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Abstract

In this paper, a new convex matching pursuit scheme is
proposed for tackling large-scale sparse coding and sub-
set selection problems. In contrast with current match-
ing pursuit algorithms such as subspace pursuit (SP),
the proposed algorithm has a convex formulation and
guarantees that the objective value can be monoton-
ically decreased. Moreover, theoretical analysis and
experimental results show that the proposed method
achieves better scalability while maintaining similar or
better decoding ability compared with state-of-the-art
methods on large-scale problems.

Introduction
Sparse coding has been a fundamental task in many ap-
plications such as compressive sensing (CS) (Candès and
Wakin 2008), image classification (Wright et al. 2009;
Gao et al. 2010) and statistical signal processing (Daven-
port et al. 2010; Blumensath 2011). Given a design matrix
D ∈ Rn×m and a noisy measurement y = Dx + ξ ∈ Rn
from a sparse signal x, where ξ ∈ Rn is an additive noise
and ‖x‖0 ≤ κ � m, in CS, sparse coding recovers x via
solving the following `0-norm constrained inverse problem:

min
x
‖y −Dx‖2 : s.t. ‖x‖0 ≤ κ. (1)

Moreover, suppose that D is a dataset withm features and y
is the output response vector, the problem in (1) becomes a
feature selection task, which has been widely used in many
data mining applications such as bio-informatics.

In most of the aforementioned applications, the number
of measurement n is much smaller than m, which makes (1)
an ill-conditioned problem. Furthermore, it is NP-hard due
to the `0-norm constraint. In the past decade, many efficient
algorithms have been developed to solve this problem un-
der some restricted condition, which is usually expressed in
terms of the restricted isometry property (RIP) (Candès and
Tao 2005). A matrix D is said to satisfy the RIP of order κ
if there is some σκ ∈ [0, 1), for all x with ‖x‖0 ≤ κ, then
(1− σκ)‖x‖2 ≤ ‖Dx‖2 ≤ (1 + σκ)‖x‖2.

Current sparse coding methods can be categorized into
two groups, namely, matching pursuit (MP) (or greedy pur-
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suit) algorithms which directly solve (1) and `1 relaxed algo-
rithms which solve a `1 convex relaxation (Zibulevsky and
Elad 2010; Yang et al. 2010). The basic scheme of MP algo-
rithms is to iteratively identify the most possible supports
of x. Among these algorithms, orthogonal matching pur-
suit (OMP) algorithm is one of the most well-known match-
ing pursuit algorithms (Tropp and Gilbert 2007). In OMP
method, at each iteration, only one support is detected via
arg maxi |ci| with c = D′r and is added to a support set
S, where r = y − Dx is the residue. Then an orthogonal
projection is performed by solving minxS ‖y − DSxS‖2,
where DS denotes the sub-design matrix with atoms se-
lected by S and xS is the corresponding regressors. Finally,
an update of r is given by r = y − DSxS . Recent stud-
ies reveal that, under the RIP condition, with O(κ log(m))
measurements, OMP can uniformly recover the κ-sparse sig-
nals but may need more iterations (Zhang 2011). Regard-
ing this drawback, many improved MP variants have been
proposed. Typical methods include compressive sampling
matching pursuit (CoSaMP) (Needell and Tropp 2009), sub-
space pursuit (SP) (Dai and Milenkovic 2009), accelerated
iterative hard thresholding (AIHT) (Blumensath 2011), or-
thogonal matching pursuit with replacement (OMPR) (Jain,
Tewari, and Dhillon 2011) and so on. The best recovery con-
dition of the above algorithms so far has been shown in (Jain,
Tewari, and Dhillon 2011; Giryes and Elad 2012). Typically,
CoSaMP, SP, AIHT and OMPR can recover κ-sparse signal
provided with that σ4κ < 0.35, σ3κ < 0.35, σ3κ < 1/

√
32

and σ2κ < 0.499, respectively.
Another type of sparse coding algorithms is based on the

following `1 convex relaxation of (1):

min
x
‖x‖1 : y = Dx + ξ or min

x
ρ‖x‖1 + ‖y −Dx‖2, (2)

where ρ is a trade-off parameter. Recent years have wit-
nessed a fast development on `1 sparse coding methods
(Zibulevsky and Elad 2010; Yang et al. 2010). Among these
methods, alternating directions method (ADM) or augmented
Lagrange multiplier (ALM) has shown fast convergence in
solving the first formulation in (2); while fast iterative
shrinkage-threshold algorithm (FISTA) with continuation
shows the most promising performance on solving the latter
one of (2). A more detailed review of `1 sparse coding meth-
ods can be found in (Zibulevsky and Elad 2010) and refer-
ences therein. Recent studies discovered that if σκ ≤ 0.307,
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`1 methods can successfully decode all the κ-sparse signal
(Cai, Wang, and Xu 2010). However, it has been shown that
`1 methods are too expensive on large scale problems (Jain,
Tewari, and Dhillon 2011).

