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Abstract

In many real applications, the input data are natu-
rally expressed as tensors, such as virtual metrology
in semiconductor manufacturing, face recognition and
gait recognition in computer vision, etc. In this paper,
we propose a general optimization framework for deal-
ing with tensor inputs. Most existing methods for su-
pervised tensor learning use only rank-one weight ten-
sors in the linear model and cannot readily incorporate
domain knowledge. In our framework, we obtain the
weight tensor in a hierarchical way – we first approxi-
mate it by a low-rank tensor, and then estimate the low-
rank approximation using the prior knowledge from var-
ious sources, e.g., different domain experts. This is mo-
tivated by wafer quality prediction in semiconductor
manufacturing. Furthermore, we propose an effective
algorithm named H-MOTE for solving this framework,
which is guaranteed to converge. The time complexity
of H-MOTE is linear with respect to the number of ex-
amples as well as the size of the weight tensor. Exper-
imental results show the superiority of H-MOTE over
state-of-the-art techniques on both synthetic and real
data sets.

Introduction
In many real applications, data come in the form of tensors,
or multi-dimensional arrays. For example, in semiconduc-
tor manufacturing, each recipe process usually has multiple
steps. During each step, we could observe process variables
such as temperature, pressure and gas flow per unit time.
Therefore, to predict the wafer quality, the input data are
naturally expressed as third-order tensors (the three dimen-
sions or modes are steps, seconds within a step, and observed
process variables, or features) or second-order tensors if
we use the summary statistics for each process variable in
a single step instead of the instantaneous measurements.
Another example is in computer vision, where images can
be modeled as second-order tensors, and image sequences
can be modeled as third-order tensors (Wang, Chen, and
Xu 2011). Much existing work on dealing with tensor data
converts tensors into one-dimensional vectors, and applies
the rich methodology for vector inputs to build the model,
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either for classification or for regression (Mitchell 1997;
Wasserman 2009). However, by converting tensors into vec-
tors, we tend to lose much information embedded in the
structure of tensors, such as the feature correspondence in
different steps in the example of semiconductor manufactur-
ing, or the neighborhood information of a pixel in the exam-
ple of computer vision.

To maximally exploit such valuable structural informa-
tion embedded in the input tensors, in this paper, we address
the problem of predictive modeling with tensor inputs by di-
rectly operating on the tensors. To this end, we propose a
general optimization framework, which predicts the output
(or its probability of coming from each class) based on the
inner product between the input tensor and a weight tensor.
The weight tensor is then estimated in a hierarchical way. To
be specific, we assume that the weight tensor has a low-rank
approximation, and the Candecomp/Parafac (CP) decompo-
sition (Kolda and Bader 2009) of the low-rank tensor can be
further approximated based on prior information from vari-
ous sources, e.g., different domain experts. This framework
is motivated by wafer quality prediction in semiconductor
manufacturing, where the input tensors have two dimensions
(using summary statistics for each process variable in a sin-
gle step instead of the instantaneous measurements): steps
and features. On one hand, the features in a single step, or
the same feature across different steps, tend to have similar
values in the weight tensor, which leads to the assumption of
low-rank approximation for the weight tensor; on the other
hand, different domain experts may have various opinions
regarding the relative importance of certain steps and certain
features on predicting wafer quality, and we need to leverage
their prior knowledge in order to improve the performance
of the predictor, especially when the labeled set is small.
Our proposed framework combines these two factors with
the prediction loss in the objective function, which leads to
an optimal solution for the weight tensor in the linear model.

