOCT that has S7, S5 and 53 as its subtrees.

The purpose of the interplay between AVI and optimistic

Q-learning is for efficient exploration of new contexts. In the
learning loop, we initialize Q-learning with @ 4+ Ryax /(1 —
~) where @ is learnt by AVIL. As a result, at the beginning

the agent acts according to the policy extracted from (. This
will reinforce the structure of the current AOCT. Then as Q-
learning updates values, the policy changes, and this allows
the agent to explore unseen contexts. The learning loop is
very helpful for the agent to gradually find the most use-
ful MDP state set. In learning loop ¢+ we gather n; new ex-
periences from the environment in order to strengthen the
current learnt contexts, and explore unseen scenarios. Small
n; allows careful learning of useful states at the expense of
more computation mainly due to the AVI procedure. In small
domains, with large n;s the agent may learn many states that
are unimportant to determine the optimal policy.

Implementation for large domains (Pacman). In the Q-
learning part of Algorithm 1, when an unseen context is en-
countered, this new state will be added to the current AOCT.
The action value for the newly added state is initialized
based on the value of the first subsequent seen state. Another
issue to note here is that for large domains, a large number of
experiences are needed to learn the environment model, and
this will put high demand on memory allocation for the bi-
nary trees. Due to this issue, for each learning loop we delete
the CTMs after the learnt binary contexts are added to the
current AOCT; that is, all learnt binary contexts of CTMs
in the current learning loop are retained in the AOCT, and
CTMs must be constructed from scratch in the loop based
on the history obtained from the previous loop. These mod-
ifications are vastly improving the memory efficiency of the
algorithm, making it possible to run Pacman on a modest
computer. There is, however, some loss of data efficiency.

We provide an example to illustrate the state-adding sce-
narios. Suppose the current AOCT is S = {0, A, 01,11, \1}
where more than two observations can be received, and more
than two actions are available. Then, if o, = 2 is encoun-
tered, it will be added to S if the suffix 31 (a; = 3, 0441 =
1) is encountered, it will be added to S too; however, if the
suffix 10 (a; = 1, 0441 = 0) or 20 (ay = 2, 041 = 0)
is encountered, they are not added to S since the existing
state s = 0 can be extracted from either of the two suffixes.
The action value for that new state is initialized based on the
value of the first subsequent seen state. In our experiments
this state-adding feature only applies to Pacman where the
observation space is much larger than in the other five do-
mains.
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4 Experiments

This section presents our empirical investigation of Algo-
rithm 1 for six domains, Cheese Maze, Tiger, Extended
Tiger, Kuhn Poker, 4x4 Grid, and Pacman (see Veness et
al. (2011) for the descriptions of these domains). The per-
formance of our method, CTMRL, on the six domains is ex-
amined and compared with four competitors, PMDP, MC-
AIXI-CTW, U-tree, and Active-LZ. In the last domain, Pac-
man, we only provide the results of CTMRL and MC-AIXI-
CTW as U-tree and Active-LZ are unable to work with this
large domain (Veness et al. 2011). ®MDP as presented in
Nguyen, Sunehag, and Hutter (2011) requires serious modi-
fication in the direction of CTMRL to deal with large obser-
vation spaces.

The parameters of Algorithm 1 are chosen as fol-
lows: For the first five small domains, -y 0.99
(in Q-learning and AVI), 7 0.1 (in Q-learning),
D 8 X (lo + l,) (CTMs), and (ng,n1,...,n7)
(250, 250, 500, 1500, 2500, 5000, 15000, 25000). For Pac-
man, 7 = 0.9 (in Q-learning and AVI), n 0.1 (in Q-
learning), D = 2 x (I, + {,) (CTMs) and ng = 2500, 71 =
2500,n2 = 5000,n; = 10000 (3 < i < 26),and n, =
97500000. We use the results in Veness et al. (2011) and
Nguyen, Sunehag, and Hutter (2011) to represent the meth-
ods that we compare CTMRL to. In each of the plots below,
the learning quality of each algorithm is assessed at vari-
ous time points by measuring average reward over 50000 ac-
tions. The exploration of each of the four competitors is tem-
porarily switched off at such evaluation points. Performance
of our algorithm is measured using the policy extracted from
action values learned by AVI (step 10 of Algorithm 1). For
Pacman, after time 250000 we run Q-learning on the fixed
state set and we further evaluate the policy of our agent (the
greedy policy with respect to the Q) values) at some fixed
points.

It can be seen from Figures 1, 3, 4, 5, 6, and 7; and Ta-
ble 1 that CTMRL outperforms ®MDP, U-tree, Active-LZ;
and is competitive with MC-AIXI-CTW in terms of learning
outcomes. However, compared to MC-AIXI-CTW, our ap-
proach has some clear advantages in computation time and
memory. For example, in the cheese-maze domain, CTMRL
consumes less than ten seconds to process 500 cycles of ex-
perience, and finds a near optimal policy; it also learnt a state
set containing 22 states as represented in Figure 2. On Pac-
man, CTMRL, in less than a day, finds a policy, which is as
good as MC-AIXI-CTW’s given a week of computation on a
stronger computer. Nevertheless, on this domain, MC-AIXI-
CTW is much more data-efficient than CTMRL. The MC-
AIXI-CTW experiments in Veness et al. (2011) were per-
formed on a dual quad-core 2.53Ghz computer with 24GB
of memory, while our machine is a dual core 2.4GHz with
2GB of memory.

5 Conclusions

We introduced the CTMRL algorithm for non-markovian
RL based on the CTM sequence prediction algorithm. Over-
all, CTMRL is competitive with the state of the art MC-
AIXI-CTW in terms of learning and superior to other com-



Domains CTMRL MC-AIXI-CTW Optimal
Experience | Total Max average | Experience | Search | Max average | reward
time reward time reward
Cheese maze 50000 27m 1.27 50000 12h30m| 1.28 1.33
Tiger 50000 11lm 1.07 50000 5h30h | 1.12 1.084
Extended Tiger 50000 43m 4.58 50000 6h 3.97 4.99
Kuhn Poker 100000 14m 0.056 100000 1h25m | 0.056 0.056
4x4 Grid 50000 29m 0.25 50000 7h30m | 0.25 0.25
Pacman 100000000 | 18h 1.66 250000 168h 1.64
Table 1: Summary performance of CTMRL and MC-AIXI-CTW
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S despite using a much weaker computer.
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Experience (cycles)

Figure 3: Tiger

petitors. Compared to MC-AIXI-CTW, CTMRL is dramati-
cally more efficient in both computation time and memory.
This is achieved by moving to the ®MDP framework and
thereby eliminating the need for costly online planning. For
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based methods is that they are incapable of dealing with
domains where long-term memory is crucial to take smart
actions. That CTMRL and MC-AIXI-CTW can do well on
the studied domains including Tiger and extended Tiger is
mainly because context trees of a modest depth are able to
capture all useful information.
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