In this paper, we propose a convex matching pursuit
(CMP) scheme for sparse coding. The core contributions of
CMP are listed in the following: (1) We introduce a varia-
tion norm such that CMP is formulated as a convex optimiza-
tion problem and hence guarantees its convergence. (2) Via
a matching pursuit strategy, CMP shows the best scalabil-
ity when dealing with large-scale problems. (3) Last but not
least, CMP can successfully recover any κ-sparse signals if
the design matrix D satisfies RIP with σκ ≤ 0.307.

Notations and Preliminaries
In the sequel, we denote the transpose of vector/matrix by
the superscript ′, 0 as a vector with all entries equal to one,
and diag(v) as a diagonal matrix with diagonal entries equal
to v. We also denote ‖v‖p and ‖v‖ as the `p-norm and `2-
norm of a vector v, respectively. Furthermore, we denote
v � α if vi ≥ α,∀i and v � α if vi ≤ α,∀i. We let
A � B represent the element-wise product of two matrices
A and B. Following (Rakotomamonjy et al. 2008), we also
define xi

0 = 0 if xi = 0 and∞ otherwise. In the paper, we
use the following minimax saddle-point theorem for deriv-
ing our proposed method.

Theorem 1. (Sion 1958) Let g(x, z) : X × Z → R, where
X and Z are compact convex subsets of linear topological
spaces, g(·, z) is quasiconvex and lower semi-continuous
for every z ∈ Z , and g(x, ·) is quasiconcave and upper
semi-continuous for every x ∈ X . Then min

x∈X
max
z∈Z

g(x, z) =

max
z∈Z

min
x∈X

g(x, z), in particular, each optimum is attainable.

`1 Norm versus Variation Norm
Note that `1-norm of a vector x can be expressed as the fol-
lowing variation form (Jenatton, Audibert, and Bach 2009):
‖x‖1 =

∑m
i=1 |xi| = 1

2 minη�0

∑m
i=1

x2
i

ηi
+ ηi. One ma-

jor issue for `1-norm regularization is that it is inefficient
when solving very high dimensional and large-scale prob-
lems. To tackle this issue, inspired by the variation norm,
we define a new variation norm parameterized by a scalar
B. Let Λ = {η|

∑
ηi ≤ B, 0 ≤ ηi ≤ 1}, we define the

‖x‖B norm as ‖x‖B =
√

minη∈Λ

∑m
i=1

x2
i

ηi
.

Proposition 1. Given a vector x ∈ Rm with ‖x‖0 =
κ̂, where κ̂ > 0 defines the number of nonzero en-
tries in x. Consider the following minimization problem
minη∈Λ

∑m
i=1

x2
i

ηi
, we have: (1) Let η∗ be the minimizer,

then η∗i = 0 if |xi| = 0 and η∗1 > η∗2 , ..., > η∗κ̂ > 0 if
|x1| > |x2|, ..., > |xκ̂| > 0. (2) If κ̂ ≤ B, then ηi = 1 for
|xi| > 0; otherwise, |xi|

ηi
= ‖x‖1/B for all |xi| > 0. (3) If

κ̂ ≤ B, then ‖x‖B = ‖x‖2; otherwise, ‖x‖B = ‖x‖1√
B

.

The proof can be found in Appendix A. Based on the def-
inition of ‖x‖B , suppose y = Dx̂+ ξ, we consider to solve

a regularized sparse inverse problem: min
x̂
‖x̂‖2B + λ

2 ‖y −
Dx̂‖2, which is equivalent to the following problem:

min
x̂,η∈Λ

1

2

m∑
i=1

x̂2
i

ηi
+
λ

2
‖y −Dx̂‖2, (3)

where λ > 0 is a regularization parameter that trades off
the model complexity and the fitness of the regressor. By
defining xi = x̂i

ηi
, the above convex problem can be easily

transformed as the following problem:

min
η∈Λ

min
x

1

2

m∑
i=1

ηix
2
i +

λ

2
‖y −Ddiag(η)x‖2. (4)

Proposition 2. Given a fixed η ∈ Λ, the dual of the inner
minimization problem of (4) regarding x can be given by

max
α

α′y − α′Ddiag(η)D′α

2
− 1

2λ
α′α, (5)

with regression error ξ = 1
λα, where α ∈ Rn.