Furthermore, we propose an effective algorithm for solv-
ing the optimization framework named H-MOTE. It is based
on block coordinate descent, which is guaranteed to con-
verge to a local optimum since the objection function in the
general framework has unique minimum in each coordinate
block. Experimental results on synthetic and semiconductor
manufacturing data sets demonstrate the good performance
of H-MOTE compared with state-of-the-art techniques.
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The main contributions of this paper are as follows:
1. an optimization framework, modeling the predictive task

with tensor inputs in a hierarchical way;
2. an algorithm (H-MOTE), solving the optimization frame-

work;
3. proof and analysis, showing the quality, convergence and

scalability of the proposed algorithm.
The rest of the paper is organized as follows. In Section 2,

we briefly review the related work. The general optimization
framework is presented in Section 3, followed by the intro-
duction of H-MOTE algorithm in Section 4. We show some
experimental results in Section 5 with discussion. Finally,
we conclude the paper in Section 6.

Related Work
In this section, we briefly review related work on wafer qual-
ity prediction in semiconductor manufacturing and predic-
tive modeling with tensor inputs.

Wafer Quality Prediction
In semiconductor manufacturing, wafers have to go through
hundreds of processes to become a final IC device. Each
process follows a given recipe that defines detailed fabri-
cation steps and settings of the process variables. In recent
years, virtual metrology (VM) has received a lot of atten-
tion in semiconductor industry, which builds models to pre-
dict wafer quality based on historical measurements of wafer
quality and corresponding process variables. The predicted
wafer quality can then prompt feedback control in a timely
fashion, detect fault wafers early, and improve productivity
by reducing actual metrology frequency of wafer quality.

For this purpose, researchers have built statistical mod-
els such as multiple regression with feature selection (Kang
et al. 2011; Lynn et al. 2009), partial least squares (Khan,
Moyne, and tilbury 2008), SVM regression (Kang et al.
2011), and artificial neural networks (Chang et al. 2006;
Su et al. 2008) based on one-dimensional vectors converted
from the input tensors. However, as discussed in Section ,
this conversion tends to lose useful information embedded
in the structure of input tensors. For example, for a certain
recipe process, it may be the case that the process variables
in Step 12 have key impact on the wafer quality. These types
of prior knowledge cannot be naturally incorporated into the
statistical model based on vectorized tensors. On the other
hand, although the real-time process variables can be repre-
sented as multivariate time-series, for VM applications, the
objective is to predict the wafer quality, rather than to fore-
cast the process variables. Therefore, time-series analysis is
not most appropriate for this purpose.

To the best of our knowledge, our work is the first to build
a tensor-based model for wafer quality prediction, which in-
corporates prior knowledge from various sources in a prin-
cipled way.

Predictive Modeling with Tensor Inputs
Compared with the rich literature on predictive modeling
with vector inputs (Mitchell 1997; Wasserman 2009), there

has not been as much effort on dealing with tensor inputs.
Existing methods for predictive modeling with tensor inputs
can be roughly categorized into the following 2 groups: di-
mensionality reduction and supervised tensor learning (clas-
sification and regression).

Dimensionality reduction for tensor data is also called
tensor embedding. It aims at finding the intrinsic local ge-
ometrical structure of the tensor space by learning a lower
dimensional tensor subspace (with the same order) (He, Cai,
and Niyogi 2005), which has been successfully applied in
computer vision tasks, such as face recognition (He, Cai,
and Niyogi 2005; Dai and Yeung 2006; Tao et al. 2008;
Li et al. 2008) and gait recognition (Tao et al. 2006; 2007;
Li et al. 2008), as well as network anomaly detection and
sensor measurements (Sun et al. 2008). For example, the au-
thors in (He, Cai, and Niyogi 2005) propose the TSA algo-
rithm for structured dimensionality reduction, which explic-
itly takes into account the manifold structure of the image
space; the authors in (Dai and Yeung 2006) propose sev-
eral tensor embedding methods, which allow the relation-
ships between dimensions of a tensor representation to be
efficiently characterized; for gait recognition, the authors
in (Tao et al. 2007) first build a set of Gabor based hu-
man gait appearance models, and then use GTDA to seam-
lessly incorporates the object structure information as a nat-
ural constraint; the authors in (Tao et al. 2008) generalize
the Bayesian principal component analysis (BPCA) to ten-
sors; the authors in (Li et al. 2008) propose DLLE and its
tensorized version, which generalize LLE (Roweis and Saul
2000) to enforce the separability between different classes;
and the authors in (Sun et al. 2008) introduce a general
framework named ITA, which efficiently computes a com-
pact summary for high-order and high-dimensional data, as
well as reveals the hidden correlations.

