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Abstract

We investigate a natural generalization of the classical clus-
tering problem, considering clustering tasks in which differ-
ent instances may have different weights. We conduct the first
extensive theoretical analysis on the influence of weighted
data on standard clustering algorithms in both the partitional
and hierarchical settings, characterizing the conditions under
which algorithms react to weights. Extending a recent frame-
work for clustering algorithm selection, we propose intuitive
properties that would allow users to choose between cluster-
ing algorithms in the weighted setting and classify algorithms
accordingly.

Introduction
Many common applications of clustering, such as facility
allocation and vector quantization, may naturally be cast as
weighted clustering tasks - tasks in which some data points
should have a greater effect on the utility of the clustering
than others. Consider vector quantification that aims to find
a compact encoding of signals that has low expected distor-
tion. The accuracy of the encoding is most important for sig-
nals that occur frequently. With weighted data, such a con-
sideration is easily captured by having the weights of the
points represent signal frequencies.

When applying clustering to facility allocation, such as
the placement of police stations in a new district, the dis-
tribution of the stations should enable quick access to most
areas in the district. However, the accessibility of different
landmarks to a station may have varying importance. The
weighted setting enables a convenient method for prioritis-
ing certain landmarks over others.

Traditional clustering algorithms can be readily trans-
lated into the weighted setting. This leads to the following
fundamental question: Given a specific weighted clustering
task, how should a user select an algorithm for that task?
Recently, a new approach for choosing a clustering algo-
rithm has been proposed (see, for example, (Ackerman, Ben-
David, and Loker 2010b)). This approach involves identify-
ing significant properties that distinguish between cluster-
ing paradigms in terms of their input/output behavior. When
such properties are relevant to the user’s domain knowledge,
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they may be used to select which algorithms are appropriate
for their specific applications.

In this paper, we formulate intuitive properties that may
allow a user to select an algorithm based on how it treats
weighted data. Based on these properties we obtain a classi-
fication of clustering algorithms into three categories: those
that are affected by weights on all data sets, those that ig-
nore weights, and those methods that respond to weights on
some configurations of the data but not on others. Among
the methods that always respond to weights are several well-
known algorithms, such as k-means and k-median. On the
other hand, algorithms such as single-linkage, complete-
linkage, and min-diameter ignore weights.

Perhaps the most notable is the last category. We find that
methods belonging to that category are robust to weights
when data is sufficiently clusterable, and respond to weights
otherwise. Average-linkage as well as the well-known spec-
tral objective function, ratio cut, both fall into this category.
We characterize the precise conditions under which these
methods are influenced by weights.

Related Work
Clustering algorithms are usually analysed in the context of
unweighted data. The only related work that we are aware
of is from the early 1970s. (Fisher and Ness 1971) intro-
duced several properties of clustering algorithms. Among
these, they mention “point proportion admissibility”, which
requires that the output of an algorithm should not change if
any points are duplicated. They then observe that a few algo-
rithms are point proportion admissible. However, clustering
algorithms can display a much wider range of behaviours
on weighted data than merely satisfying or failing to satisfy
point proportion admissibility. We carry out the first exten-
sive analysis of clustering on weighted data, characterising
the precise conditions under which algorithms respond to
weight.

In addition, (Wright 1973) proposed a formalisation of
cluster analysis consisting of eleven axioms. In two of these
axioms, the notion of mass is mentioned. Namely, that points
with zero mass can be treated as non-existent, and that mul-
tiple points with mass at the same location are equivalent to
one point with weight the sum of the masses. The idea of
mass has not been developed beyond stating these axioms in
their work.
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Our work falls within a recent framework for clustering
algorithm selection. The framework is based on identifying
properties that address the input/output behaviour of algo-
rithms. Algorithms are classified based on intuitive, user-
friendly properties, and the classification can then be used to
assist users in selecting a clustering algorithm for their spe-
cific application. So far, research in this framework has fo-
cused on the unweighed partitional (Ackerman, Ben-David,
and Loker 2010a), (Bosagh-Zadeh and Ben-David 2009),
(Ackerman, Ben-David, and Loker 2010b) and hierarchical
settings (Ackerman and Ben-David 2011). This is the first
application of the framework to weighted clustering.