Define f(α,η) = 1
2α
′Ddiag(η)D′α + 1

2λα
′α − α′y,

and −f(α,η) is concave regarding α, so the globally opti-
mal solution α∗ of (5) exists. Thus, we can find a bounded
region A = [−$,$]n, where $ is a large number such that
α∗ ∈ A. Now, both η and α in (5) are in compact domains,
and according to Theorem 1, we have min

η∈Λ
max
α∈A

−f(α,η) =

max
α∈A

min
η∈Λ
−f(α,η). By bringing in a new variable θ ∈ R,

the latter problem can be further transformed to a convex
QCQP problem (Tan, Wang, and Tsang 2010):

PD : min
α∈A,θ

θ : f(α,η) ≤ θ, ∀ η ∈ Λ. (6)

Convex Matching Pursuit
Notice that there are infinite number of quadratic inequality
constraints in (6), making it hard to solve. In this paper, we
propose to solve it via an efficient central cutting plane al-
gorithm (CCP) (Elzinga and Moore 1975; Kortanek and No
1993), which iteratively includes the most violated active
constraint into the active constraint set and solves a series
of reduced optimization problems. Its convergence behav-
iors have been thoroughly studied (Elzinga and Moore 1975;
Kortanek and No 1993), and its efficiency and effectiveness
have been verified on solving semi-infinite programs (SIP)
(Kortanek and No 1993). As to our problem, the details of
the CCP algorithm for solving (6) is shown in Algorithm 1.
Here, θk−1 represents the upper bound estimate of the origi-
nal primal objective value, θ−δ is the dual objective value of
the reduced problem, and 2δ is the separation between them.

We slightly improve the CCP algorithm (Elzinga and
Moore 1975; Kortanek and No 1993) by solving (7), (8) and
(9) exactly, leading to faster convergence. Notice that Algo-
rithm 1 is also similar to the iterative procedure of MP algo-
rithms in the sense that Problem (7) and (9) are coincided
with the matching step in MP and Problem (8) is related to
the projection step in MP. Hence, we name it as a convex
matching pursuit (CMP). However, CMP apparently differs
from MP in several aspects, such as different motivations and
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matching schemes. More importantly, as will be shown later,
CMP can guarantee its convergence.

Algorithm 1 Convex matching pursuit for solving (6)
0: Initialize α0 = y, and find the most-violated constraint via

η0 = arg max
η

f(α0,η). (7)

1: Let θ0 = f(α0,η0), Ψ0 = {η0} and set k = 1.
2: Solve the following program:

SDk : VD = max
α∈A,θ,δ

δ (8)

s.t. θ + δ ≤ θk−1, f(α,ηk) ≤ θ − δ,∀ηk ∈ Ψk−1.

3: Let (αk, θk, δk) be the solution to SDk. If δk = 0, stop.
4: Check the most violated constraint via

ηk = arg max
η

f(αk,η). (9)

5: Let Ψk = Ψk−1 ∪{ηk}, if f(αk,ηk) > θk, that is, αk is an
infeasible solution to PD, add the constraint f(α,ηk) ≤ θ − δ
to SDk. Let k = k + 1 and go to Step 2.

Matching versus Exploratory Matching
At each iteration in Algorithm 1, one needs to find the most
violated ηk via solving (9). Let z = [z1, . . . , zm]′ = D′αk,
we have

max
η∈Λ

z′diag(η)z = max
η∈Λ

m∑
i=1

ηiz
2
i . (10)

It is easy to verify that the global solution to (10) can be ob-
tained exactly by finding the B largest elements z2

i , which
is similar to the matching stage in MP algorithms (Dai and
Milenkovic 2009). Although (10) can be solved exactly, the
obtained solution η may not be optimal for the whole CCP
algorithm due to the immediate solution αk, which is ob-
tained based on only a portion of possible supports of x. To
remedy this issue, we can explore a larger search space via
including more possible supports and then do a projection
with all included supports. Specifically, we can include ke
(ke > 1) groups of size B elements via solving (10). And
then we do projection via solving Problem SD with all se-
lected atoms. Finally, we can rank those newly included keB
atoms according to the regressor z and choose thoseB atoms
with the largest z2

i among the newly included keB atoms
as the most violated atoms. In summary, the (exploratory)
matching scheme can be implemented as in Algorithm 2.