On the other hand, in supervised tensor learning, a classi-
fier (or regressor) is directly built based on the tensor inputs
instead of their vectorized version. For example, in (Hochre-
iter and Obermayer 2004), the authors introduce P-SVM,
which minimizes a scale-invariant capacity measure under
a new set of constraints, and develop a fast optimization al-
gorithm based on SMO (Platt 1998); in (Tao et al. 2005), the
authors establish a supervised tensor learning framework,
within which conventional learning machines such as SVM
and MPM can be generalized to tensors; and in (Cai, He, and
Han 2006), the authors propose STM, which finds a maxi-
mum margin classifier in the tensor space, and TLS, which
finds a minimum residual sum-of-squares classifier.

Our proposed method belongs to supervised tensor learn-
ing. In our method, the weight tensor of the underlying lin-
ear model is built in a hierarchical way: the weight tensor
is first approximated using a low-rank tensor; the Cande-
comp/Parafac (CP) decomposition (Kolda and Bader 2009)
of the low-rank tensor is then estimated based on prior in-
formation from various sources. Compared with the meth-
ods proposed in (Tao et al. 2005) and (Cai, He, and Han
2006), they can be seen as special cases of our model in the
sense that they only use rank-one weight tensors, whereas
in our model, the rank of the optimal weight tensor can
be more than one. Compared with P-SVM (Hochreiter and
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Obermayer 2004), we do not need to construct the data ma-
trix, which involves complex interaction between the ‘row’
objects and the ‘column’ objects, and our method can be eas-
ily generalized to higher order tensors, whereas P-SVM can
only be applied on second-order tensors (matrices). Further-
more, compared with all the existing methods in this group,
our method is able to incorporate prior information from var-
ious sources in a principled way, whereas existing methods
cannot leverage this information.

Optimization Framework
In this section, we propose the general optimization frame-
work for hierarchical modeling with tensor inputs. First we
introduce the notation used throughout this paper; then we
provide some background on CP decomposition and tensor
rank; based on the above introduction, we present the objec-
tive function; and finally, we interpret the objective function
from different perspectives.

Notation
Suppose that we are given N training examples {Xn, yn},
n = 1, . . . , N , where Xn ∈ Rd1×d2×···×dK is a K-
dimensional array, or K th-order tensor, and yn ∈ R is the
response variable for regression problems, or yn ∈ {−1, 1}
is the class label for classification problems. Notice that for
Xn,K is the dimension of this array or the number of modes
of this tensor, and dk is the number of elements along the
kth dimension, k = 1, . . . ,K. Therefore, the total number
of input features is

∏K
k=1 dk. When K = 1, the input Xn

is a vector, and the problem is reduced to regular regres-
sion or classification; when K = 2, Xn is a matrix; when
K > 2, Xn is a K th-order tensor. In this paper, we focus on
the cases where K > 1. For such problems, we can always
convert the input tensor into a vector by concatenating the
fibers along different modes, which are defined by fixing the
indices of all the modes but one.1 Then we can apply the
well-established techniques for dealing with vector inputs to
predict the value of yn. However, in this way, we lose the
rich information embedded in the structure of Xn. There-
fore, in this paper, our goal is to predict the value of yn by
making use of the structure of Xn.

For future reference, throughout this paper, we use lower-
case letters to denote scalers; boldface lower-case letters to
denote vectors; and calligraphic upper-case letters to de-
note tensors. Let T1, T2 ∈ Rd1×d2×···×dK denote two ten-
sors. Define 〈T1, T2〉 to be the inner product between T1
and T2, which is the sum of the products of their corre-
sponding elements. Furthermore, define the norm of tensor
‖T1‖ =

√
〈T1, T1〉.