Preliminaries
A weight function w over X is a function w : X → R+.
Given a domain set X , denote the corresponding weighted
domain by w[X], thereby associating each element x ∈ X
with weight w(x). A distance function is a symmetric func-
tion d : X ×X → R+ ∪ {0}, such that d(x, y) = 0 if and
only if x = y. We consider weighted data sets of the form
(w[X], d), whereX is some finite domain set, d is a distance
function over X , and w is a weight function over X .

A k-clustering C = {C1, C2, . . . , Ck} of a domain set X
is a partition of X into 1 < k < |X| disjoint, non-empty
subsets of X where ∪iCi = X . A clustering of X is a k-
clustering for some 1 < k < |X|. To avoid trivial partitions,
clusterings that consist of a single cluster, or where every
cluster has a unique element, are not permitted.

Denote the weight of a cluster Ci ∈ C by w(Ci) =∑
x∈Ci

w(x). For a clustering C, let |C| denote the num-
ber of clusters in C. For x, y ∈ X and clustering C of X ,
write x ∼C y if x and y belong to the same cluster in C and
x 6∼C y, otherwise.

A partitional weighted clustering algorithm is a function
that maps a data set (w[X], d) and an integer 1 < k < |X|
to a k-clustering of X .

A dendrogram D of X is a pair (T,M) where T is a
binary rooted tree and M : leaves(T ) → X is a bi-
jection. A hierarchical weighted clustering algorithm is a
function that maps a data set (w[X], d) to a dendrogram
of X . A set C0 ⊆ X is a cluster in a dendrogram D =
(T,M) of X if there exists a node x in T so that C0 =
{M(y) | y is a leaf and a descendent of x}. For a hierar-
chical weighted clustering algorithm A, A(w[X], d) out-
puts a clustering C = {C1, . . . , Ck} if Ci is a cluster in
A(w[X], d) for all 1 ≤ i ≤ k. A partitional algorithm A
outputs clustering C on (w[X], d) if A(w[X], d, |C|) = C.

For the remainder of this paper, unless otherwise stated,
we will use the term “clustering algorithm” for “weighted
clustering algorithm”.

Finally, given clustering algorithm A and data set (X, d),
let range(A(X, d)) = {C | ∃w such that A outputs C
on (w[X], d)}, i.e. the set of clusterings that A outputs on
(X, d) over all possible weight functions.

Basic Categories
Different clustering algorithms respond differently to
weights. We introduce a formal categorisation of clustering

algorithms based on their response to weights. First, we de-
fine what it means for a partitional algorithm to be weight
responsive on a clustering. We present an analogous defini-
tion for hierarchical algorithms when we study hierarchical
algorithms below.
Definition 1 (Weight responsive). A partitional cluster-
ing algorithm A is weight-responsive on a clustering C of
(X, d) if

1. there exists a weight function w so that A(w[X], d) = C,
and

2. there exists a weight function w′ so that A(w′[X], d) 6=
C.
Weight-sensitive algorithms are weight-responsive on all

clusterings in their range.
Definition 2 (Weight Sensitive). An algorithmA is weight-
sensitive if for all (X, d) and all C ∈ range(A(X, d)),A is
weight-responsive on C.

At the other extreme are clustering algorithms that do not
respond to weights on any data set. This is the only category
that has been considered in previous work, corresponding to
“point proportion admissibility”(Fisher and Ness 1971).
Definition 3 (Weight Robust). An algorithm A is weight-
robust if for all (X, d) and all clusterings C of (X, d), A is
not weight-responsive on C.

Finally, there are algorithms that respond to weights on
some clusterings, but not on others.
Definition 4 (Weight Considering). An algorithm A is
weight-considering if
• There exists an (X, d) and a clusteringC of (X, d) so that
A is weight-responsive on C.
• There exists an (X, d) and C ∈ range(A(X, d)) so that
A is not weight-responsive on C.
To formulate clustering algorithms in the weighted set-

ting, we consider their behaviour on data that allows dupli-
cates. Given a data set (X, d), elements x, y ∈ X are dupli-
cates if d(x, y) = 0 and d(x, z) = d(y, z) for all z ∈ X . In a
Euclidean space, duplicates correspond to elements that oc-
cur at the same location. We obtain the weighted version of
a data set by de-duplicating the data, and associating every
element with a weight equaling the number of duplicates of
that element in the original data. The weighted version of an
algorithm partitions the resulting weighted data in the same
manner that the unweighted version partitions the original
data. As shown throughout the paper, this translation leads
to natural formulations of weighted algorithms.

