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Abstract
This paper presents a theoretical advance by which factored
POSGs can be decomposed into local models. We formal-
ize the interface between such local models as the influ-
ence agents can exert on one another; and we prove that
this interface is sufficient for decoupling them. The result-
ing influence-based abstraction substantially generalizes pre-
vious work on exploiting weakly-coupled agent interaction
structures. Therein lie several important contributions. First,
our general formulation sheds new light on the theoretical re-
lationships among previous approaches, and promotes future
empirical comparisons that could come by extending them
beyond the more specific problem contexts for which they
were developed. More importantly, the influence-based ap-
proaches that we generalize have shown promising improve-
ments in the scalability of planning for more restrictive mod-
els. Thus, our theoretical result here serves as the foundation
for practical algorithms that we anticipate will bring similar
improvements to more general planning contexts, and also
into other domains such as approximate planning, decision-
making in adversarial domains, and online learning.

1 Introduction
Multiagent planning and learning are very active and chal-
lenging topics of study, particularly when problems involve
uncertainties in the effect of actions and when agents only
make individual partial observations of their environment.
In the single-agent case, much research has focused on the
Markov decision process (MDP) framework and the par-
tially observable MDP (POMDP) (Kaelbling, Littman, and
Cassandra 1998). The natural generalization of these frame-
works to multiagent systems (MASs) are the decentralized
MDP (Dec-MDP) and Dec-POMDP (Bernstein et al. 2002)
and, in the case of self interested agents, the partially ob-
servable stochastic game (POSG). However, due to the addi-
tional complexity of decentralization—planning for a Dec-
MDP is NEXP complete—research on MASs has lead to a
plethora of models, each of them geared at exploiting spe-
cific types of structure in the agents interactions (Guestrin,
Koller, and Parr 2002; Becker, Zilberstein, and Lesser 2004;
Becker et al. 2003; Nair et al. 2005; Spaan and Melo
2008; Mostafa and Lesser 2009; Varakantham et al. 2009;
Witwicki and Durfee 2010; Melo and Veloso 2011).
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In this paper we offer a unified perspective on a large
number of these approaches by presenting influence-based
abstraction for factored POSGs (IBA) and showing how it
generalizes the abstractions performed by those approaches.
The general idea of IBA is as follows. A standard way for
agent i to compute a best response to the policy πj of an-
other agent j, is to maintain a belief over the full state s and
observation history (or other form of internal state) of the
other agent. Such a belief is a sufficient statistic, but is also
difficult to maintain, since the total state space may be large
and the number of histories grows exponentially with time.
However, in many cases, the agent may not need to reason
about the entire state space; its reward function may depend
on a small number of state variables, called state factors,
and so may his observations. Therefore, in many cases it is
quite natural to specify a subset of state factors that will con-
stitute the local state of an agent. Consequently, it becomes
unnecessary to reason about the entire state space and every
detail of the other agent’s actions; it only cares about how
the ‘external’ portion of the problem (i.e., state factors not
modeled in agent i’s state space and actions and observa-
tions of other agents) affects its local state. IBA is a two-
stage process. First the agent performs inference to compute
a (conditional) probability distribution over the relevant ex-
ternal variables, called the (incoming) influence point. Next,
the agent uses the influence point to perform a marginaliza-
tion of the conditional probability tables, thereby isolating
its local problem from superfluous external variables.

When the local state is well-chosen, IBA may lead to im-
proved efficiency of best-response computation and opens
the door to intuitive approximations via approximate infer-
ence. More importantly, however, there are strong indica-
tions that for cooperative MASs where the agents are weakly
coupled, it may be more efficient to search in the space of
joint influences, rather than the space of joint policies. For
instance, Witwicki and Durfee (2010) define an explicit form
of influence and show how this can substantially scale up op-
timal solutions for a restricted sub-class of Dec-POMDPs. In
this paper, we introduce a different, novel definition of influ-
ence and show how it can be used to decompose factored
partially observable stochastic games (fPOSGs), one of the
most general frameworks for multiagent planning under un-
certainty. That is, we show how it is possible to perform IBA
in virtually any multiagent system, providing a better un-
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derstanding of weakly-coupled interactions and laying the
foundation for influence-space search for all1 MASs.