CP Decomposition and Tensor Rank
In our framework, the rank-R approximation of the weight
tensor is decomposed into a sum of vector outer products
based on CP decomposition (Kolda and Bader 2009). The

1Note that the vectorized version of the tensor may not be
unique due to different orderings of the fibers.

CP decomposition factorizes a tensor into a sum of compo-
nent rank-one tensors (Kolda and Bader 2009). For example,
given third-order tensor T ∈ Rd1×d2×d3 , we would like to
write it by

T =
R∑
r=1

ar ◦ br ◦ cr

where R is a positive integer, ar ∈ Rd1 , br ∈ Rd2 ,
cr ∈ Rd3 , and ‘◦’ denotes vector outer product. For the
ease of future explanation, we refer to ar ◦ br ◦ cr as the
rth component of T , r = 1, . . . , R.

The rank of a tensor T is defined as the smallest num-
ber of rank-one tensors that generate T as their sum (Kolda
and Bader 2009). In other words, in the above equation, the
smallest value of R that satisfies the equality is the rank of
T . In particular, when R = 1, for K th-order tensors, we can
decompose them into the outer product of K vectors.

Objective Function

In our proposed framework, we predict the value of yn us-
ing a linear model, such as the linear regression model for
regression problems and logistic regression model for classi-
fication problems. Therefore, in this linear model, we have a
weight tensor C ∈ Rd1×d2×···×dK , which is the same size as
Xn. The main idea of this framework is to model the weight
tensor in a hierarchical way, i.e., we first approximate the
weight tensor using a low-rank tensor, whose CP decompo-
sition is in turn estimated based on prior information from
various sources.

To be specific, we minimize a loss function
L(yn, 〈Xn, C〉) summed over all the training examples.
For example, L(·, ·) can be the squared loss in regression,
or the logistic loss in classification. Here we require that
L(·, ·) is convex with respect to the second argument.
Based on the tensor structure, we assume that the weight
tensor C can be approximated by a rank-R tensor with
CP decomposition

∑R
r=1 a1r ◦ a2r ◦ · · · ◦ aKr, where R

is equal to the number of sources where we could obtain
domain knowledge, e.g., R domain experts, and akr ∈ Rdk
is the weight vector for the kth mode in the rth component.
Therefore, ‖C −

∑R
r=1 a1r ◦ a2r ◦ · · · ◦ aKr‖2 should

be small. Intuitively, each weight vector akr reflects the
importance of the kth mode of the input tensors in the rth

component, and akr (r = 1, . . . , R) collectively measure
the contribution of the kth mode of Xn to the output yn.
For example, when K = 2 and R = 1, C is a matrix, and
C(i, j) should be close to a11(i) × a21(j), where C(i, j)
is the element of C in the ith row and jth column, a11(i)
is the ith element of a11, and a21(j) is the jth element of
a21. Furthermore, to estimate the weight vector akr, we
need to leverage the domain knowledge from R different
sources, e.g., domain experts. To be specific, for each akr,
we assume that it is close to vector akr0 ∈ Rdk , which is
given to us a priori from the rth source, r = 1, . . . , R.
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Putting everything together, we minimize the following.

f(C,akr, k = 1, . . . ,K, r = 1, . . . , R) (1)

=
N∑
n=1

L(yn, 〈Xn, C〉) + γ0‖C −
R∑
r=1

a1r ◦ a2r ◦ · · · ◦ aKr‖2

+
K∑
k=1

R∑
r=1

γkr‖akr − akr0‖2

where γ0 and γkr (k = 1, . . . ,K, r = 1, . . . , R) are positive
parameters that balance among different terms. In particular,
the relative values of γ1r, . . . , γKr reflect our confidence in
using prior knowledge to approximate the weight vector in
each mode of the rth component: the bigger the value of γkr,
the more confident we are about this approximation.