Partitional Methods
In this section, we show that partitional clustering algo-
rithms respond to weights in a variety of ways. Many pop-
ular partitional clustering paradigms, including k-means, k-
median, and min-sum, are weight sensitive. It is easy to see
that methods such as min-diameter and k-center are weight-
robust. We begin by analysing the behaviour of a spectral
objective function ratio cut, which exhibits interesting be-
haviour on weighted data by responding to weight unless
data is highly structured.
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Ratio-Cut Spectral Clustering
We investigate the behaviour of a spectral objective function,
ratio-cut (Von Luxburg 2007), on weighted data. Instead of
a distance function, spectral clustering relies on a similar-
ity function, which maps pairs of domain elements to non-
negative real numbers that represent how alike the elements
are.

The ratio-cut of a clustering C is rcut(C,w[X], s) =

1

2

∑
Ci∈C

∑
x∈Ci,y∈X\Ci

s(x, y) · w(x) · w(y)∑
x∈Ci

w(x)
.

The ratio-cut clustering function is rcut(w[X], s, k) =
argminC;|C|=k rcut(C,w[X], s). We prove that this func-
tion ignores data weights only when the data satisfies a very
strict notion of clusterability. To characterise precisely when
ratio-cut responds to weights, we first present a few defini-
tions.

A clustering C of (w[X], s) is perfect if for all
x1, x2, x3, x4 ∈ X where x1 ∼C x2 and x3 6∼C x4,
s(x1, s2) > s(x3, x4). C is separation-uniform if there ex-
ists λ so that for all x, y ∈ X where x 6∼C y, s(x, y) = λ.
Note that neither condition depends on the weight function.

We show that whenever a data set has a clustering that is
both perfect and separation-uniform, then ratio-cut uncovers
that clustering, which implies that ratio-cut is not weight-
sensitive. Note that these conditions are satisfied when all
between-cluster similarities are set to zero. On the other
hand, we show that ratio-cut does respond to weights when
either condition fails.

Lemma 1. Given a clustering C of (X, s) where every clus-
ter has more than one point, if C is not separation-uniform
then ratio-cut is weight-responsive on C.

Proof. We consider two cases.
Case 1: There is a pair of clusters with different similar-

ities between them. Then there exist C1, C2 ∈ C, x ∈ C1,
and y ∈ C2 so that s(x, y) ≥ s(x, z) for all z ∈ C2, and
there exists a ∈ C2 so that s(x, y) > s(x, a).

Let w be a weight function such that w(x) =W for some
sufficiently large W and weight 1 is assigned to all other
points inX . Since we can setW to be arbitrarily large, when
looking at the cost of a cluster, it suffices to consider the
dominant term in terms of W . We will show that we can
improve the cost of C by moving a point from C2 to C1.
Note that moving a point from C2 to C1 does not affect the
dominant term of clusters other than C1 and C2. Therefore,
we consider the cost of these two clusters before and after
rearranging points between these clusters.

LetA =
∑
a∈C2

s(x, a) and letm = |C2|. Then the dom-
inant term, in terms ofW , of the cost ofC2 isW A

m . The cost
of C1 approaches a constant as W →∞.

Now consider clusteringC ′ obtained fromC by moving y
from cluster C2 to cluster C1. The dominant term in the cost
of C2 becomes W A−s(x,y)

m−1 , and the cost of C1 approaches

a constant as W →∞. By choice of x and y, if A−s(x,y)m−1 <
A
m then C ′ has lower loss than C when W is large enough.

A−s(x,y)
m−1 < A

m holds when A
m < s(x, y), and the latter holds

by choice of x and y.
Case 2: The similarities between every pair of clusters are

the same. However, there are clusters C1, C2, C3 ∈ C, so
that the similarities between C1 and C2 are greater than the
ones between C1 and C3. Let a and b denote the similarities
between C1, C2 and C1, C3, respectively.