Notice that each η represents a group of possible supports
of x. With the exploratory search, one can possibly find bet-
ter supports and hence the convergence speed as well as the
decoding ability can be potentially improved. However, as
the projection stage requires to solve (8), additional compu-
tational costs are needed. To differentiate the two matching
schemes, we term the CMPwith exploratory search as ECMP.

Solution to subproblem SD
Now, we are ready to solve the Problem (8). For conve-
nience, here we omit the index k. Problem (8) is a non-
smooth QCQP problem defined by Ψ with T = |Ψ|, which

Algorithm 2 Matching and Exploratory Matching.
Given α ∈ Rn,B ∈ Z+, two zero vectors z ∈ Rm and η ∈ Rm,
design matrix D, and the response vector y ∈ Rn.
1: Calculate z = D′α.

*** Exploratory Search ***
2: Find the keB atoms with the largest |zj |’s.
3: Rank the keB atoms in descending order and group them

into ke groups.
4: Do projection via solving Problem (SD) with the newly in-

cluded ke groups.
5: Obtain an updated solution z.

6: Select the B atoms with the largest |zi|’s as the active atoms
and set ηi = 1.

7: Return the obtained atom subset Dt = Ddiag(ηt).

can be formulated as a MKL problem (Rakotomamonjy
et al. 2008), and can be solved via sub-gradient methods
(Rakotomamonjy et al. 2008) or SQP methods. However,
these methods are inefficient when dealing with large-scale
problems with the high desired accuracy. In this paper, we
propose to solve this problem efficiently in its primal via an
Accelerated Proximal Gradient (APG) algorithm (Toh and
Yun 2009; Ji and Ye 2009). At first, the following lemma is
useful to derive the primal form of Problem SD.
Lemma 1. In Algorithm 1, let {νk} and {µ̂kt } be the optimal
dual variables of Problem SD in kth iteration, then we have
νk = 1

2 ,
∑
t µ̂

k
t = 1

2 and θk + δk = θk−1. Furthermore, let
µ ∈ Π = {µ|µ � 0,

∑T
t=1 µt = 1}, then Problem SD is

equivalent to the following problem:

min
µ∈Π

max
α∈A

1

2
θk−1 − 1

2

∑
ηt∈Ψ

µtf(α,ηt). (11)

Proof. The Lagrangian function of Problem SD is
L(α, θ, δ, ν, µ̂) = δ− ν(θ− θk−1 + δ)−

∑
t µ̂t(f(α,ηt)−

θ + δ). When setting the gradient of L(·) with respect to θ
and δ to zeros, we get the optimal dual variables {νk} and
{µ̂kt } satisfy

∑
t µ̂

k
t + νk = 1 and

∑
t µ̂

k
t − νk = 0. Al-

ternatively, we have
∑
t µ̂

k
t = 1

2 and νk = 1
2 > 0. From the

KKT condition, θk + δk = θk−1 holds. Since the objective
function is concave in α and convex in µ̂t, and both α and µ̂t
are in convex compact domains, we can exchange the order
of max and min operators using Theorem 1. Finally, letting
µt = 2µ̂t completes the proof.

With Lemma 1, let x be a supervector concatenating all
xk’s and ξ = y−D

∑T
k=1 diag(ηk)xk, and we have the fol-

lowing results regarding the primal form of problem (SD).
Theorem 2. The primal form of minµ∈Π maxα∈A −∑

ηt∈Ψ µtf(α,ηt) can be expressed as:

F (x) =
1

2

( T∑
k=1

‖xk‖
)2

+ p(x), (12)

where p(x) = λ
2 ‖ξ‖

2. Once its optimality is achieved, the
dual variables α in (11) can be recovered by α = λξ.

Proof. By applying the conic duality theory, the proof par-
allels the results in (Bach, Lanckriet, and Jordan 2004).
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The primal problem (12) is non-smooth and non-
separable. In this paper, we propose to solve it via the APG
algorithm. Note that, with the primal form, we only need
to solve a reduced problem defined by Ψk, which can gain
much better efficiency. On the other hand, from Theorem 2,
with the complementary slackness, we can easily recover the
dual variable α via the training errors ξ, which will be used
to find new possible supports via matching.