Interpreting the Objective Function
In this subsection, we interpret the objective function in
Equation (1) from different perspectives.

If L(yn, 〈Xn, C〉) is the squared loss for regression prob-
lems or logistic loss for classification problems, it reflects
the negative log-likelihood of the nth example, and Equation
(1) can be interpreted from a probability perspective. To be
specific, if the prior distribution of C is normal with mean∑R
r=1 a1r ◦ a2r ◦ · · · ◦ aKr and variance 1

2γ0
for each ele-

ment, and the prior distribution of akr is normal with mean
akr0 and variance 1

2γkr
for each element, then Equation (1)

is the posterior probability of C and akr (k = 1, . . . ,K, r =
1, . . . , R) given the data (up to a constant). Therefore, by
minimizing Equation (1), we can find the MAP estimates
of the weight tensor C as well as the weight vectors akr
(k = 1, . . . ,K, r = 1, . . . , R).

On the other hand, traditional ridge regression and logis-
tic regression for vector inputs can be seen as special cases
of the proposed optimization framework. To see this, simply
fix akr (k = 1, . . . ,K, r = 1, . . . , R) to be 0 vectors, and
we have the same objective function as in ridge regression
or logistic regression for vector inputs. In this way, when we
minimize the original objective function with respect to both
the weight tensor and the weight vectors, the second term on
the right hand side of Equation (1) can be seen as a new reg-
ularizer which encourages a low-rank approximation of the
weight tensor C instead of shrinking it to 0 as in ridge regres-
sion and logistic regression. As we will see in Section , the
use of this new regularizer effectively prevents over-fitting,
especially when the labeled data is very scarce.

H-MOTE Algorithm
In this section, we introduce the H-MOTE algorithm (Hi-
erarchical MOdeling with TEnsor inputs) for calculating
the weight tensor C that minimizes Equation (1), analyze
its performance in terms of quality, convergence, and time
complexity, and elaborate on a special case of H-MOTE for
squared loss in regression problems.

Analysis of Equation (1)
Notice that the function f is not jointly convex with respect
to C and akr, k = 1, . . . ,K, r = 1, . . . , R. However, if we

fix akr, and minimize f with respect to C, we have

fakr
(C) =

N∑
n=1

L(yn, 〈Xn, C〉)

+ γ0‖C −
R∑
r=1

a1r ◦ a2r ◦ · · · ◦ aKr‖2

Notice that the third term on the right hand side of Equation
(1) is not dependent on C. It is easy to see that fakr

(C) is
convex in C, given that L(·, ·) is convex with respect to the
second argument, and

∂fakr
(C)

∂C
=

N∑
n=1

l(yn, 〈Xn, C〉)Xn

+ 2γ0(C −
R∑
r=1

a1r ◦ a2r ◦ · · · ◦ aKr) (2)

where l(·, ·) is the partial derivative of L(·, ·) with respect to
the second argument.

Similarly, if we minimize f with respect to als, keeping C
and akr fixed, k 6= l, r 6= s, we have

fC,akr,k 6=l,r 6=s(als) = γ0‖C −
R∑
r=1

a1r ◦ a2r ◦ · · · ◦ aKr‖2

+ γls‖als − als0‖2

Notice that the first term on the right hand side of Equa-
tion (1) is not dependent on als. It is easy to see that
fC,akr,k 6=l,r 6=s(als) is convex in als, and

∂fC,akr,k 6=l,r 6=s(als)

∂als
= 2γ0(αlsals − βls + τ ls)