Let x ∈ C1 andw a weight function, such thatw(x) =W
for large W , and weight 1 is assigned to all other points in
X . The dominant term comes from clusters going into C1,
specifically edges that include point x. The dominant term
of the contribution of cluster C3 is Wb and the dominant
term of the contribution of C2 is Wa, totalling Wa+Wb.

Now consider clustering C ′ obtained from clustering C
by merging C1 with C2, and splitting C3 into two clus-
ters (arbitrarily). The dominant term of the clustering comes
from clusters other than C1 ∪ C2, and the cost of clusters
outside C1 ∪ C2 ∪ C3 is unaffected. The dominant term of
the cost of the two clusters obtained by splitting C3 is Wb
for each, for a total of 2Wb. However, the factor of Wa that
C2 previously contributed is no longer present. This replaces
the coefficient of the dominant term from a+ b to 2b, which
improved the cost of the clustering because b < a.

Lemma 2. Given a clustering C of (X, s) where every clus-
ter has more than one point, ifC is not perfect than ratio-cut
is weight-responsive on C.

The proof of the lemma is included in the ap-
pendix (Anonymous 2012).

Lemma 3. Given any data set (w[X], s) that has a perfect,
separation-uniform k-clustering C, ratio-cut(w[X], s, k) =
C.

Proof. Let (w[X], s) be a weighted data set, with a perfect,
separation-uniform clustering C = {C1, . . . , Ck}. Recall
that for any Y ⊆ X , w(Y ) =

∑
y∈Y w(y). Then,

rcut(C,w[X], s) =
1

2

k∑
i=1

∑
x∈Ci

∑
y∈Ci

s(x, y)w(x)w(y)∑
x∈Ci

w(x)

=
1

2

k∑
i=1

∑
x∈Ci

∑
y∈Ci

λw(x)w(y)∑
x∈Ci

w(x)

=
λ

2

k∑
i=1

∑
y∈Ci

w(y)
∑

x∈Ci
w(x)∑

x∈Ci
w(x)

=
λ

2

k∑
i=1

∑
y∈Ci

w(y)

=
λ

2

k∑
i=1

w(Ci) =
δ

2

k∑
i=1

[w(X)− w(Ci)]

=
λ

2

(
kw(X)−

k∑
i=1

w(Ci)

)
=
λ

2
(k − 1)w(X).

Consider any other clustering, C
′
= {C ′

1, . . . , C
′

k} 6= C.
SinceC is both perfect and separation-uniform, all between-
cluster similarities in C equal λ, and all within-cluster simi-
larities are greater than λ. From here it follows that all pair-
wise similarities in the data are at least λ. Since C is a k-
clustering different from C, it must differ from C on at least
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one between-cluster edge, so that edge must be greater than
λ.

So the cost of C
′

is,

rcut(C
′
, w[X], s) =

1

2

k∑
i=1

∑
x∈C

′
i

∑
y∈C

′
i

s(x, y)w(x)w(y)∑
x∈C

′
i
w(x)

>
1

2

k∑
i=1

∑
x∈C

′
i

∑
y∈C

′
i

λw(x)w(y)∑
x∈C

′
i
w(x)

=
λ

2
(k − 1)w(X) = rcut(C).

So clustering C
′

has a higher cost than C.

We can now characterise the precise conditions under
which ratio-cut responds to weights. Ratio-cut responds to
weights on all data sets but those where cluster separation is
both very large and highly uniform. Formally,

Theorem 1. Given a clustering C of (X, s) where ev-
ery cluster has more than one point, ratio-cut is weight-
responsive on C if and only if either C is not perfect, or
C is not separation-uniform.

Proof. The result follows by Lemmas 1, 2, and 3.

K-Means
Many popular partitional clustering paradigms, including k-
means, k-median, and min-sum, are weight sensitive. More-
over, these algorithms satisfy a stronger condition. By mod-
ifying weights, we can make these algorithms separate any
set of points. We call such algorithms weight-separable.

Definition 5 (Weight Separable). A partitional clustering
algorithm A is weight-separable if for any data set (X, d)
and any S ⊂ X , where 2 ≤ |S| ≤ k, there exists a weight
function w so that x 6∼A(w[X],d,k) y for all disjoint pairs
x, y ∈ S.