Let Ω(x) = (
∑T
k=1 ‖xk‖)2/2 in the APG algorithm, we

adopt the following quadratic approximation of F (x) at the
point v:Qτ (x,v) = Ω(x)+p(v)+∇p(v)′(x−v)+ τ

2‖x−
v‖2 = Ω(x) + p(v) − 1

2τ ‖∇p(v)‖2 + τ
2‖x − g‖2, where

τ > 0 and g = v− 1
τ∇p(v). And then we need to solve the

following Moreau Projection problem(Martins et al. 2010):

min
x

τ

2
‖x− g‖2 + Ω(x),

which has a unique optimal solution. Specifically, let Sτ (v)
be the optimal solution, it can be easily calculated via Algo-
rithm 2 in (Martins et al. 2010). Finally, we can solve (12)
via an APG method in Algorithm 3, which is adapted from
(Ji and Ye 2009; Toh and Yun 2009). When Algorithm 3 ter-
minates, {xk} converges to the optimal solution to (12).

Algorithm 3 APG for solving (12).
Initialization: set x0 = 0, η ∈ (0, 1), t0 = t1 = 1, k = 0 and
τ0 = L0 is the initial guess of the Lipshitz constant L.
1: Set vk = xk + tk−1−1

tk
(xk − xk−1).

2: Set τ = ητk−1.
For j = 0, 1, ...,

Set g = vk − 1
τ
∇p(vk), compute Sτ (g).

If F (Sτ (g)) ≤ Q(Sτ (g),vk),
set τk = τ , stop;

Else
τ = min{η−1τ, L0}.

End
End

3: Set xk+1 = Sτk (g).

4: Compute tk+1 =
1+
√

(1+4(tk)2)

2
.

5: Quit if stopping condition achieves. Otherwise, go to step 1.

Regarding the above APG algorithm, the following con-
vergence rate is guaranteed.

Theorem 3. (Ji and Ye 2009) Let {xk+1}, {vk} and {tk}
be the sequences generated by APG and L be the Lipschitz
constant of p(x), for any k ≥ 1, we have

F (xk)− F (x∗) ≤ 2L||x0 − x∗||2

η(k + 1)2
.

Convergence and Performance Guarantees
Since (8) and (7) can be solved exactly, we have the follow-
ing results regarding convergence property of Algorithm 1.

Lemma 2. (Lemma 3.1 in (Kortanek and No 1993)) The
generated sequence {δk} (δk ≥ 0) in Algorithm 1 will con-
verge to 0.

Theorem 4. There exists k̂, such that αk̂−1 is feasible for
problem PD and Algorithm 1 stops in the k̂th iteration with
αk̂ to be the optimal solution of Problem PD.

The proof parallels the proof of Theorem 3.1 in (Kortanek
and No 1993), which is omitted due to the page limit.

Theorem 5. The function difference of successive iterations
in Algorithm 1 will converge to 0.

Proof. From Lemma 1, we have δk = θk−1 − θk. And
the function difference between two iterations is δk. From
Lemma 2, δk will monotonically decrease (i.e. δk/δk−1 ≤
1) and converge to 0, which completes the proof.

Now we discuss the RIP condition under which CMP can
successfully recover the κ-sparse signals.

Lemma 3. Problem P0 : minx ‖x‖1 + λ1‖y −Ax‖2 and
P1 : 1

2 minx ‖x‖21 + λ2‖y −Ax‖2 have the same optimal
solution x∗ by adjusting the parameters λ1 and λ2.

Proof. Let l1(x) = λ1‖y − Ax‖2 and l2(x) = λ2‖y −
Ax‖2. Their solutions are unique. The KKT condition
for Problem (P0) is ∇xi

l1(xi) + 1 = 0 if xi > 0;
∇xi

l1(xi) − 1 = 0 if xi < 0; |∇xi
l1(xi)| ≤ 1 if xi = 0.

For any λ1 > 0, once we obtain the optimal solution
x∗(x∗ 6= 0) for P0, we have ‖x∗‖1|∇x∗i l1(x∗i )| + ‖x∗‖1 =
0 if x∗i > 0; ‖x∗‖1|∇x∗i l1(x∗i )| − ‖x∗‖1 = 0 if x∗i < 0;
‖x∗‖1|∇x∗i l1(x∗i )| ≤ ‖x∗‖1 if x∗i = 0, which is the KKT
condition for Problem (P1) by setting λ2 = ‖x∗‖1λ1.