2 Background
Definition 1. A partially observable stochastic game
(POSG) (Hansen, Bernstein, and Zilberstein 2004) is a tu-
ple M =

〈
D,S, {Ai} , {Oi} , T,O, {Ri} , b0, h

〉
, where

D = {1, . . . , n} is the set of n agents, S is a finite set
of states s, Ai is the set of actions available to agent i,
A = ×i∈DAi is the set of joint actions a = 〈a1, ..., an〉,Oi
is a set of observations available to agent i, O = ×i∈DOi is
the set of joint observations o = 〈o1, ..., on〉, T is the transi-
tion function which specifies Pr(s′|s,a), O is the observa-
tion function which specifies the probabilities Pr(o|a, s′) of
joint observations,Ri(s,a, s′) is agent i’s immediate reward
(or payoff) function, b0 ∈ ∆(S) is the initial state distribu-
tion at stage t = 0, h is the horizon of the problem, which
we will assume to be finite.

In a POSG, the agents act over h stages, selecting their ac-
tions based only on the private information they posses; the
policies are specified as mappings from individual action-
observation histories (AOHs) ~θ ti =

(
a0i , o

1
i , . . . , a

t−1
i , oti

)
to

probability distributions over actions: πi(~θ ti ) ∈ ∆(Ai).
In this paper, we are interested in the generalization where

there are multiple state variables, or factors, that make up the
state. A factored POSG (fPOSG) is a POSG where the states
are induced by a set of state factors SF = {F1, . . . , F|SF|}.
A state is an assignment of a value to each state factor. In an
fPOSG, the transition and observation model can be repre-
sented compactly using a two-stage dynamic Bayesian net-
work (2DBN), which specifies a conditional probability ta-
ble (CPT) for each variable in the problem (Boutilier, Dean,
and Hanks 1999). Notably, the special case with identical
payoffs is known as a (factored) Dec-POMDP, or (f)Dec-
POMDP (Oliehoek et al. 2008). The 2DBN representation
exploits conditional independence for more compact mod-
eling. An example of a real-world problem that has a lot of
such conditional independence is urban traffic light control
(Wiering 2000), where each traffic light’s actions will only
(directly) influence the amount of traffic on adjacent road
segments.

An important concept in MASs is that of best response:
the best policy for an agent i given the policies of the other
agents. There are large sub-classes of games, e.g., conges-
tion games and potential games (Rosenthal 1973; Monderer
and Shapley 1996) including Dec-POMDPs, where repeated
application of best-response computation leads to an equilib-
rium. Best-response computation is also important from the
perspective of an individual self-interested agent that finds
itself surrounded by other agents that are not necessarily ra-
tional. In this setting the agent may want to estimate the poli-
cies of the other agents and use a best-response policy to try
and maximize its expected payoff.

Nair et al. (2003) demonstrated how it is possible to use
dynamic programming to compute a best response in a Dec-

1Influence search has only been demonstrated for cooperative
MASs, but the core idea may transfer to search for Nash equilibria.

POMDP, but their result can be trivially extended to POSGs.
In essence, given the fixed policy of the other agents π−i,
from the perspective of agent i the problem reduces to a
special type of single-agent POMDP whose states are pairs
〈st, ~θ t−i〉. A belief bti(s

t, ~θ t−i) can be maintained by applica-
tion of Bayes rule’ and the solution of the POMDP will pro-
vide a value function mapping these beliefs to values. The
best-response value for agent i is defined as the value of the
initial state distribution: V ∗i (π−i),V i(b

0
i ).