Note that every weight-separable algorithm is also
weight-sensitive.

Lemma 4. If a clustering algorithm A is weight-separable,
then A is weight-sensitive.

Proof. Given any (w[X], d), let C = A(w[X], d, k). Se-
lect points x and y where x ∼C y. Since A is weight-
separable, there exists w′ so that x 6∼A(w′[X],d,k) y, and so
A(w′[X], d, k) 6= C.

K-means is perhaps the most popular clustering ob-
jective function, with cost: k-means(C,w[X], d) =∑
Ci∈C

∑
x∈Ci

d(x, cnt(Ci))
2, where cnt(Ci) denotes the

center of mass of cluster Ci. The k-means optimizing func-
tion finds a clustering with minimal k-means cost. We show
that k-means is weight-separable, and thus also weight-
sensitive.

Theorem 2. The k-means optimizing function is weight-
separable.

Proof. Consider any S ⊆ X . Let w be a weight func-
tion over X where w(x) = W if x ∈ S, for large W ,
and w(x) = 1 otherwise. As shown by (Ostrovsky et
al. 2006), the k-means objective function is equivalent to∑

x,y∈Ci
d(x,y)2·w(x)·w(y)

w(Ci)
. Let m1 = minx,y∈X d(x, y)

2 >

0, m2 = maxx,y∈X d(x, y)
2, and n = |X|. Con-

sider any k-clustering C where all the elements in S be-
long to distinct clusters. Then k-means(C,w[X], d) <

km2(n + n2

W ). On the other hand, given any k-clustering
C ′ where at least two elements of S appear in the
same cluster, k-means(C ′, w[X], d) ≥ W 2m1

W+n . Since

limW→∞
k-means(C′,w[X],d)
k-means(C,w[X],d) = ∞, k-means separates all the

elements in S for large enough W .

It can also be shown that the well-known min-sum objec-
tive function is also weight-separable.

Theorem 3. Min-sum, which minimises the objective func-
tion

∑
Ci∈C

∑
x,y∈Ci

d(x, y) · w(x) · w(y), is weight-
separable.

Proof. The proof is similar to that of the previous theorem.

Several other objective functions similar to k-means,
namely k-median and k-mediods are also weight-separable.
The details appear in the appendix (Anonymous 2012).

Hierarchical Algorithms

Similarly to partitional methods, hierarchical algorithms
also exhibit a wide range of responses to weights. We show
that Ward’s method, a successful linkage-based algorithm,
as well as popular divisive heirarchical methods, are weight
sensitive. On the other hand, it is easy to see that the linkage-
based algorithms single-linkage and complete-linkage are
both weight robust, as was observed in (Fisher and Ness
1971).

Average-linkage, another popular linkage-based method,
exhibits more nuanced behaviour on weighted data. When
a clustering satisfies a reasonable notion of clusterability,
then average-linkage detects that clustering irrespective of
weights. On the other hand, this algorithm responds to
weights on all other clusterings. We note that the notion of
clusterability required for average-linkage is a lot weaker
than the notion of clusterability used to characterise the be-
haviour of ratio-cut on weighted data.

Hierarchical algorithms output dendrograms, which con-
tain multiple clusterings. Please see the preliminary section
for definitions relating to the hierarchical setting. Weight-
responsive for hierarchical algorithms is defined analo-
gously to Definition 1.

Definition 6 (Weight responsive). A clustering algorithm
A is weight-responsive on a clustering C of (X, d) if (1)
there exists a weight function w so that A(w[X], d) out-
puts C, and (2) there exists a weight function w′ so that
A(w′[X], d) does not output C.
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Weight-sensitive, weight-considering, and weight-robust
are defined as in the preliminaries section, with the above
definition for weight-responsive.

Average Linkage
Linkage-based algorithms start by placing each element in
its own cluster, and proceed by repeatedly merging the “clos-
est” pair of clusters until the entire dendrogram is con-
structed. To identify the closest clusters, these algorithms
use a linkage function that maps pairs of clusters to a
real number. Formally, a linkage function is a function ` :
{(X1, X2, d, w) | d,w over X1 ∪X2} → R+.