+ 2γls(als − als0) (3)

where αls = 〈a1s ◦ · · · ◦ a(l−1)s ◦ a(l+1)s ◦ · · · ◦ aKs,a1s ◦
· · · ◦ a(l−1)s ◦ a(l+1)s ◦ · · · ◦ aKs〉, and βls, τ ls are dl-
dimensional vectors. For βls, its ith element βls(i) =
〈Cl=i,a1s ◦ · · · ◦ a(l−1)s ◦ a(l+1)s ◦ · · · ◦ aKs〉. Here Cl=i ∈
Rd1×···×dl−1×dl+1×···×dK is a (K−1)th-order tensor. Its ele-
ments are equal to C with the index of the lth dimension fixed
at i. For τ ls, its ith element τ ls(i) = 〈Tlsi,a1s◦· · ·◦a(l−1)s◦
a(l+1)s ◦ · · · ◦ aKs〉. Here Tlsi ∈ Rd1×···×dl−1×dl+1×···×dK

is a (K − 1)th-order tensor, and Tlsi =
∑
r 6=s alr(i)(a1r ◦

· · · ◦ a(l−1)r ◦ a(l+1)r ◦ · · · ◦ aKr).
Therefore, setting Equation (3) to 0, we have the follow-

ing optimal vector a∗ls that minimizes fC,akr,k 6=l,r 6=s(als).

a∗ls =
γ0βls − γ0τ ls + γlsals0

γ0αls + γls
(4)

Algorithm Description
Based on the above discussion, in this paper, we make use
of block coordinate descent method to find the optimal so-
lution to Equation (1). The convergence of block coordinate
descent is guaranteed since the objective function has unique
minimum in each coordinate block (Luenberger 1973). The
proposed H-MOTE algorithm is shown in Algorithm 1. It
works as follows. In Step 1, we initialize vector akr to be
akr0; between Step 2 and Step 9, we alternatively update
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weight tensor C and weight vectors akr (k = 1, . . . ,K,
r = 1, . . . , R) for T times.

During the test stage, given a tensor X , we first calculate
its inner product with the weight tensor C, 〈X , C〉, which
can be used to predict the output for regression problems,
or transformed into probabilities via the logistic function for
classification problems.

Quality and Convergence Analysis
With respect to the convergence of the proposed H-MOTE
algorithm, we have the following lemma.
Lemma 1. If the number of iteration steps T is sufficiently
large, H-MOTE will converge to a local optimum of the ob-
jective function in Equation (1).

Proof. Omitted due to lack of space.

Time Complexity
Assuming that the number of iteration steps needed for gra-
dient descent in Step 3 of H-MOTE is upper bounded by T ′,
we have the following lemma demonstrating the time com-
plexity of H-MOTE.
Lemma 2. The time complexity of H-MOTE is
O(T ((T ′(N +KR) +K2R2)

∏K
k=1 dk)).

Proof. Omitted due to lack of space.
Notice that in all our experiments, T and T ′ are always

upper bounded by 50. Therefore, according to the above
lemma, H-MOTE scales linearly with respect to the number
of examples and the size of the weight tensor.

Algorithm 1 H-MOTE: Hierarchical Modeling with Tensor
Inputs
Input: Xn, yn, n = 1, . . . , N , γ0, γkr, akr0, (k =

1, . . . ,K, r = 1, . . . , R), the number of iteration steps
T

Output: Weight tensor C and weight vectors akr (k =
1, . . . ,K, r = 1, . . . , R)

1: Initialize akr = akr0 (k = 1, . . . ,K, r = 1, . . . , R)
2: for t = 1 to T do
3: Update the weight tensor C using gradient descent ac-

cording to Equation (2)
4: for k = 1 to K do
5: for r = 1 to R do
6: Update vector akr according to Equation (4)
7: end for
8: end for
9: end for

Case Study
In this subsection, we study a special case of H-MOTE,
where the loss function is given by L(yn, 〈Xn, C〉) = (yn −
〈Xn, C〉)2. In this way, we have l(yn, 〈Xn, C〉) = −2(yn −
〈Xn, C〉). By setting Equation (2) to 0, we have a closed-
form solution for the vectorized version c of the weight ten-
sor C in each iteration step of H-MOTE,

c = (γ0I∏K
k=1 dk

+
N∑
n=1

xnx
′
n)
−1(γ0

R∑
r=1

br +
N∑
n=1

ynxn)