Theorem 6. CMP algorithms can recover the κ-sparse sig-
nal under RIP condition with σκ = 0.307 given that B < κ.

Proof. With Lemma 3 and the equivalence of the two prob-
lems in (2), we can immediately complete the proof by
adapting the proof from (Cai, Wang, and Xu 2010) together
with the equivalence of Problem (3), (6), (P0), and (P1).

Experiments
Experimental Settings
In this section, we will compare the performance of CMP
and ECMP with other baseline methods. The aforementioned
methods, namely, OMP, AIHT, SP, CoSaMP, FISTA and
ADM are adopted as baseline methods, which have shown
good overall performance and their Matlab implementations
are also available1. Although OMPR shows relatively better
RIP condition, it is sensitive to its learning rate η according
to our study. In addition, its performance is close to AIHT
(Jain, Tewari, and Dhillon 2011) and hence we did not in-
clude it for comparison. Finally, as (||w||1)2 is closely re-
lated to ||x||2B and can be directly solved via the FISTA al-
gorithm, we also implement it and denote it as FISTA-l12.

All the methods are re-implemented in C++, where sev-
eral implementation issues have been carefully considered
for fair comparison. For MP algorithms, the efficient conju-
gate gradient descent (CGD) algorithm together with warm

1http://sites.google.com/site/igorcarron2/cscodes; http://www.
eecs. berkeley.edu/ yang/software/l1benchmark/index.html.
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(a) Function value (b) Function value difference

Figure 1: Convergence behavior of various MP algorithms.

start is adopted to solve the projection problem (Blumen-
sath and Davies 2008b). For FISTA and ADM, the contin-
uation and debiasing (implemented by CGD) are adopted
to improve their convergence speed and decoding perfor-
mance, respectively (Figueiredo, Nowak, and Wright 2007;
Yang et al. 2010). All the experiments are conducted on In-
tel(R) Core(TM) i7 CPU with 64-bit operating system.

We follow the testing strategy described in (Dai and
Milenkovic 2009) to conduct the experiments. At first, three
different sizes of Gaussian random matrices D ∈ Rn×m,
namely, 210 × 213, 212 × 215 and 213 × 217, are gener-
ated as the design matrices. Then, three types of κ-sparse
signals, Zero-one signal (denoted by sz and each nonzero
entry is either 1 or -1), Uniform signal (denoted by su
and each nonzero entry is sampled from a uniform distri-
bution U(−1, 1)) and Gaussian signal (denoted by sg and
each nonzero entry is sampled from a Gaussian distribution
N (0, 1)) are generated to produce the measurement y =
Dx + ξ with Gaussian noise sampled from N (0, 0.052).
Via varying the sparsity κ, we can obtain different signals.
The decoding ability and decoding time of each algorithm
regarding κ are reported, respectively. The decoding ability
is measured by the empirical probability of successful recon-
struction from y among M independent experiments (Dai
and Milenkovic 2009). For FISTA, we set the trade-off pa-
rameter ρ in (3) as ρ = 0.005||D′y||∞, which is suggested
in many `1 packages. For ECMP and CMP, we set the regu-
larization parameter λ = 1000.0/||y||. For MP algorithms, a
guess of the sparsity κ is required. In real problems, we have
no idea of the ground-truth sparsity κ. In our simulation, we
guess it by κ̂ = κ + 0.2κ. For CMP and ECMP, we guess
B = κ̂/6 for zero-one signal and B = κ̂/8 for the other
two types of signals. In addition, we set κe = 5 for ECMP.
We use the default settings for other parameters for baseline
methods as in their Matlab implementations.

Experimental Results
In the first experiments, we show the convergence behaviors
of SP, CoSaMP, AIHT, CMP and ECMP on D ∈ 210 × 213

with Gaussian signal of sparsity κ = 360 as in Figure 1.
From Figure 1(a), we can observe that the objective values
of AIHT, CMP and ECMP monotonically decrease, which
verifies θk ≤ θk−1 in Algorithm 1. However, this property
does not hold for SP and CoSaMP under this setting. Fig-
ure 1(b) shows the function value difference for comparing
methods, we can observe that CMP and ECMP manifest a sta-
ble and monotonic decrement for their function value differ-
ence (i.e. δk/δk−1 ≤ 1) where δk = θk−1 − θk; while the

(a) Decoding ability on sz (b) Decoding time on sz

(c) Decoding ability on su (d) Decoding time on su

(e) Decoding ability on sg (f) Decoding time on sg

Figure 2: Decoding results on D ∈ R210×213

.

function value difference of SP, CoSaMP, AIHT are very
fluctuated. In short, CMP and ECMP demonstrate better con-
vergence results than others. For AIHT, the non-increasing
function values can be theoretically guaranteed (Blumen-
sath and Davies 2008a). However, because the optimization
problem in AIHT is non-convex and AIHT is only guaran-
teed to find local solutions, which will limit its decoding
ability (Blumensath and Davies 2008a).