Average-linkage is one of the most popular linkage-based
algorithms (commonly applied in bioinformatics under the
name UPGMA). Recall that w(X) =

∑
x∈X w(x). The

average-linkage linkage function is

`AL(X1, X2, d, w) =

∑
x∈X1,y∈X2

d(x, y) · w(x) · w(y)
w(X1) · w(X2)

.

To study how average-linkage responds to weights, we
give a relaxation of the notion of a perfect clustering.
Definition 7 (Nice). A clustering C of (w[X], d) is nice if
for all x1, x2, x3 ∈ X where x1 ∼C x2 and x1 6∼C x3,
d(x1, x2) < d(x1, x3).

Data sets with nice clusterings correspond to those that
satisfy the “strict separation” property introduced by Balcan
et al. (Balcan, Blum, and Vempala 2008). As for a perfect
clustering, being a nice clustering is independent of weights.

We present a complete characterisation of the way that
average-linkage (AL) responds to weights, showing that it
ignores weights on nice clusterings, but responds to weights
on all other clusterings.
Theorem 4. For any data set (X, d) and clustering C ∈
range(AL(X, d)), average-linkage is weight robust on
clustering C if and only if C is a nice clustering.

Theorem 4 follows from the two lemmas below.
Lemma 5. If a clustering C = {C1, . . . , Ck} of (X, d) is
not nice, then either C 6∈ range(AL(X, d)) or average-
linkage is weight-responsive on C.

Proof. Assume that there exists some w so that C ∈
AL(w[X], d). If it does not exist then we are done. We con-
struct w′ so that C 6∈ AL(w′[X], d).

Since C is not nice, there exist 1 ≤ i, j ≤ k, i 6= j, and
x1, x2 ∈ Ci, x1 6= x2, and x3 ∈ Cj , so that d(x1, x2) >
d(x1, x3).

Now, define weigh function w′ as follows: w′(x) = 1 for
all x ∈ X \{x1, x2, x3}, and w′(x1) = w′(x2) = w′(x3) =
W , for some large value W . We argue that when W is suffi-
ciently large, C is not a clustering in AL(w′[X], d).

By way of contradiction, assume that C is a clustering
in AL(w′[X], d) for any setting of W . Then there is a step
in the algorithm where clusters X1 and X2 merge, where
X1, X2 ⊂ Ci, x1 ∈ X1, and x2 ∈ X2. At this point, there is
some cluster X3 ⊆ Cj so that x3 ∈ X3.

We compare `AL(X1, X2, d, w
′) and `AL(X1, X3, d, w

′).
`AL(X1, X2, d, w

′) = W 2d(x1,x2)+α1W+α2

W 2+α3W+α4
, for some

non-negative real αis. Similarly, `AL(X1, X3, d, w
′) =

W 2d(x1,x3)+β1W+β2

W 2+β3W+β4
for some non-negative real βis.

Dividing W 2, we see that `AL(X1, X3, d, w
′) →

d(x1, x3) and `AL(X1, X2, d, w
′) → d(x1, x2) as W →

∞, and so the result holds since d(x1, x3) < d(x1, x2).
Therefore average linkage merges X1 with X3, so clus-
ter Ci is never formed, and so C is not a clustering in
AL(w′[X], d).

Finally, average-linkage outputs all nice clusterings
present in a data set, regardless of weights.
Lemma 6. Given any weighted data set (w[X], d), if C is a
nice clustering of (X, d), then C is in the dendrogram pro-
duced by average-linkage on (w[X], d).

Proof. Consider a nice clustering C = {C1, . . . , Ck} over
(w[X], d). It suffices to show that for any 1 ≤ i < j ≤ k,
X1, X2 ⊆ Ci where X1 ∩ X2 = ∅ and X3 ⊆ Cj ,
`AL(X1, X2, d, w) < `AL(X1, X3, d, w).

It can be show that `AL(X1, X2, d, w) ≤∑
x1∈X1

w(x1)·maxx2∈X2
d(x1,x2)

w(X1)
and `AL(X1, X3, d, w) ≥∑

x1∈X1
w(x1)·minx3∈X3

d(x1,x3)

w(X1)
.