We will refer to the above belief as the global individ-
ual belief of agent i, since it is defined over the global state
and history of all other agents.2 Although the global belief
is a sufficient statistic for predicting the value, it has the
drawback that the agent needs to reason about the entire
global state of the system and even the internal state (i.e.,
the action-observation histories) of the other agents. In the
next section we will introduce Local-Form Models that will
form the basis of a local, and potentially more compact, be-
lief that is also a sufficient statistic.

3 Local-Form Models
Here we introduce the local-form fPOSG model, wherein
we augment the vanilla fPOSG with a description of each
agent’s local state. Like in earlier models for influence ab-
straction in more restrictive settings (Witwicki and Durfee
2010), local state descriptions comprise potentially overlap-
ping subsets of state factors that will allow us to decompose
an agent’s best-response computation from the global state.

Definition 2. The local state function S : D → 2SF maps
from agents to subsets of state factors S(i) that are in the
agents local state.

We say that a state factor F is observed by an agent i if
it influences the probability of the agent’s observation. That
is, when in the 2DBN there is a path from F t to oti (i.e., F
is an intra-stage ancestor of oti). Similarly, a state factor F
is reward-relevant for an agent i if it influences the agent’s
rewards, i.e., if F t or F t+1 is an ancestor of Rti . We say
that a state factor F is modeled by an agent i if it is part
of its local state space: F ∈ S(i). From the perspective of
agent i, S partitions S(i) in two sets: a set of private factors
that it models but other agents do not, and a set of mutually-
modeled factors (MMFs) that are modeled by agent i as well
as some other agent j. We will write xi and mi for an in-
stantiation of repectively the private factors and MMFs of
agent i. A local state si of agent i is an assignment of values
to all state factors modeled by that agent si, 〈xi,mi〉. We
can now define the local-form model.

Definition 3. A local-form POSG, also referred to as local-
form model (LFM), is a pair 〈M, S〉, whereM is an fPOSG
and S is a local state function such that, for all agents:
• All observed factors are in the local state.
• All reward-relevant factors are in the local state.
• Private factors F can only be influenced by the own ac-

tion, other private factors and MMFs.

2Note that a global belief is entirely different from a so-called
joint belief (a distribution over states induced by a joint AOH).
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Figure 1: (Left) local form of a factored POSG. (Middle) DEC-TIGER in local form. (Right) agent 2’s best response model.

Fig. 1(left) illustrates the LFM, showing that actions of
multiple agents can affect the same state factor, that MMFs
can affect private factors (illustrated for agent 1), and that
private factors can influence MMFs (illustrated for agent 2).
Intra-stage connections (not shown) are also allowed.

The LFM definition requires the additional specification
of S that satisfies a number of properties (as per Def. 3),
which might seem restrictive. On the contrary, here we show
that any fPOSG can be converted to an LFM (although it
may lead to the introduction of additional state factors).

Theorem 1. Any fPOSGM can be converted to an equiva-
lent problem in local form.

Proof. Trivially, any fPOSG can be converted to a POSG
by flattening the state representation. Here we will show
how any POSG can be converted to local form. First, take
the entire POSG state st and define it to be the first state
factor of the LFM. Add a ‘previous joint action’ (pja) state
factor, with incoming edges from all the individual actions.
Add a ‘joint observation’ (jo) state factor with incoming
edges from all the individual actions and an intra-stage edge
from st, with CPT O (the observation function), and with
an outgoing edge to every agent’s individual observation
(a deterministic function). Specify the local state mapping
∀i S(i) = SF , which includes the entire set of state factors
including {pja,jo}, all of which are consequently MMFs. At
this point, the observations and rewards of agent only de-
pend on their local state. Thus, we constructed an LFM.

This shows that there is an LFM for every fPOSG, and
therefore that the criteria from Def. 3 do not what can be
modeled, but only on how it can be modeled; everything can
be represented by promoting enough state factors to MMFs.
However, it does not give us a recipe to find the LFM that
will lead to the most compact local models. It may take some
insight in order to determine which state factors should be
modeled by an agent, but in practice it is usually possible
find good descriptions of local state (Becker, Zilberstein, and
Lesser 2004; Nair et al. 2005; Spaan and Melo 2008; Melo
and Veloso 2011).