To thoroughly compare various methods, we tested them
on different sizes of design matrices mentioned above. On
D ∈ R210×213

, a relatively small problem, we compared
all mentioned algorithms. For each κ, we run M = 200
independent trials. The empirical probability of successful
reconstruction and decoding time for the three kinds of sig-
nals, sz , su and sg , are presented in Figure 2. From Figure
2, we can observe following facts. Firstly, on Zero-one sig-
nal, `1-norm based methods, including FISTA-l12, show
the best decoding ability; while SP and ECMP show better
decoding performance over other MP methods. Secondly, on
Uniform and Gaussian signals, ECMP and OMP show rela-
tively better decoding ability than other methods; while `1-
norm based methods achieve much worse results. It is possi-
ble that `1-norm based methods assume the Zero-one signal
in their objective (see (2)). Thirdly, on all three cases, ECMP
shows improved decoding performance compared with CMP,
which verify the validity of exploratory search in matching.
However, on all cases, CMP shows the fastest decoding speed
when κ is not too large; while ECMP can be faster than CMP
when CMP fails to decode the signals. Moreover, from Figure
2, AIHT also shows good convergence. However, it shows
relatively worse decoding ability than other methods, indi-
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(a) Decoding ability on sz (b) Decoding ability on su

Figure 3: Decoding results with different scale of noises on
D ∈ R210×213

.

cating that it is easy to converge to the local minima. Finally,
all the `1-norm based methods show close decoding abilities
on all signals. Considering that ADM is ρ parameter free, we
can conclude that the decoding ability of FISTA cannot be
further improved too much via tuning ρ.

To test the robustness of various methods over distur-
bances, in Figure 3, we showed the decoding ability of SP,
FISTA, ADM, CMP and ECMP under different levels of noise.
Here only the Zero-one signals (of sparsity k = 140) and
the Uniform signals (of sparsity k = 220) with Gaussian
noise N (0, σ2) are studied. And the sparsity is set such
that all methods can exactly recover the signals under the
noise level σ = 0.05 from Figure 2. In addition, we vary
σ ∈ {0.1, 0.3, 0.5, 0.8, 1.0} to generate different levels of
noise. From Figure 3(a) on Zero-one signals, we can ob-
serve that matching pursuit algorithms have better stability
than the `1-regularized methods over the increasing noises.
From Figure 3(b) on Uniform signals, we can see that ECMP
shows better stability than its counterparts with larger level
of noise.

In the next two experiments, we focus on the scalabil-
ity of various methods. Because of the extensive computa-
tional cost for experiments, we only include OMP, SP, AIHT,
FISTA, CMP and ECMP for comparisons on the design ma-
trix D ∈ R212×215

with 10 trials for each parameter κ. The
decoding ability and time of various methods are shown in
Figure 4. The experimental results have similar observations
to those obtained on D ∈ R210×213

. Again, CMP and ECMP
obtain the best decoding performance over all methods ex-
cept for the Zero-one signals. Particularly, CMP and ECMP
show much better decoding efficiency than other methods.

In the final experiment, we do the simulation on the
largest problem D ∈ R213×217

. For computational issues,
we only compare SP, AIHT, CMP, and ECMP on Gaussian
signals with 10 independent trials. The experimental results
are shown in Figure 5. From Figure 5, we can observe that
both CMP and ECMP show much better decoding ability on
Gaussian signals. And from Figure 5(b), CMP and ECMP
can gain better decoding efficiency on large-scale problems.

Conclusion
A Convex Matching Pursuit scheme is presented to handle
large-scale sparse coding and subset selection problems. Un-
like current MP algorithms, our proposed scheme solves a pa-
rameterized variation norm regularized problem that attains
the convexity property. Hence it can surely converge. Dif-

(a) Decoding ability on sz (b) Decoding time on sz

(c) Decoding ability on su (d) Decoding time on su

(e) Decoding ability on sg (f) Decoding time on sg

Figure 4: Decoding results on D ∈ R210×215

.