Since C is nice, minx3∈X3
d(x1, x3) >

maxx2∈X2
d(x1, x2), thus `AL(X1, X3) >

`AL(X1, X2).

Ward’s Method
Ward’s method is a highly effective clustering algo-
rithm (Everitt 1993), which, at every step, merges the
clusters that will yield the minimal increase to the k-
means cost. Let ctr(X, d,w) be the center of mass
of the data set (w[X], d). Then, the linkage func-
tion for Ward’s method is `Ward(X1, X2, d, w) =
w(X1)·w(X2)·d(ctr(X1,d,w),ctr(X2,d,w))2

w(X1)+w(X2)
.

Theorem 5. Ward’s method is weight sensitive.
The proof is included in the appendix (Anonymous 2012).

Divisive Algorithms
The class of divisive clustering algorithms is a well-known
family of hierarchical algorithms, which construct the den-
drogram by using a top-down approach. This family of al-
gorithms includes the popular bisecting k-means algorithm.
We show that a class of algorithms that includes bisecting
k-means consists of weight-sensitive methods.

Given a node x in dendrogram (T,M), let C(x) denote the
cluster represented by node x. Formally, C(x) = {M(y) |
y is a leaf and a descendent of x}. Informally, a P-Divisive
algorithm is a hierarchical clustering algorithm that uses a
partitional clustering algorithm P to recursively divide the
data set into two clusters until only single elements remain.
Formally,
Definition 8 (P-Divisive). A hierarchical clustering algo-
rithm A is P-Divisive with respect to a partitional cluster-
ing algorithm P , if for all (X, d), we have A(w[X], d) =
(T,M), such that for all non-leaf nodes x in T with chil-
dren x1 and x2, P(w[C(x)], d, 2) = {C(x1), C(x2)}.
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Partitional Hierarchical
Weight k-means, k-medoids Ward’s method
Sensitive k-median, Min-sum Bisecting k-means
Weight Ratio-cut Average-linkage
Considering
Weight Min-diameter Single-linkage
Robust k-center Complete-linkage

Table 1: Classification of weighted clustering algorithms.

We obtain bisecting k-means by setting P to k-means.
Other natural choices for P include min-sum, and exemplar-
based algorithms such as k-median. As shown above, many
of these partitional algorithms are weight-separable. We
show that whenever P is weight-separable, then P-Divisive
is weight-sensitive. The proof of the next theorem appears
in the appendix (Anonymous 2012).

Theorem 6. If P is weight-separable then the P-Divisive
algorithm is weight-sensitive.

Conclusions

We study the behaviour of clustering algorithms on weighted
data, presenting three fundamental categories that describe
how such algorithms respond to weights and classifying sev-
eral well-known algorithms according to these categories.
Our results are summarized in Table 1. We note that all of
our results immediately translate to the standard setting, by
mapping each point with integer weight to the same number
of unweighted duplicates.

Our results can be used to aid in the selection of a clus-
tering algorithm. For example, in the facility allocation ap-
plication discussed in the introduction, where weights are
of primal importance, a weight-sensitive algorithm is suit-
able. Other applications may call for weight-considering al-
gorithms. This can occur when weights (i.e. number of du-
plicates) should not be ignored, yet it is still desirable to
identify rare instances that constitute small but well-formed
outlier clusters. For example, this applies to patient data on
potential causes of a disease, where it is crucial to investi-
gate rare instances. While we do not argue that these con-
siderations are always sufficient, they can provide valuable
guidelines when clustering data that is weighted or contains
element duplicates.

Our analysis also reveals the following interesting phe-
nomenon: algorithms that are known to perform well in
practice (in the classical, unweighted setting), tend to be
more responsive to weights. For example, k-means is highly
responsive to weights while single linkage, which often per-
forms poorly in practice (Hartigan 1981), is weight robust.

We also study several k-means heuristics, specifically the
Lloyd algorithm with several methods of initialization and
the PAM algorithm. These results were omitted due to a
lack of space, but they are included in the appendix (Anony-
mous 2012). Our analysis of these heuristics lends further
support to the hypothesis that the more commonly applied
algorithms are also more responsive to weights.
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