Example. The LFM for the DEC-TIGER benchmark (Nair
et al. 2003) is shown in Fig. 1 (middle). Because the joint
reward depends on the joint action, we introduce a state fac-
tor for the previous joint action (pja); the original state that

encodes the tiger location is now called ‘tiger’. Next we de-
fine the local reward functions as Ri(si = 〈tiger, ∗〉 , s′i =

〈∗, pja〉),R(s = tiger,a = pja)/2. We do not need to in-
troduce a joint observation state factor, since the observa-
tion probabilities are specified as the product: Pr(o|a, s) =
Pr(o1|a, s) Pr(o2|a, s).

4 Influence-Based Abstraction
Here we treat an LFM from the perspective of one agent and
consider how that agent is affected by the other agents and
can compute a best response against that ‘incoming’ influ-
ence.3 Though the proposed framework can deal with intra-
stage connections, in order to reduce the notational burden
we will not consider them here.

4.1 Definition of Influence
As discussed in Section 2, when the other agents are follow-
ing a fixed policy, they can be regarded as part of the envi-
ronment. The resulting decision problem can be represented
by the complete unrolled DBN, as illustrated in Fig. 1(right).
In this figure, a node F t is a different node than F t+1 and an
edge at (emerging from) stage t is a different from the edge
at t + 1 that corresponds to the same edge in the 2DBN.
Given this uniqueness of nodes and edges, we can define the
interface between the agents as follows.

Intuitively, the influence of other agents is the effect of
those edges leading into the agent’s local state space. We
say that every directed edge from the external portion of
the problem to an MMF mt ∈ S(i) is an influence link
〈ut,mt〉, where ut is called the influence source and mt

is the influence destination. Variable ut can be either an
action at−1j or non-modeled state factor xt−1−i . We write
ut→i = 〈xt−1u ,at−1u 〉 for an instantiation of the all influence
sources exerting influence on agent i at stage t. We write
~θtu for the AOHs of those other agents whose action is an
influence source.

We will define the influence as a conditional proba-
bility distribution over ut→i, making use of the concept
of d-separation in graphical models (Koller and Fried-
man 2009). Let d(It+1

→i ) be a d-separating set for
agent i’s influence at stage t + 1: a subset of variables

3An agent also exerts ‘outgoing’ influence on other agents, but
this is irrelevant for best response computation.
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at stages 0, . . . , t that d-separates xtu, ~θ
t
u from xti,m

t
i,
~θ ti

such that Pr(xtu,
~θ tu|xti,mt

i, d(It+1
→i ), ~θ ti , b

0,π−i) =

Pr(xtu,
~θ tu|d(It+1

→i ), b0,π−i).

Definition 4. The incoming influence at stage t + 1,
It+1
→i (π−i), is a conditional probability distribution over val-

ues of the influence sources:
I(ut+1

→i |d(I
t+1
→i )),

∑
~θtu

Pr(atu|~θtu) Pr(xtu, ~θtu|d(It+1
→i ), b

0,π−i).

Here, I is shorthand for It+1
→i (π−i).

The shaded nodes in Fig. 1(right) illustrate a d-separating
set for I2→2. We will assume that the d-separating sets chosen
can be expressed as the history of some subset Di ⊆ S(i)
of features. That is, we will assume that d(It+1

→i ) is given by
~Dt
i. In the figure, for instance,Di = {F2, a2}.

Definition 5. An incoming influence point I→i(π−i) for
agent i, specifies the incoming influences for all stages
I→i(π−i) =

(
I0→i(π−i), . . . , I

h−1
→i (π−i)

)
.

4.2 Influence-Augmented Local Models
Given the incoming influence I→i(π−i), agent i has an
influence-augmented local model (IALM), which we now de-
fine. The basic idea is that at each stage t, given It→i, we
can, for all factors that are influence destinations, compute
induced CPTs that only depend on the local state and ~Dt−1

i .
An IALM is a factored POMDP defined as follows.