(5)

where I∏K
k=1 dk

denotes the
∏K
k=1 dk ×

∏K
k=1 dk identity

matrix, xn denotes the vectorized version of Xn, x′n denotes
the transpose of xn, and br denotes the vectorized version
of a1r ◦ a2r ◦ · · · ◦ aKr. Notice that Equation (5) is very
similar to ridge regression on the vectorized inputs except
for the term γ0

∑R
r=1 br, which reflects both the low-rank

nature of the weight tensor as well as prior knowledge. As
can be seen in the next section, it is particularly helpful for
preventing overfitting when the labeled set size is small.

In this case, in Step 3 of H-MOTE, instead of updating
C using gradient descent, we simply apply Equation (5) to
obtain c, which, after rearranging the elements, will give us
the current weight tensor C.

Experimental Results
In this section, we demonstrate the performance of the pro-
posed H-MOTE algorithm on both synthetic and real data
sets. In particular, we aim to answer the following questions.

1. How does the performance of H-MOTE compare with the
algorithms dealing with vectorized inputs?

2. How does the performance of H-MOTE compare with
other supervised tensor learning algorithms?

3. How is H-MOTE affected by small perturbations in the
parameters?

4. How fast does H-MOTE converge to a local optimum?
5. Will higher-rank tensors improve the performance?
To answer the first 5 questions, we fix R = 1 in H-MOTE,
and test the following variants of H-MOTE: H-MOTE1 with
ak10 (k = 1, . . . ,K) set to zero; H-MOTE2 with ak10 (k =
1, . . . ,K) given by a domain expert; H-MOTE3 with ak10
(k = 1, . . . ,K) set using the output of H-MOTE2.

Synthetic Data
In this subsection, we answer the first question, and compare
the three variants of H-MOTE with ridge regression for vec-
torized inputs (Ridge) (Wasserman 2009) on synthetic data
sets. The data sets consist of 1000 randomly generated ex-
amples represented as second-order tensors. The outputs are
obtained by first calculating the inner product between the
input tensors and a rank-one weight tensor, and then adding
Gaussian noise with increasing variance. The Root Mean
Squared Error (RMSE) of 5-fold cross validation are shown
in Figure 1, which are averaged over 50 runs.

(a) Training error (b) Test error

Figure 1: Comparison on synthetic data: H-MOTE methods
perform better than ridge regression and prevent overfitting.
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(a) Data set 1 (b) Data set 2 (c) Data set 3

Figure 2: Comparison on real data: H-MOTE3 has the lowest average RMSE

From this figure, we have the following observations.
First, H-MOTE methods for tensor inputs are significantly
better than ridge regression for vectorized inputs in terms
of both the training error and the test error. Second, on the
test set, the standard deviation of RMSE for H-MOTE meth-
ods is much smaller compared with ridge regression. Third,
using ridge regression, the difference between the average
RMSE on the training set and on the test set is larger than us-
ing H-MOTE methods, showing that H-MOTE methods are
more robust to overfitting. Finally, as we increase the stan-
dard deviation of the Gaussian noise, the difference between
H-MOTE methods and ridge regression is getting smaller.

Real Data
In this subsection, we test the performance of H-MOTE on
three data sets collected from semiconductor manufacturing
processes. The first data set corresponds to a process with a
total of 7 steps, each having 17 process variables. The me-
dian of each process variable is obtained, which can be rep-
resented as a second-order tensor of size 7 × 17 or a vector
of length 119. The second and third data sets correspond to
a process with 10 steps, each having 15 process variables.
For the second data set, we use the median of each process
variable, which can be represented as a second-order tensor
of size 10 × 15 or a vector of length 150; and for the third
process, we use both the median and the variance, which can
be represented as a second-order tensor of size
10× 30 or a vector of length 300. Due to the low frequency
of actual metrology, in 9-month time period there are totally
488 and 891 target measurements for the two processes. Be-
fore building VM prediction models, data are preprocessed
to eliminate observations with missing values, measurement
errors and outliers. The process variables and the output are
normalized to have mean zero and standard deviation one.