(a) Decoding ability on sg (b) Decoding time on sg

Figure 5: Decoding results on D ∈ R213×217

ferent from the `1 norm regularized methods, CMP (ECMP)
can gain much better efficiency on dealing with large-scale
problems and better decoding ability on Gaussian signals.
Extensive experiments demonstrated state-of-the-art perfor-
mance of the proposed methods over baseline methods in
terms of both decoding ability and decoding time on large
scale problems.

Appendix A: Proof of Proposition 1
Proof. (1): We prove it by contradiction. Firstly, suppose η∗
is a minimizer and there exists l ∈ {1 . . .m}, such that
xl = 0 but η∗l > 0. Let 0 < ε < η∗l , and choose one
j ∈ {1 . . .m}, such that |xj | > 0. Define new solution
η̂ in the following way: η̂j = η∗j + η∗l − ε, and η̂l = ε,
η̂k = η∗k for k ∈ {1 . . .m}\{j, l}. Then it is easy to check∑m
i=1 η̂i =

∑m
i=1 η

∗
i ≤ B, i.e. η̂ is also a feasible point, but∑m

i=1
x2
i

η̂i
<
∑m
i=1

x2
i

η∗i
, which contradict η∗ is the minimizer.

Secondly, if |xi| > 0 and η∗i = 0, by the definition, x
2
i

0 =∞.
As we expect to get the finite minimum, so if |xi| > 0, we
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have η∗i > 0. Suppose there exist two pairs {xi, η∗i } and
{xj , η∗j } such that |xi| > |xj | but η∗i < η∗j , define a new η̂
in the following way: η̂j = η∗i , and η̂i = η∗j , η̂k = η∗k for

k ∈ {1 . . .m}\{i, j}, then we have
∑m
i=1

x2
i

η̂i
−
∑m
i=1

x2
i

η∗i
=(

x2
i

η̂j
+

x2
j

η̂i

)
−
(
x2
i

η∗i
+

x2
j

η∗j

)
=

(η∗i−η
∗
j )(x2

i−x
2
j )

η∗i η
∗
j

< 0, which
contradict the fact that η∗ is a minimizer. Inductively, we
get (1).

(2): The argument holds trivially when ||x||0 = κ̂ ≤ B.
When ||x||0 = κ̂ > B, WLOG, we assume |xi| > 0
for the first κ̂ elements. From (1), we have ηi > 0 and∑κ̂
i=1 ηi ≤ B. Note that

∑κ̂
i=1

x2
i

ηi
is convex regarding η.

The KKT condition of the problem is:−x2
i /η

2
i +γ−ζi+νi =

0, ζiηi = 0, νi(1 − ηi) = 0, γ(B −
∑κ̂
i=1 ηi) = 0, γ ≥

0, ζi ≥ 0, νi ≥ 0, i ∈ {1 . . . κ̂}, where γ, ζi and νi are the
dual variables for the constraints

∑κ̂
i=1 ηi ≤ B, ηi > 0

and 1 − ηi ≥ 0 respectively. As ηi > 0, we have ζi = 0
for i ∈ {1 . . . κ̂} from the KKT condition. By the first
equality in KKT condition, we have ηi = |xi|/

√
γ + νi.

As
∑κ̂
i=1 ηi ≤ B < κ̂, which implies there exist some

ηi < 1 and νi = 0. For i ∈ {1 . . . κ̂}, |xi| > 0 and ηi > 0,
ηi = |xi|/

√
γ + νi implies γ 6= 0, and by complementary

condition, we have
∑κ̂
i=1 ηi = B. By substituting ηi back

to the objective function, we have
∑κ̂
i=1 |xi|

√
γ + νi. To get

the minimum, we need all νi = 0. Then for i ∈ {1 . . . κ̂},
ηi = |xi|√

γ , and
∑κ̂
i=1

|xi|√
γ = B, by simple calculation, we

get
√
γ = ||x||1/B and ηi = B|xi|/||x||1.

(3): With the results of (2), if κ̂ ≤ B, we have
∑m
i=1

x2
i

ηi
=∑κ̂

i=1 x
2
i , so ‖x‖B = ‖x‖2. And if κ̂ > B, we have∑ x2

i

ηi
=
∑ |xi|

ηi
|xi| = ||x||1

B

∑
|xi| = (||x||1)2

B . Hence we

have ‖x‖B =
√∑ x2

i

ηi
= ||x||1√

B
.
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