States are tuples 〈xti,mt
i,
~Dt−1
i 〉. Actions and observa-

tions are the unmodified sets Ai, Oi. Observation proba-
bilities and rewards are directly given by the local form
fPOSG; by construction the observation probabilities will
only depend on ati,x

t+1
i ,mt+1

i . The local model re-
mains factored, which means that transition probabilities
Pr(xt+1

i ,mt+1
i , ~Dt

i|xti,mt
i,
~Dt−1
i , ai) of the local model

are given by the product of the CPTs for all state factors
in S(i). These CPTs are defined as follows.

By construction, the parents of a private factor x ∈ S(i)
are contained within the IALM and no adaptations are nec-
essary. The same holds for an MMF m ∈ S(i) that is not an
influence destination. Every m ∈ S(i) that is the destination
of one or more influence links has an induced CPT, that is
specified as follows.

Pr(mt+1|xti,mt
i,
~Dt
i, ai, I

t+1
→i ),∑

ut+1
→i =〈atu,xt

u,〉

Pr(mt+1|xti,mt
i, ai,x

t
u, au)I(ut+1

→i | ~D
t
i).

Since an IALM is just a special case of POMDP, reg-
ular POMDP solution methods can be used to compute
V ∗i (I→i(π−i)), the value of the IALM.

In order to prove that our definition of influence actually
constitutes a sufficient statistic, and thus that resulting IALM
actually achieves a best response against the policy π−i that
generated the influence I→i(π−i), we show that the latter
actually achieves the same optimal value.

Theorem 2. For a finite-horizon fPOSG, we have that
the solution of the IALM for the incoming influence point

I→i(π−i) associated with any π−i achieves the same value
as the best response computed against π−i directly:

∀π−i V ∗i (I→i(π−i)) = V ∗i (π−i). (1)

Sketch of Proof. We must show that the value based on the
global belief bgi (s

t, ~θ t−i) and local belief bli(x
t
i,m

t
i,
~Dt−1
i )

are equal. The proof is by induction over the horizon, with
the base case presented by the last stage.

For the induction step, we need to show that

Qti(b
g
i , ai) = Ri(b

g
i , ai) +

∑
o′i

Pr(o′i|bgi , ai)V
t+1
i (bgi ) =

Ri(b
l
i, ai) +

∑
o′i

Pr(o′i|bli, ai)V t+1
i (bli) = Qti(b

l
i, ai)

This is proven if we show that the expected rewards and
observation probabilities are equal (next-stage values V t+1

i
are equal per induction hypothesis). This also proves the
base case (which requires only showing equality of expected
rewards). An important step in proving these things is to
show that bli is sufficient to predict the next local state, i.e.,
Pr(xt+1

i ,mt+1
i |b

g
i , ai) = Pr(xt+1

i ,mt+1
i |bli, ai). This is

achieved by decomposing the global belief in a local and
external part via

bπi (s
t, ~θ t−i)=

∑
~Dt−1

i

bi(x
t
i,m

t
i, ~D

t−1
i )bi(x

t
−i, ~θ

t
−i|xti,mt

i, ~D
t−1
i ),

and subsequently marginalizing out non-source xt−i, ~θ
t
−i

variables. The remaining sources can be predicted from
~Dt−1
i , since it was chosen precisely to d-separate local state

and the sources.

4.3 Computing the Influence
The actual computation of It+1

→i (π−i) is an inference prob-
lem (Koller and Friedman 2009). In general this may be
a hard problem, but due to the d-separation it can be per-
formed ‘non-locally’, i.e., it does not need to take into ac-
count agent i’s private factors or actions. Also, in many
cases it is possible to factor I(ut+1

→i | ~Dt
i) as the product of

a number of non-correlated influences. For instance, when
the set of MMFs is the same for all the agents and every ~Dt

i
contains this entire set, due to d-separation the distribution
factors as a product of the distributions over sources corre-
sponding to different agents.