Comparison with Different Algorithms On the real data
sets, we compare the three variants of H-MOTE with the fol-
lowing three competitors: Ridge (ridge regression (Wasser-
man 2009)) for dealing with vectorized inputs; PSVM (Po-
tential Support Vector Machine (Hochreiter and Obermayer
2004)) for supervised tensor learning; and TLS (Tensor
Least Squares (Cai, He, and Han 2006)) for supervised ten-
sor learning. For all these methods, the cross-validation re-
sults of RMSE are used for comparison, and the parameters

are chosen based on cross-validation in the training set only.
Next we answer the first two questions on the real data

sets. The comparison results of the six methods are shown in
Figure 2. For each training set size, we run the experiments
50 times, and report both the mean and the standard devia-
tion. From these figures, we can see that the performance of
H-MOTE methods is consistently better than Ridge, which
takes vectorized inputs, and existing supervised tensor learn-
ing methods (PSVM and TLS). Comparing H-MOTE2 and
H-MOTE1, the prior information provided by the domain ex-
pert used in H-MOTE2 helps improve the performance; and
in H-MOTE3, by using the output of H-MOTE2 as the prior,
we further reduce the RMSE.

Robustness Study In this part, we answer the third ques-
tion, and use the first data set to test H-MOTE under small
perturbations of the parameters γ0, γ11 and γ12. Figure 3
shows the RMSE vs. different values of γ0, which demon-
strates the robustness of H-MOTE. The results of the other
parameters are similar and omitted due to lack of space.

Convergence Rate In this part, we answer the fourth
question using the first data set. We assume that the al-
gorithm converges if the change of the estimated weight
tensor C and estimated weight vectors a11 and a12 is less
than 10−7. We let the algorithm run sufficiently large
number of iterations to obtain the optimal value C∗, a∗11
and a∗12. Then at iteration t, we calculate the difference
between the current estimates and their optimal value: δt =√
‖ Ct − C∗ ‖2 + ‖ a11,t − a∗11 ‖2 + ‖ a12,t − a∗12 ‖2,

where Ct, a11,t and a12,t are the estimated tensor and
weight vectors at iteration t. In Figure 4, we plot the natural
log of δt versus the iteration number t. We can see that
H-MOTE converges at least exponentially.

Higher Rank Weight Tensors In this part, we answer the
last question. In our framework, the rank R depends on the
number of sources to obtain the domain knowledge. Next
we test the performance of H-MOTE withR = 2, where one
source of prior knowledge is from the domain expert, and the
other is from H-MOTE1 withR = 1. The comparison results
of H-MOTE with R = 1 and R = 2 on the second data set
are shown in Figure 5. We can see that bigger values of R
are able to further improve the performance of H-MOTE in
terms of the average RMSE of cross validation.
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Figure 3: Impact of small
perturbations in γ0

Figure 4: Convergence study
of H-MOTE

Figure 5: Comparison of H-MOTE with different ranks

Conclusion
In this paper, we propose a general optimization framework
for hierarchical modeling with tensor inputs, which is mo-
tivated by wafer quality prediction in semiconductor man-
ufacturing. This optimization framework directly operates
on the input tensors, and it is able to incorporate domain
knowledge in a principled way. To solve the optimization
framework, we propose an effective algorithm named H-
MOTE based on block coordinate descent. It converges to
a local optimum, with linear time complexity regarding the
total number of examples and the number of elements in the
weight tensor. Experimental results on both synthetic and
real data sets demonstrate the effectiveness of H-MOTE.
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