Also, it is possible to use approximate inference for the in-
fluence computation. This leads to an intuitively sensible ap-
proximation: things that are difficult to observe and/or very
complex such as private factors of other agents or their inter-
nal state are reasoned over only approximately, while vari-
ables that are more directly influential are treated exactly.
For instance, a traffic light must predict the local rewards
based on an accurate estimate of the traffic density of neigh-
boring road segments, but in order to do that approximate
inference about distant road segments may suffice.

In self-interested settings agents may not necessarily
share their policies, which means that an agent should esti-
mate the policy of other agents in order to compute a best re-
sponse. In this case, instead of learning the policies of other
agents and using those to compute the influences, it may be
more useful to directly estimate the influence.
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Figure 2: Local-form representations of TI-Dec-MDP (left), ED-Dec-MDP (middle) and ND-POMDP (right).

5 Influence Specifications for Sub-Classes
There are a number of important problem classes and asso-
ciated models developed in previous work that emphasize
weakly coupled problem structure in more restrictive set-
tings. We now frame these classes in the context of IBA, thus
taking a step towards demonstrating the practical usefulness
of our theoretical formulation. All of the models that we re-
view below are specialized instances of the factored Dec-
POMDP (fDec-POMDP) model and since an fDec-POMDP
is an fPOSG, our IBA is applicable to all of these models.
However, as we illuminate below, some subclasses allow for
particularly compact influence specifications.

TD-POMDP. Introduced by Witwicki and Durfee (2010),
the Transition-Decoupled POMDP (TD-POMDP) is an
fDec-POMDP with a particular form geared towards decou-
pling weakly-coupled agents. Like our local-form fPOSG,
the TD-POMDP describes a local state for each agent and
distinguishes mutually-modeled factors common to more
than one agents’ local state. However, there are two im-
portant differences that make the TD-POMDP more restric-
tive than our local-form model. First, the TD-POMDP does
not allow intra-stage dependencies between private state
variables and MMFs. Second, in a TD-POMDP each state
factor can only be directly affected by (have an incom-
ing edge from) the action (or private state variable) of just
one agent. These constraints effectively limit the represen-
tational power of the TD-POMDP to nonconcurrent interac-
tions.

Observation 1. The TD-POMDP model is a special case
of the LFM, imposing restrictions that limit its modeling ca-
pabilities to a subset of those interactions representable as
local-form POSGs: TD-POMDP ⊂ LFM.

Witwicki and Durfee also propose an explicit form of in-
fluence. Their definition however, corresponds to our no-
tion of ‘induced CPT’ and fixes the choice of the condi-
tioning sets to the history of mutually-modeled factors. The
authors also show that since there may be many more poli-
cies than possible influence points, searching in the space
of joint influences can provide significant speed-ups over
searching the space of joint policies. There is nothing ap-
parent that precludes extending influence-space search tech-
niques (Witwicki 2011; Witwicki, Oliehoek, and Kaelbling
2012) beyond TD-POMDPs, by using our more general def-

inition of influence. That is, such algorithmic extensions
might bring the computational leverage demonstrated for
TD-POMDPs to a more general class of problems.

TI-Dec-MDP. Another model, the Transition-Independent
Dec-MDP (Becker et al. 2003), imposes other more strin-
gent restrictions on the dependencies between agents’ local
models. In particular, an agent fully observes its private fac-
tors and there are no paths of dependence in the DBN con-
necting one agent’s private factors, actions, and observation
to those of another. This implies that the agents are tran-
sition and observation independent. Agents’ local models
are instead coupled through their rewards, which can de-
pend on the events ei = 〈sti, ati, s

t+1
i 〉 that occur (at most

once) within another agents’ state space. As shown in Fig-
ure 2(left), the combined occurrence of both agents’ events
(as represented by Boolean variable E) leads to a change in
the reward (split between the agents as soon as the event oc-
curs). When the discount factor is 1 (as the authors assume),
the reward may as well be effected at the last time step as we
have indicated. This leads to a very simple form of influence
I→i: the probability of eh−1j being true. This corresponds ex-
actly to the characterization of ‘parameter space’ presented
by Becker et al. in their development of the coverage set al-
gorithm (CSA).

Our characterization of the TI-Dec-MDP immediately
leads to some new insights.

Observation 2. The properties that 1) events cannot occur
more than once; and 2) events are unobserved, allow for
history-independent influence encodings in TI-Dec-MDPs.

Observation 3. CSA and closely-related TI-Dec-MDP al-
gorithms (Petrik and Zilberstein 2009) exploit structure that
is also present in more general contexts, such as TI-Dec-
POMDPs with partial observability of private factors.

We expect that CSA and its successors can actually be
extended to any problem whose joint value function is
piecewise-linear and convex in the influence parameters.

Event-Driven Interactions. In a closely-related class, the
Dec-MDP with Event-Driven Interaction (EDI-Dec-MDP),
Becker, Zilberstein, and Lesser (2004) developed an ex-
plicit representation for structured transition dependencies.
As shown in Figure 2(middle), agent 1’s transition proba-
bilities may be affected by the prior occurrence of agent 2’s
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event e2 (and vice versa). In this case, the event features are
mutually-observable, implying that their histories are neces-
sary for d-separation, i.e., D1 = {e1, e2}. This leads us to
develop a special influence specification.

Observation 4. The influence on EDI-Dec-MDP agent i,
It+1
→i (πj) can be defined as I(stj , a

t
j , s

t+1
j |~e ti , ~e tj ). Moreo-

ever, the history ~e ti , ~e
t
j can be represented compactly since

events can only switch to true.

The product of induced CPTs Pr(et+1
1 , et+1

2 |~e t1 , ~e t2) is
similar to the parameters used by Becker et al. (in their
application of CSA), but is slightly more compact, since it
does not depend on private factors sti. Having derived a more
compact parameter form, we anticipate that this will trans-
late directly into a more efficient application of CSA. We
note that our reformulation of the TI-Dec-MDP and EDI-
Dec-MDP also serve as influence specifications for the EDI-
CR model (Mostafa and Lesser 2009), a model developed
to include both event-driven interactions and reward depen-
dencies (as in the TI-Dec-MDP).

ND-POMDP. The Network Distributed POMDP (ND-
POMDP) (Nair et al. 2005) is another transition and obser-
vation independent model whose structure can easily be rep-
resented in our framework. As we depict in Figure 2 (right),
in addition to an unaffectable, mutually-modeled factor s0,
there are also reward dependencies involving joint actions,
as captured with an unobservable variable z encoding the
local state-action pair. In general, a ND-POMDP can con-
sist of multiple local neighborhoods (which would translate
to multiple variables z) that can connect different subsets of
agents. Our reformulation presented here immediately leads
to the first specification of influence that we are aware of for
this problem class:

Observation 5. The influence on ND-POMDP agent i,
It+1
→i (π−i) can be defined as I(stN(i), a

t
N(i)|~s

t
0 ), whereN(i)

denotes the neighbors of agent i.

Like the other mentioned subclasses, the ND-POMDP af-
fords a very compact influence encoding, suggesting that
influence-based planning methods could gain traction if ap-
plied here.

6 Other Related Work
Apart from the models and approaches reviewed in Sec-
tion 5, there are important connections to be drawn with
a large body of other work. Past studies of fDec-POMDPs
with factored value functions (Nair et al. 2005; Kumar, Zil-
berstein, and Toussaint 2011; Witwicki and Durfee 2011;
Varakantham et al. 2007) have shown that gains in compu-
tation efficiency are possible when the value function can be
expressed as the sum of a number of local components, each
of which is specified over subsets of agents and state fac-
tors (a property commonly referred to as ‘locality of inter-
action’). However, for general fDec-POMDPs, these com-
ponents involve all agents and factors. I.e., they are not lo-
cal (Oliehoek et al. 2008; Oliehoek 2010). This paper shows
that even in the most general case, provided there is enough
conditional independence, we can find local (i.e., restricted

scope) components, although this may be at the cost of intro-
ducing a dependence on the history. This means that it may
be possible to extend the planning-as-inference method of
Kumar et al. to exploit structure in general fDec-POMDPs.
In general, IBA draws close connections to the paradigm of
planning as inference (Toussaint 2009); it performs infer-
ence to compute a compact local model; subsequently, in-
ference (among other choices of solution methods) could be
used to solve the IALM.

A number of other approaches decompose multiagent
decision-making problems by leveraging structured interac-
tions. For instance, our approach resembles the distributed
approximate planning method by Guestrin and Gordon
(2002) in that both methods decompose an agent’s decision
model into internal and external parts. Our proposed ab-
straction, in addition to being sufficient for optimal decision-
making, is more general in that it can deal with partial ob-
servability. Other models such as the IDMG (Spaan and
Melo 2008) and the DPCL (Varakantham et al. 2009) have
allowed for approximate decoupled local planning by lever-
aging a form of context-specific independence, where agents
only influence each other in certain states. An important
direction of research is to also exploit this type of inde-
pendence in LFMs. I-POMDPs (Gmytrasiewicz and Doshi
2005) and I-DIDs (Doshi, Zeng, and Chen 2008) inherently
provide a decomposition, modeling other agents recursively.
Although quite different from the fPOSG, our definition of
influence (and thus IBA) is readily applicable to factored-
state versions of these models. Influence-based abstraction
is conceptually similar to existing I-DID solution techniques
that exploit behavioral equivalence (Pynadath and Marsella
2007; Rathnasabapathy, Doshi, and Gmytrasiewicz 2006;
Zeng et al. 2011), but these approaches abstract classes of
behaviors down to policies, whereas we abstract policies
down to even more abstract influences.

7 Conclusions & Future Work
This paper introduced influence-based abstraction (IBA) for
factored POSGs, a technique that allows us to decouple
the model into a set of local models defined over subsets
of state factors. Performing IBA for an agent consists of
two steps: computing the incoming influence point using
inference techniques and creating the agent’s induced local
model. As we described in Section 5, IBA for fPOSGs gen-
eralizes the abstractions made in a number of more specific
problem contexts.

IBA is important for the following reasons: (1) It allows
us to decompose the value function for any factored Dec-
POMDP into the sum of a number of local value functions
(that in general may depend on the local history), a prop-
erty that is exploited in several solution methods (Nair et
al. 2005; Oliehoek 2010; Kumar, Zilberstein, and Toussaint
2011), but that had been proven only for specific sub-classes
of Dec-POMDPs. (2) It provides a better understanding of
these sub-classes and how they relate to each other. The in-
sightful connections that we have drawn promote extensions
of specialized methods beyond their respective subclasses
as well as comparisons with one another in more general
contexts. (3) our general definition of influence paves the
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way for influence-space search in general Dec-POMDPs. (4)
IBA can enable more efficient best-response computation in
many fPOSGs, as well as providing a very natural form of
approximation via approximate inference. (5) Influences can
provide a more compact, yet sufficient statistic for the be-
havior of other agents in a MAS. This is important in multi-
agent reinforcement learning, since it is often easier to learn
a compact statistic from the same amount of data.

In future work we hope to develop a general form of in-
fluence space search for factored Dec-POMDPs. We also
plan to investigate how the two design choices in IBA—
the choice of the local state definition and the choice of
influence encoding (i.e., the choice of d-separating sets)—
interact. A number of other directions of future work seem
promising, such as the use of approximate inference for
computing influence points, the clustering of d-set-histories
(thereby imposing a clustering of the influences), and the
clustering of influence points themselves.
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